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Abstract

The drug development process is resource-intensive, often costing billions and taking over

a decade, yet many candidates still fail in late-stage trials. This thesis addresses key bottle-

necks in early-stage drug discovery—such as navigating chemical space, modeling molec-

ular interactions, and predicting biological properties—by integrating quantum chemistry

and machine learning to develop more accurate and scalable computational methodologies.

The analysis of the Aquamarine (AQM) dataset, designed to capture the interplay between

molecular conformations, solvation effects, and non-covalent interactions, is presented as a

key milestone for future machine learning models dealing with solvation effects for relevant

molecules in medicinal chemistry. The results of the analysis reveal that many-body disper-

sion effects and implicit solvation significantly influence molecular geometries, reinforcing

the necessity of accurate modeling for reliable predictions in biological environments. In

a similar direction, the thesis introduces also a photonic quantum simulation framework for

studying full Coulomb interactions between quantum Drude oscillators as a way to study dis-

persion beyond the dipole approximation typical of current models. This study uncovers non-

trivial quantum effects, including the formation of entangled Schrödinger cat states during

binding and offering insights into the fundamental nature of dispersion interactions. Moving

from fundamental problems to more practical applications, the Quantum Inverse Mapping

(QIM) framework is introduced to establish a direct, differentiable connection between quan-

tum mechanical properties and molecular structures. This enables multi-objective molecular

design and generation of transition path initializations, demonstrating its utility in navigating

chemical spaces for different tasks. Finally, the thesis explores the role of quantum chem-

istry data in enhancing deep learning models for ADMET property modeling. A system-

atic study on Graph Transformer reveals that pretraining on atom-level quantum properties

improves the model’s representation, leading to superior performance. Collectively, these

contributions bridge quantum chemistry with machine learning to address key challenges

in molecular exploration, electronic structure calculation, and biological property modeling,

advancing computational methodologies for rational drug discovery.
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Summary

Nowadays, the drug development process represents a massive investment of time and

resources—often costing billions of dollars and taking up to 15 years. Despite this, a

significant number of drug candidates still fail in the later stages of development. These

challenges have made the development of accurate and efficient computational methodolo-

gies—particularly in the early drug discovery stages for modelling molecular behaviour and

interactions—more important than ever. Addressing this class of problems means manag-

ing various forms of complexity: navigating the astronomically large chemical compound

space, understanding molecular interactions with biological targets, and estimating com-

plex biological properties linked to a molecule’s journey through the human body, such

as absorption, distribution, metabolism, excretion, and toxicity (ADMET). Quantum chem-

istry provides a rigorous foundation for computing molecular properties with high accuracy,

particularly electronic structure and intermolecular interactions. However, these methods

are computationally expensive and scale poorly with system size, making them impractical

for high-throughput screening. Conversely, machine learning models—such as neural net-

works—are highly scalable and can approximate virtually any function, but their success de-

pends critically on the availability of high-quality training data and physically grounded archi-

tectures. The contribution of this work lies in developing methods that strategically combine

these two paradigms: leveraging the accuracy of quantum chemical data and the approxima-

tion power of neural networks to tackle the core complexities of early-stage drug discovery.

After a chapter of introduction, a second chapter is used to lay the theoretical foundation for

the rest of the work. This is done by reviewing the theoretical underpinnings of both quan-

tum chemistry and machine learning. Starting from a brief historical introduction of quantum

mechanics, the chapter outlines the construction of electronic structure methods—and in

particular of density functional theory (DFT)—which enable the computation of molecular

electronic properties at different levels of approximation and accuracy. Particular attention is

given to the challenge of modelling non-local correlation effects, which are typically lacking

in standard DFT methods and are critical for describing non-covalent interactions. The main

approximations used to make the treatment of these effects computationally feasible are
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introduced incrementally from the Adiabatic Connection Fluctuation Dissipation Theorem

(ACFDT). Foundational aspects of machine learning are then covered, starting from neu-

ral networks as universal function approximators and essential training techniques such as

backpropagation and stochastic gradient descent. A discussion of the bias–variance trade-

off highlights the key requirements for successful deep learning applications: large, diverse,

and high-quality datasets, alongside expressive model architectures. The representation of

molecules in machine-readable formats is explored, including text-based, graph-based, and

3D representations, along with the main neural network architectures developed for molec-

ular modeling, with attention to symmetries, invariances, attention mechanisms, and equiv-

ariant message-passing updates. Following this theoretical foundation, the third chapter ad-

dresses the role of quantum chemistry data with a broad overview of datasets containing 3D

molecular structures and their quantum mechanical properties. Landmark datasets of small

gas-phase organic molecules—such as QM7, QM7-X, QM9, and ANI—are introduced, with

a discussion of their scope, structure optimization methods, and quantum properties. While

acknowledging their foundational value, their limitations in terms of chemical diversity, sol-

vation modeling, system size, and relevance to pharmaceutical applications are outlined.

More recent datasets attempt to address some of these gaps, but none fully captures the

interplay between conformational variability, solvation, and quantum properties while provid-

ing broad coverage of the chemical space relevant to medicinal chemistry. The Aquamarine

(AQM) dataset is then introduced as a resource specifically designed to address these limita-

tions. Derived from public compounds selected to approximate a typical corporate chemical

library—including molecules composed of H, C, N, O, F, P, Cl, and S atoms—AQM con-

tains multiple conformers per molecule, with properties and geometries obtained both in

vacuum and under implicit solvent conditions. After reviewing the data generation method-

ology—including the selection of relevant conformers—an extensive analysis of the dataset

is presented. Special attention is given to the non-electrostatic components of solvation en-

ergy and its relation to dispersion energy computed with both pairwise Tkatchenko-Scheffler

(TS) and Many-Body Dispersion (MBD) methods, highlighting the differences between these

approaches across conformer ensembles. The extensive property and geometry coverage
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emerging from this analysis place AQM as a valuable resource for training and benchmark-

ing machine learning models beyond gas-phase approximations. The discrepancy between

pairwise and many-body methods of treating non-covalent interactions just outlined serves

as a clear illustration of how the level of physical approximation impacts dataset quality

and, consequently, machine learning models. To further investigate these limitations, the

following section introduces a proof-of-concept study exploring a modeling strategy beyond

the dipole approximation inherent to standard dispersion models. This approach uses two

Quantum Drude Oscillators interacting through full Coulomb potential (cQDOs), simulated

on photonic quantum hardware. The bosonic nature of the cQDOs allows mapping onto

the Fock space of optical modes, enabling a variational approach to finding the system’s

energy curve. The resulting binding curves exhibit features consistent with realistic molecu-

lar interactions and show excellent agreement with Morse-like potentials. Analysis in phase

space reveals that the system transitions from vacuum states in the non-interacting regime

to coherent states in the bonded regime, while at intermediate distances, it becomes an en-

tangled Schrödinger cat state. This phenomenon is corroborated by entanglement entropy

tracking and fitting an entangled cat-state ansatz to the quantum states at transition points.

Overall, the methodology and the presented results offer insights into the quantum nature

of dispersion and represents a first step toward a full-Coulomb treatment of non-covalent in-

teractions on quantum devices. In the fourth chapter the focus is shifted towards developing

tools for efficiently exploring chemical compound space (CCS). Starting from the observa-

tion that trends in quantum mechanical properties revealed meaningful structural patterns in

AQM, this section starts by questioning if molecular properties can serve as coordinates for

CCS navigation. This idea leads to the development of Quantum Inverse Mapping (QIM),

a framework that modifies the Variational Autoencoder to learn a compressed latent rep-

resentation enabling a differentiable mapping between quantum mechanical properties and

molecular structures. QIM extends the standard VAE by incorporating an additional neu-

ral network that encodes quantum mechanical properties alongside the molecular encoder

and decoder. A modified Evidence Lower Bound loss enforces alignment between latent

representations of molecular structures and their associated properties, ensuring a shared

xi



space where both can be seamlessly connected. Trained on the QM7-X dataset, the model

demonstrates the ability to reconstruct molecular structures from quantum properties with

good accuracy. A gradient analysis is then performed, identifying which quantum proper-

ties are most relevant for reconstruction, and noting that those properties tend to group

molecules with the same chemical composition (isomers). It is then shown that QIM can be

used for multi-objective targeted design of molecular structures, with its limited extrapolation

capabilities addressed through training modifications that allow generation of structures with

more heavy atoms than those in the training dataset. As a final application, the model’s inter-

nal representation is exploited to obtain initial guesses for transition paths between molecu-

lar geometries. Applied to conformational isomerization cases, the interpolated geometries

provide reasonable initial guesses for transition paths, demonstrating that the model’s latent

space captures essential physical aspects of molecular conformational changes, despite

being trained exclusively on equilibrium structures. What is shown in this chapter validate

the QIM framework as a significant conceptual advance by establishing quantum mechan-

ical properties as natural coordinates for navigating chemical space, but also as a model

that allows for many concrete applications. Finally, the fifth chapter explores how quantum

chemistry data can enhance deep learning models for predicting ADMET properties. This

chapter is presented as a natural extension of the previous ones, aiming at a way to lever-

age quantum mechanical properties, which can be computed from first principles, to improve

the machine learning modelling of ADMET properties which instead must be measured ex-

perimentally. With data scarcity and noise posing a fundamental challenge for machine

learning approaches, the proposed approach uses quantum chemistry data in a pretrain-

ing stage to obtain more robust representations for ADMET modeling. The investigation

centers around the Graph Transformer architecture, comparing three pretraining strategies:

atom-level quantum mechanical properties (charges, NMR shifts, Fukui indices), molecular-

level quantum mechanical properties (HOMO-LUMO gaps), and self-supervised masking.

Models were fine-tuned and tested on diverse ADMET tasks from public benchmarks and

on a larger internal company dataset of microsomal clearance. Atom-level quantum pre-

training showed the strongest improvements overall, while masking pretraining performed
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well on public benchmarks but poorly on internal data. The chapter then continues with an

in-depth analysis of the models’ representations under multiple aspects. Firstly, it is found

that pretraining information is preserved after fine-tuning and that all pretraining strategies

mitigate the collapse in latent expressivity across layers. A novel spectral analysis is then

introduced, showing that models pretrained on atom-level quantum properties develop at-

tention patterns that mimic the low-frequency eigenmodes of molecular graph Laplacians.

Finally, a gradient analysis demonstrates that atomic quantum mechanical pretraining pro-

duces representations more sensitive to local atomic environments. Overall, the results pre-

sented in this chapter confirm that this methodology is an effective way to leverage in-silico

quantum chemistry data for improving models for experimental ADMET properties. Further-

more, the study reveals that the in-depth representation analysis provides insights that align

more strongly with performance on high-quality internal datasets than with public benchmark

results, suggesting that representation quality is a more reliable indicator of model perfor-

mance in real-world pharmaceutical applications. The work is concluded with a chapter of

discussion and perspectives. Overall, the work presented in this thesis outlines multiple

contributions, spanning dataset development, computational methods, and representation

learning techniques that together demonstrate how to leverage quantum chemistry data and

machine learning methods in order to overcome the intractability issues inherent in chemical

space exploration, electronic structure calculation, and biological property prediction. While

each implementation has its limitations, the consistent success across applications validates

this synthesis of physical understanding and data-driven methods as a promising direction

for advancing molecular science and drug discovery. As computational capabilities continue

to evolve, this integration of mechanistic understanding with machine learning models will

play an increasingly central role in rational molecular design.

xiii



Index

1 Introduction 1

2 Background 5

2.1 From the hydrogen atom to DFT and non-covalent interactions . . . . . . . . 5

2.1.1 Limitations of Classical Atomic Models and the Schrödinger equation 5

2.1.2 Density Functional Theory (DFT) and Its Role in Computational Chem-

istry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Modeling Non-Covalent Interactions . . . . . . . . . . . . . . . . . . . 18

2.2 Neural Networks in Chemistry: Can They Understand Molecular Systems? . 23

2.2.1 The Universal Approximation Theorem and Its Implications . . . . . . 23

2.2.2 Defining Molecules as Input for Machine Learning Models . . . . . . . 29

2.2.3 Architecture Search and Representation Learning in Neural Networks

for Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 The Role of Quantum Chemistry Datasets 37

3.1 Overview of Key Datasets: QM7 and Beyond . . . . . . . . . . . . . . . . . . 38

3.2 Non-Covalent Interactions and Solvation in Molecular Properties: the Aqua-

marine dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Selection of relevant molecular structures . . . . . . . . . . . . . . . . 44

3.2.2 Conformational sampling . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.3 Analysis of solvent effects in property space . . . . . . . . . . . . . . . 46

xiv



3.3 Modeling Non-Covalent Interactions Using Photonic Quantum Simulation and

Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Definition of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.2 Neural Network Ansatz, Photonic Circuit and Variational Algorithm . . 56

3.3.3 Binding Energy Curves and Ground State Properties . . . . . . . . . . 58

3.3.4 Phase Space Analysis and Quantum Correlations . . . . . . . . . . . 61

4 A Whole Chemical Space in a Set of Properties 67

4.1 Compressing Chemical Space with Variational Auto-Encoders (VAE) . . . . . 68

4.2 A Differentiable Mapping Between Properties and Molecules . . . . . . . . . 70

4.3 Scientific Insights from a Neural Network . . . . . . . . . . . . . . . . . . . . 74

4.4 Multi-Objective Targeted Structure Generation . . . . . . . . . . . . . . . . . . 79

4.5 Energy Barrier and Transition Structures Estimation in One Method . . . . . . 83

5 Quantum Chemistry Data for Better Drug Discovery 86

5.1 The Current Issues with ADMET Modeling . . . . . . . . . . . . . . . . . . . . 87

5.2 Pretraining on Quantum Mechanical Data for Better Performance . . . . . . . 88

5.3 The Effects of Atom-Level Pretraining on Graphormer . . . . . . . . . . . . . 92

5.3.1 Preservation of Pretraining Information . . . . . . . . . . . . . . . . . . 92

5.3.2 Latent Expressivity Across Layers . . . . . . . . . . . . . . . . . . . . 94

5.3.3 Spectral Analysis of Attention . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.4 Neighbor Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . 98

6 Discussion and perspectives 101

xv



Chapter 1

Introduction

Drug and material discovery has long been among the most challenging and resource-

intensive tasks in science. Until the early 20th century, this process relied heavily on in-

tuition and a trial-and-error approach, often referred to as the "Edisonian approach." One

of the most notable examples is the discovery of penicillin in 1928, not through a deep un-

derstanding of molecular interactions but by accident—a fortunate event that ushered in the

age of antibiotics. While Alexander Fleming’s discovery was serendipitous, it took years of

systematic research during the 1940s to fully realize penicillin’s therapeutic potential. This

reliance on empirical knowledge and manual experimentation made progress slow, as re-

searchers navigated the vast and uncharted territory of chemical space without a fundamen-

tal understanding of the mechanisms governing molecular behavior.

The advent of quantum mechanics in the early 20th century marked a turning point in

our understanding of matter at the subatomic level. It provided a framework for explaining

the chemical processes that underpin molecular interactions. By the 1960s, methods like

Density Functional Theory (DFT) were developed, allowing researchers to computationally

predict electronic structures and molecular properties with unprecedented precision. These

breakthroughs in quantum chemistry rapidly became integral to drug and material discov-

ery, providing insights into reactivity, molecular stability, and electronic behavior. However,

quantum methods posed significant computational challenges. Scaling these techniques

to handle larger, more complex systems—such as modeling the biochemical processes in

1



drug interactions—remained a major hurdle, and the vastness of chemical space rendered

comprehensive exploration impractical.

Concurrently, a revolution in machine learning (ML) was gaining momentum. Although

the mathematical foundations of neural networks had existed for decades, it was not until

the development of modern computing hardware—especially the GPU—that these models

could be trained effectively. In 2012, AlexNet demonstrated the power of deep learning by

training an over-parameterized model with millions of parameters on large datasets. This

is seen by many as the turning point where deep learning started following the paradigm it

keeps following today. This approach brought about many revolutions that are actually used

in technology every day, with neural networks being able to track the motion of cars and

pedestrians, to understand and mimic human language flawlessly and to generate any kind

of absurd or realistic image or even video based on a text prompt. While this breakthrough

revolutionized the field of artificial intelligence, it also had profound implications for many

scientific disciplines, including chemistry and materials science. Deep learning’s ability to

approximate any function, given sufficient data, offered a new way to tackle the complexity

of molecular systems.

The applications of machine learning in drug and materials discovery have, in fact,

spurred an entire field of research, producing models that can be leveraged in numerous

ways. One prominent application is virtual screening, where models are trained to predict

specific properties of chemical structures, enabling the rapid evaluation of vast libraries of

molecules. These models allow researchers to efficiently screen large numbers of com-

pounds and select candidates with the most promising characteristics for further testing.

Machine learning has also been employed to learn the complex energy landscape of a

molecule and produce learned molecular force fields. These models are trained to pre-

dict interatomic forces and energies with great accuracy, significantly speeding up molecular

simulations and structure optimization. Beyond virtual screening, machine learning models

can also be trained for generative tasks, such as designing new molecules with targeted

properties. By learning how to transform a known probability distribution into one that spans

the space of compounds, these models generate molecules that align with desired chemical

2



or biological characteristics, expanding the toolkit available for drug discovery and material

design. This dual capability—of both screening and generating novel compounds, together

with the possibility to study their behaviour with accurate learned force fields highlights the

transformative potential of machine learning in accelerating the discovery process, improv-

ing molecular simulations, and optimizing outcomes across both fields.

This new approach, however, comes with its own challenges. Deep learning models,

while powerful, are notoriously data-hungry and prone to overfitting, especially in fields like

drug discovery, where experimental data is often scarce and noisy. Furthermore, the dy-

namic nature of chemical space means that models trained on one region may not transfer

well to others, necessitating continual retraining and data collection. In this context it be-

comes essential being able to leverage the data that you can actually produce by means

of computation as is the case for quantum mechanical properties. This can be produced

at scale and leveraged to provide these neural network based models with some degree

of fundamental understanding of the underlying physics and chemistry governing molecular

interactions. By training models on quantum mechanical properties, researchers can imbue

these models with a more grounded representation of chemical systems. This mitigates the

risk of overfitting to small, noisy datasets by anchoring predictions in fundamental physical

principles. However, even with computational data, challenges remain in ensuring that these

models generalize well across different chemical spaces, especially as quantum mechan-

ical calculations become increasingly expensive for larger systems. Thus, the integration

of quantum chemistry data with machine learning continues to evolve, seeking a balance

between accuracy, computational cost, and scalability for meaningful predictions in drug

discovery and materials science.

However, the relationship between quantum mechanics and machine learning is not uni-

directional. While quantum mechanical data helps improve machine learning models, the

opposite is also being actively explored. For instance, neural networks are being integrated

into quantum chemistry workflows to create more expressive ansatzes for the electron den-

sity both in DFT-like methods or for variational calculations on actual quantum devices. This

interplay between quantum mechanics and neural networks further pushes the boundaries

3



of what traditional computational methods can achieve.

Through this thesis, we explore how these revolutionary advancements—both in quan-

tum mechanics and machine learning—are converging to address the complexity of molec-

ular design. This is achieved by focusing on key aspects of data generation, exemplified by

contributions to the analysis of the Aquamarine dataset, containing high quality data from

molecules of interest for medicinal chemistry with a focus on dispersion interactions, sol-

vation effects and conformational landscapes, and non-covalent interaction modeling on a

photonic quantum simulator. We also investigate chemical space exploration through the

inverse mapping from properties to molecules and representation learning by examining the

effects of pretraining a graph-based model on quantum mechanical data. Importantly, ex-

plainability methods are integrated throughout this work, providing valuable insights into the

knowledge encoded within these black-box models. These methods help uncover features

inherent in the underlying data distributions and, more importantly, clarify the mechanisms

that drive molecular behavior.
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Chapter 2

Background

2.1 From the hydrogen atom to DFT and non-covalent interac-

tions

This section delves into the evolution of atomic models, starting from the classical under-

standing of the hydrogen atom to the development of Density Functional Theory (DFT) and

the modeling of non-covalent interactions. It begins with the limitations of classical atomic

models and progresses through the advancements and intuitions that lead to the introduc-

tion of the Schrödinger equation, which revolutionized our understanding of atomic structure.

The section then explores how quantum theory can be used to study molecular systems up

to the principles of DFT. Finally, it addresses the challenges of modeling non-covalent in-

teractions, such as van der Waals forces, and introduces the theory leading to advanced

methods like Tkatchenko-Scheffler (TS) and Many Body Dispersion (MBD).

2.1.1 Limitations of Classical Atomic Models and the Schrödinger equation

When most people think of an atom, they imagine a small, dense nucleus surrounded by

orbiting electrons. However, this understanding did not exist prior to 1911. This model

was proposed by Ernest Rutherford [1] that year and experimentally validated through his

famous gold foil experiment, in which ionized helium atoms (alpha particles) were fired at a
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thin sheet of gold. The results showed that while most alpha particles passed through the

foil with minimal deflection, a small fraction were scattered at large angles. This unexpected

behavior could only be explained by the presence of a dense, positively charged nucleus at

the center of the atom. This revelation fundamentally altered the prevailing understanding

of atomic structure, replacing Thomson’s Plum Pudding Model, which had pictured the atom

as a diffuse "soup" of positive charge with negatively charged electrons embedded within it.

While Rutherford’s model was able to explain numerous experimental observations, it

still presented significant challenges. According to classical electrodynamics, an acceler-

ated charged particle must radiate energy, which would cause the orbiting electrons to lose

energy and spiral into the nucleus. This effect would lead to the collapse of the atom within

a time frame on the order of 10−10s. Since both experimental evidence and common sense

dictate that matter exists stably, this poses a major flaw in Rutherford’s atomic model. Around

the same time, the idea that energy could be exchanged in discrete amounts, rather than

continuously, was gaining traction. This concept was first introduced by Max Planck in his

work on black body radiation [2] and later extended by Albert Einstein in explaining the pho-

toelectric effect[3]. In both cases, the experimental evidence was explained by considering

energy transfers as ensembles of small, discrete quantities called quanta, proportional to the

frequency ν of the radiation. This relationship is expressed as ϵq = hν, where h is Planck’s

constant. This concept was used by Bohr in 1913 [4], who proposed a model which was

a major step towards a more modern understanding of atomic structure. Bohr postulated

that the possible orbits of electrons around their nuclei are only a countable number. These

orbits are called stationary states and that electrons are only allowed to jump from one orbit

to the next by losing or gaining an amount of energy that is the energy "quanta" associated

to the energy difference. Following this model, an electron can jump between an orbit a and

an orbit b if it radiates or absorbs a photon with frequency ν, where hν = Ea−Eb with Ea en-

ergy associated to the stationary state a and Eb energy associated with the stationary state

b. Albeit with some postulates, this model does not present the issue of charge collapse

and furthermore was able to predict remarkably well the experimentally measured spectral

lines of the hydrogen atom and explained the principle behind atoms emitting only at specific
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wavelengths. While this was a major breakthrough, this model introduced the key mecha-

nism behind its success via postulate. A good explanation for this came with De Broglie, who

in 1923 [5] proposed a new and bold hypothesis. Stemming from the dual nature of light,

behaving classically like a wave but also transferring energy like a discrete entity (photons),

De Broglie hypothesized that matter might behave in the same way, behaving in some limit

as a wave. In what became known as the "matter-wave hypothesis", De Broglie suggested

that particles such as electrons could behave as waves and, borrowing the momentum for-

mula p = hv
c = hλ from photons, that their wavelengths would be inversely proportional to

their momentum following the equation λ = h
p . This groundbreaking idea provided immedi-

ately a basis for Bohr’s quantization of electron orbits as being stationary states, electrons

could only exist in the form of standing waves, hence in the orbit of length 2πr should be

divisible by the wavelength λ associated with the electron. This condition can be stated as

r = nλ
2π = nh

2πp , with n ∈ N.

While De Broglie’s hypothesis provided a theoretical explanation for the quantization of

orbits, a full understanding of electron behavior required the development of a more compre-

hensive mathematical framework. This came in 1926 [6], when Erwin Schrödinger formu-

lated his now-famous wave equation, which described the electron as a wave, rather than a

point particle. As a qualitative derivation of this equation one can start from considering in

1D a typical plane wave such as ψ = Aei(kx−ωt) with k being the wave number and ω being

the frequency in radians per second. If one considers the derivatives in time t and space x,

it is easy to see that:

∂ψ

∂t
= −iωAei(kx−ωt) (2.1)

∂ψ

∂x
= ikAei(kx−ωt). (2.2)

Now, for a free particle with mass m and momentum p we know that E = p2

2m , furthermore
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k = 2π
λ = p

ℏ and E = ℏω where ℏ = h
2π . From 2.1 and 2.2 we can now find:

iℏ
∂ψ

∂t
= EAei(kx−ωt) = Eψ (2.3)

−iℏ∂ψ
∂x

= pAei(kx−ωt) = pψ. (2.4)

By noticing that Eψ = p2

2mψ = 1
2m(−i ∂∂x)

2ψ, it is easy to see that for a 1D free particle

following a wave-like behaviour according to De Broglie’s hypothesis:

iℏ
∂ψ

∂t
= − ℏ2

2m

∂2

∂x2
ψ, (2.5)

which is indeed the celebrated Schrödinger equation. In a 3D setting, adding a potential

V (x) we obtain the more usual form:

iℏ
∂ψ

∂t
=

(
− ℏ2

2m
∇2 + V (x)

)
ψ. (2.6)

The Schrödinger equation not only provided a rigorous mathematical framework for de-

scribing the wave-like behavior of particles, but also marked a fundamental shift in our un-

derstanding of the atom and matter itself. Under some assumption it now possible to obtain

a time independent equation written as:

Ĥ |ψ⟩ = E |ψ⟩ , (2.7)

that is effectively an eigenvalue problem where the eigenfunctions of the Hamiltonian oper-

ator Ĥ are the stationary states of the system. In the case of the hydrogen atom this means

being able to find the standing waves from the previous models as solution of this equation

whose eigenvalues are the energy levels (spectrum) of the atom.

Albeit this framework is really effective, the interpretation of the wave function here intro-

duced is not trivial at all. What does ψ(x, t) represent for the system? How should we use

this to make experimental predictions and how should we interpret it? According to the Born

rule, |ψ(x, t)|2 represents the probability density of finding the particle at position x at time
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t. This means that quantum mechanics, in contrast to classical physics, does not provide

deterministic outcomes, but rather predicts the likelihood of different outcomes upon mea-

surement. In particular, in this framework observables are hermitian linear operators whose

expectation value for the system can be computed from the wave function ψ(x, t). Namely for

an observable Ô we will write the expectation value at time t as ⟨Ô⟩ =
∫
ψ(x, t)∗Ôψ(x, t)dx.

The wave function ψ(x, t) thus encodes all possible information about the system and its

observable behavior, but in the statistical sense. At its core it can actually be shown that

quantum mechanics is in fact a probability theory [7].

Being that observables are hermitian linear operators, that their expectation values are

essentially an inner product, and that solving a system in most cases is reduced to solving

an eigenvalue problem, a simplified abstract notation that allows us to use all the tools of

linear algebra comes naturally. This is known as braket notation, first introduced by Paul

Dirac [8], and allows to write quantum states |ψ⟩ as vectors in a generic Hilbert space H. In

this notation the wave function earlier mentioned is nothing but the projection of this vector

on the eigenbasis of the position operator x̂, namely we have that ψ(x, t) = ⟨x|ψ(t)⟩. Under

this light, it is possible to write the whole Eq. 2.6 as:

iℏ
∂

∂t
|ψ⟩ =

(
p̂2

2m
+ V̂

)
|ψ⟩ = Ĥ |ψ⟩ (2.8)

where Ĥ = p̂2

2m + V̂ is the generic Hamiltonian operator. This is the more familiar form of

Schrödinger equation which will be used in the rest of the text.

The mathematical structure of the theory has a number of consequences. For example if

we consider the operators associated to position and momentum, respectively x̂ and p̂, we

find that they do not commute, in fact:

[x̂i, p̂j ] = −iℏδij , (2.9)

which can be easily shown to lead to the famous Heisenberg uncertainty principle:

∆xi∆pj ≥
ℏ
2
δij (2.10)
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which is in general valid in similar forms for non commuting observables and states that one

cannot measure two such quantities with arbitrary precision at the same time.

Considering now functions of the position and momentum operators, also angular mo-

mentum can be introduced as L̂ = −iℏ(r ×∇), which can easily be shown to be Hermitian

and satisfy the commutation relations:

[L̂i, L̂j ] = iℏϵijkL̂k (2.11)

[L̂2, L̂j ] = 0. (2.12)

This set of operators is of great relevance as their spectrum and the set of eigenvalues

and eigenfunctions of L̂2 and L̂z define atomic and molecular orbitals. To summarize this,

considering L̂± = L̂x ± iL̂y we have:

L̂2 |l,m⟩ = l(l + 1)ℏ2 |l,m⟩ (2.13)

L̂z |l,m⟩ = mℏ |l,m⟩ (2.14)

L̂± |l,m⟩ = ℏ
√
l(l + 1)−m(m± 1) |l,m± 1⟩ (2.15)

where l ∈ {0, 1, 2, . . . } is called orbital angular momentum quantum number and m ∈

{−l,−(l − 1), . . . , 0, . . . , l − 1, l} is called magnetic quantum number. For a classical intu-

ition of how these make up atomic orbitals one can think of an orbital with fixed energy as

also having fixed radius, meaning also fixed magnitude of the angular moment. An orbital

will be hence defined by the magnitude of the angular momentum l, while the direction of

the angular momentum in space will be given by m.

As these operators were not enough to explain further experimental effects related to

the interaction with magnetic fields, such as the results from the Stern-Gerlach experiment

[9], a new set of operators were introduced. These are associated with an intrinsic angular

momentum of particles and is known as spin. Spin operators {Ŝx, Ŝy, Ŝz} follow the same

algebra and rules of an angular momentum, having spectrum Ŝ2 |s,m⟩ = s(s + 1)ℏ2 |s,m⟩

and Ŝz |s,m⟩ = mℏ |s,m⟩ with the crucial difference that also half integer values are here
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admitted, namely: s ∈ {0, 12 , 1, . . . } and m ∈ {−s,−(s − 1), . . . , . . . , s − s}. The nature of

spin leads to significant physical implications. For fermions, the Pauli exclusion principle [10]

states that no two identical fermions can occupy the same quantum state simultaneously,

giving rise to the electronic structure of atoms and the stability of matter. Conversely, bosons

do not adhere to such restrictions, allowing multiple particles to occupy the same state, which

facilitates phenomena like Bose-Einstein condensation [11]. Since electrons are fermions

with spin 1
2 , for what concerns atomic orbitals we now obtain an additional degree of freedom

for which the previously defined orbitals can now be occupied by up to two electrons (spin 1
2

and −1
2 ).

To close this section, a result that can be trivially derived from the linear character of

this theory, is the variational theorem. This states that if a physical system admits a ground

state |ψGS⟩ with minimal energy EGS = ⟨ψGS | Ĥ |ψGS⟩, then for any other state |ψ⟩ with

energy E = ⟨ψ| Ĥ |ψ⟩ one has EGS ≤ E. This can be shown by decomposing |ψ⟩ on the

eigenbasis given by the spectrum of Ĥ, resulting in ⟨ψ| Ĥ |ψ⟩ =
∑

n

∑
k ana

∗
k ⟨ψk| Ĥ |ψn⟩ =∑

n |an|2En ≥ E0
∑

n |an|2 = E0 = EGS . As we will see in the next section, this result is at

the core of quantum chemistry since a lot of the statistical properties and room temperature

properties of molecules and materials depend on the ground state.

2.1.2 Density Functional Theory (DFT) and Its Role in Computational Chem-

istry

Quantum mechanics, with the Schrödinger equation at its core, allows predictions that went

far beyond the possibilities of previous atomic models. With this theory one can try to tackle

the generic electronic problem, being hence able, in principle, to compute the properties of

any molecule or material. In practice, as mentioned in the previous section, one proceeds

by starting from an eigenvalue problem given by the time independent Schrödinger equation

(Eq. 2.7) where, if we consider a system of M nuclei and N electrons described by the

position vectors RA and ri, and consider the distances riA = |ri −RA|, rij = |ri − rj | and

11



RAB = |RA −RB|, then the Hamiltonian operator Ĥ will be:

Ĥ =
N∑
i=1

1

2
p̂2
i +

M∑
A=1

1

2
p̂2
A −

N∑
i=1

M∑
A=1

ZA
r̂iA

+
N∑
i=1

N∑
j>i

1

r̂ij
+

M∑
A=1

M∑
B>A

ZAZB

R̂AB
(2.16)

where ZA is the atomic number of the A-th nucleus and where following atomic unit conven-

tion masses are in units of electron mass and energies in Hartree (1Eh = e2

4πϵ0a0
).

While Eq.2.16 appears to be very complicated considering also quantum effects at the

nuclear level, a simplification can be obtained by realizing that the mass of protons is ∼ 2000

times higher than the mass of the electrons. As they have the same charge in absolute

value, they are subject to similar forces and hence electrons will move on a much lower

timescale seeing protons and nuclei as essentially standing still. This is known as the Born-

Oppenheimer approximation[12] and plays a pivotal role in quantum chemistry as it is used

in the majority of cases. Under this approximation we can consider in Eq.2.16 only the terms

involving electrons, hence:

Ĥelec =
N∑
i=1

1

2
p̂2
i −

N∑
i=1

M∑
A=1

ZA
r̂iA

+
N∑
i=1

N∑
j>i

1

r̂ij
(2.17)

= T̂ + V̂ext + V̂ee.

This leaves us with "only" the problem of solving Eq.2.7 for the electronic states:

Ĥelec |ψelec({RA})⟩ = Eelec |ψelec({RA})⟩ (2.18)

where now |ψelec({RA})⟩ depends on the positions of the nuclei {RA} purely parametrically.

The total energy of the system will now be given by Etot = Eelec +
∑M

A=1

∑M
B>A

ZAZB

R̂AB
and

the solution to the dynamics of such systems and their equilibrium states can be obtained

by iteratively computing the forces resulting from the equilibrium electronic state for a fixed

nuclear configuration, and then taking one classical integration step in the dynamics of the

nuclei. Hence, from now on we will solely focus on the electronic part of the problem. As

mentioned in the previous section, the main interest when dealing with this kind of systems
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is to find their ground state, and this problem is tackled relying on the variational theorem

previously mentioned. The idea is in fact to find a state |ψ⟩ for all of the electrons in the sys-

tem by solving a problem of finding a functional minimum with the constraint that electrons

will not be in the same state for the Pauli exclusion principle. Provided a functional form for

the energy of the system as ⟨ψ| Ĥelec |ψ⟩ = E[ψ], then the problem is to solve the following

in |ψ⟩:

δẼ[ψ]

δψ
= 0 (2.19)

Ẽ[ψ] = E[ψ]−
∑
ij

ϵij(⟨ψi|ψj⟩ − δij) (2.20)

where |ψi⟩ are the single electron states and where ϵij are the Lagrange multiplier from the

orthonormality constraint imposed by Pauli exclusion principle. To attempt a solution we

start from guessing a wave function, which in order to respect fermionic rules will have to be

antisymmetric w.r.t. the exchange in pairs of electrons so that the probability of finding two

electrons in the same state is 0 by construction. To obtain this constraint it is customary to

use the so-called Slater determinant [13] defined in position representation as:

Ψ(x1, x2, . . . , xN ) =
1√
N !

∣∣∣∣∣∣∣∣∣
ψ1(x1) . . . ψN (x1)

. . .
. . . . . .

ψ1(xN ) . . . ψN (xN )

∣∣∣∣∣∣∣∣∣ (2.21)

which can be written in state vector form as |Ψ⟩ = S−(N) |ψ1, ψ2, . . . , ψN ⟩ where S−(N) =∑
σ(−1)σPσ is the sum over the electrons permutations σ where odd permutation give a

negative sign thereby obtaining antisymmetry w.r.t. exchange. Note that in general one

should consider that there are an infinite number of wave functions in the basis set used {ψ}.

In practice the choice for this usually falls on a finite set of 2K > N orthogonal spin-orbitals

(K orbitals with spin). The problem of assigning 2K spin-orbitals to N electrons produces(
2K
N

)
possible combinations which is also the number of possible Slater determinants. Using

only one Slater determinant and not a linear combination thereof is hence a simplification.
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By substituting this in the functional form of the energy E[ψ] and considering how one- and

two-body operators from Eq. 2.17 operate on a Slater determinant, it is possible to find that:

Ẽ[Ψ] =
∑
i

⟨ψi|
p̂2

2
|ψi⟩−

∑
i

∑
A

⟨ψi|
ZA
r̂iA
|ψi⟩+

1

2

∑
ij

⟨ψiψj |
1

r̂ij
|ψiψj − ψjψi⟩−

∑
ij

ϵij(⟨ψi|ψj⟩−δij).

(2.22)

The condition on the functional derivative can then be shown to yield the following:

δẼ[Ψ]

δψ∗
k

=
p̂2

2
|ψk⟩ −

∑
A

ZA
r̂kA
|ψk⟩+

∑
j

⟨· ψj |
1

r̂kj
|ψkψj − ψjψk⟩ −

∑
j

ϵkj |ψj⟩ = 0. (2.23)

With an appropriate choice of set for the electron states {ψj}, ϵkj is diagonal (if the wave-

functions are already orthogonal then off-diagonal constraints are not needed and set to

zero) and we obtain:

F̂ [{ψj}] |ψk⟩ = ϵk |ψk⟩ (2.24)

which is a set of equations where the solution for the energy and state of each electron is

dependent on the solution of all the others via the electron-electron interaction term of the

Hamiltonian. Notice that, the only two terms coupling to other electrons can be made explicit

as follows:

∑
j

2Ĵj |ψk⟩ =
∑
j

⟨· ψj |
1

r̂kj
|ψkψj⟩ = ψk(xk)

∑
j

∫
ψ∗
j (xj)

1

rkj
ψj(xj)dxj (2.25)

∑
j

K̂j |ψk⟩ = −
∑
j

⟨· ψj |
1

r̂kj
|ψjψk⟩ = −

∑
j

ψj(xk)

∫
ψ∗
j (xj)

1

rkj
ψk(xj)dxj (2.26)

where Ĵj and K̂j are known respectively as Coulomb and exchange operators. These op-

erators both act on the i-th electron state considering the action of the other electrons as a

mean field, which is evident from the summation and integration operations. This approxi-

mation, which is a consequence of the choice of single Slater determinant ansatz, is known

as Hartree-Fock (HF) method [14, 15]. The solution of this systems is achieved by first

guessing a set states for each electron, usually assigning each one to a different orbital in

the set, and then solving the eigenvalue problem from Eq. 2.24 with the exchange operator
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computed using the current set (it is an integral operator that depends on its own basis set).

The solution of this is a set of eigenvalues and eigenvectors, where each electron will now in

general be assigned to a new orbital which will be some linear combination of the basis dif-

ferent from the previous one. This new set of electron states can be used to solve again the

eigenvalue problem and this procedure is repeated iteratively until the new electron states

are the same as in the previous iteration. Similar methods are known as Self Consistent

Field (SCF) methods. While approaches that consider more Slater determinants, such as

Full Configuration Interaction (Full CI), are possible, the computational cost quickly becomes

prohibitive.

In the 1960s, a new approach to address the complexities coming from these electron-

electron interaction terms came alive. Hohenberg and Kohn in their 1964 paper [16] shifted

the focus from treating the many-body electron wavefunction ψ(x1,x2, . . . ,xN ) which de-

pends on 3N coordinates to treating the electron density defined as:

ρ(x) = N

∫
dx2 . . . dxN |Ψ(x,x2, . . . ,xN )|2, (2.27)

which only depends on the 3 coordinates x and represents the probability of finding one

electron in that point in space. This shift was possible because they derived two main results:

(i) the electron density uniquely defines the hamiltonian operator of the system, hence its

properties and (ii) the electron density that minimizes the energy of the system is the electron

density obtained from the ground state of the system. For a proof of these theorems we

refer to the original paper. This allows for a natural correspondence V̂ext ↔ ρGS and hence

V̂ext → ψGS(V̂ext) → EGS [V̂ext] → EGS [ρ]. This means that the new variational principle will

be:

EGS [ρGS ] = ⟨ψGS [ρGS ]|Ĥ|ψGS [ρGS ]⟩ ≤ EGS [ρ] ∀ρ, (2.28)

and the generic energy functional will be of the form:

E[ρ] = T [ρ] + Eext[ρ] + Eee[ρ], (2.29)
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where Eext is the energy contribution coming from the interaction with the nuclei and Eee

contains the contribution stemming from the electron-electron interaction terms. While by

itself it is not trivial to understand how to proceed to solve the electronic problem opera-

tively, it is via the so-called Kohn-Sham method that DFT turns the theoretical results into

practical calculations. Following this method we consider a system of N non-interacting in-

dependent electrons {|ϕi⟩} that produces the same electron density as the original system,

namely ρ(r) =
∑

i ϕi(r)
∗ϕi(r), by moving in an effective potential. This results in a system

of independent Shrödinger equations of the form:

(
p̂2
i

2
+ V̂ eff

i

)
|ϕi⟩ = ϵi |ϕi⟩ . (2.30)

To define what is this effective potential, we need some manipulation to the energy functional

contributions. Namely we can write:

E[ρ] = T [ρ] + Eext[ρ] + Eee[ρ] + T0[ρ]− T0[ρ] + EH [ρ]− EH [ρ] (2.31)

= T0[ρ] + EH [ρ] + Eext[ρ] + EXC [ρ]

where T0[ρ] =
∑

i ⟨ϕi|
p̂2
i
2 |ϕi⟩ is the kinetic energy of independent electrons, where EH [ρ] =

1
2

∫∫
dxdx′ ρ(x)ρ(x′)

|x−x′| is known as Hartree energy and is the classical Coulomb repulsion en-

ergy, and where EXC [ρ] = T [ρ] − T0[ρ] + Eee[ρ] − EH [ρ] contains all the other effects from

the electron-electron interactions. This allows us to write:

V̂eff = V̂H + V̂ext + V̂XC (2.32)

where V̂XC = δEXC [ρ]
δρ . It is easy to understand that now all the complexity of the modeling

of the electron-electron interaction is not solved but only hidden in this exchange and corre-

lation potential. This trick, though, is the key to the success of this method as it allows for

a lot of freedom for modeling this in different ways depending on the level of computational

complexity, approximation and on which system is under investigation while maintaining a

system of equations that is iteratively solvable. For example, one can use highly costly
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wave-function based methods as a reference to fit some parameters in this exchange and

correlation functional. As one can imagine, this freedom spanned a plethora of computa-

tional methods, a few examples are:

• Local Density Approximation (LDA): A foundational method in DFT that approxi-

mates the exchange-correlation energy as a function of local electron density alone. It

belongs to the semi-local functional family and is particularly effective for systems with

uniform electron density but can struggle with inhomogeneous systems.

• Generalized Gradient Approximation (GGA): This method improves upon LDA by

incorporating the gradient of the electron density, allowing for better handling of non-

uniform systems. GGA also falls under the semi-local functional family and is widely

used for various materials due to its improved accuracy [17].

• Hybrid Functionals (e.g., PBE0): These functionals blend DFT with Hartree-Fock

theory by including a portion of exact exchange from Hartree-Fock. Hybrid functionals

are part of the hybrid functional family and offer enhanced accuracy, especially for

systems with strong electron correlation effects [18].

• Density Functional Tight Binding (DFTB): A computationally efficient method that

simplifies DFT using a tight-binding approximation to treat electron interactions. The

core of this method consists in assuming that the actual density is close to the one of

the isolated atoms. After expanding at the second order in the difference between ac-

tual density and isolated atom density a number of simplifications are possible, among

which the repulsive potential only depending on the isolated atom density. DFTB, to-

gether with other methods such as GTN-xTB, is considered part of the tight-binding

family and is particularly useful for studying larger systems where full DFT would be

computationally prohibitive [19].

All these methods work well for electronic structure calculations and found their way into

materials and drug discovery pipelines. The common shortcoming is the lack of van der

Waals interactions in these models due to their reliance on local approximations and limi-
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tations in handling non-local electron correlation effects. In the next section we will discuss

further how to overcome this issue.

2.1.3 Modeling Non-Covalent Interactions

Van der Waals interactions, or non-covalent interactions, are related to long range effects in

the electron density and are the result of correlated charge fluctuations[20, 21]. The energy

term that is involved in these forces is the correlation component of the exchange-correlation

contribution to the total energy. In order to build on the more local commonly used DFT

methods, we start from the Adiabatic Connection Fluctuation Dissipation Theorem (ACFDT).

The ACFDT provides a formal framework for connecting the correlation energy of a quantum

many-body system to the fluctuations of the electron density. It describes how the correlation

energy can be understood in terms of the dissipation of the system to perturbations in the

electron density, by saying that an electron system dissipates internal charge fluctuations in

the same way as it dissipates fluctuations from changes in the external electric field. This

effectively provides an expression for the correlation energy as:

Ecorr =
1

2π

∫ ∞

0
dω

∫ 1

0
dλ

∫ ∫
drdr′

[
χλ(r, r

′; iω)− χλ=0(r, r
′; iω)

] 1

|r− r′|
(2.33)

where λ is the coupling parameter with λ = 1 being the fully correlated system Hamiltonian

and λ = 0 being the independent particle picture such as the Kohn-Sham one, and where

χλ(r, r
′; iω) is the fourier transform of the response function obtained by considering the

charge density fluctuation in response to a change in the external field ∆ϕ(r, t):

∆ρ(r, t) =

∫
dr′
∫ t

−∞
dt′χ(r, r′; t− t′)∆ϕ(r′, t′). (2.34)

Considering now that at a charge fluctuation is associated a dipole density one can also

relate it to a polarization density as ∆ρ(r, t) = −∇ · P(r, t). This quantity is related to the
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external electric field as:

P(r, t) =

∫
dr′
∫ t

−∞
dt′α(r, r′, t, t′)E(r′, t′), (2.35)

where α(r, r′, t, t′) is the polarizability tensor. Considering now that E(r, t) = −∇(∆ϕ(r, t)),

together with the previous relations, one can find that:

χ(r, r′, t, t′) = ∇r · ∇r′ ·α(r, r′, t, t′). (2.36)

This can be used in Eq. 2.33, together with integration by parts, to obtain:

Ecorr =
1

2π

∫ ∞

0
dω

∫ 1

0
dλ

∫ ∫
drdr′Tr

[
(αλ(r, r

′; iω)−αλ=0(r, r
′; iω))T(r, r′)

]
, (2.37)

where T(r, r′) = ∇r∇r′
1

|r−r′| =
3(r−r′)×(r−r′)−|r−r′|2I

|r−r′|2 is the dipole potential tensor, and where

Tr [αT] =
∑

ij αijTij . For what concerns polarizability, α0 can be obtained easily for the

system of independent particles using Kohn Sham orbitals, while for αλ one can show that

the following Dyson equation holds:

αλ(r, r
′) = α0(r, r

′)−
∫∫

dr′′dr′′′α0(r, r
′′)Txc,λ(r

′′, r′′′)αλ(r
′′′, r′) (2.38)

=
∞∑
n=0

⟨α0(−λTxc,λα0)
n⟩(r, r′)

where Txc,λ(r, r
′, ω) = T(r, r′)− λ−1∇r∇r′fxc,λ(r, r

′, ω) is the dipole potential together with

the exchange-correlation kernel fxc,λ(r, r′, ω) =
δVxc,λ(r,ω)
δρ(r′,ω) and where ⟨·⟩ was used as short-

hand for the integration over spatial coordinates. This kernel is notoriously harder to approx-

imate than the original problem of approximating V̂xc itself, but a different approach is here

taken. Starting from the obvious consideration that using this formula for correlation energy

on top of a usual DFT method would count short range effects twice, we separate the space

integrals by using a range separation like:

∫∫
drdr′ =

∫∫
drdr′(1− f(|r− r′|)) +

∫∫
drdr′f(|r− r′|), (2.39)
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where f is one at long range and zero at short range, allowing to consider Ecorr = Ecorr,sr+

Ecorr,lr. This way one can proceed with a DFT approach for the short range component while

focusing on the long range one for the addition to the correlation component. By splitting

Txc,λ(r, r
′) ≃ (1−f(|r−r′|))Txc,λ(r, r

′)+f(|r−r′|)T(r, r′) ≡ Tsr,λ(r, r
′)+Tlr(r, r

′), one can

obtain αλ(r, r
′) =

∑∞
n=0⟨αsr(−λTlrαsr)

n⟩(r, r′) for the polarizability where we introduced

the short range polarizability as αsr by contracting all the short range screening effects like

. . .α0Tsrα0 . . . . This separation results in a long range contribution to the correlation energy

of the form:

Ecorr,lr = −
∞∑
n=2

(−1)n

n

∫ ∞

0

dω

2π

∫∫
drdr′Tr

[
⟨(αsrTlr)

n⟩(r, r′, iω)
]
. (2.40)

A plethora of methods are possible using the theory laid out so far, and in general can

involve truncation of the many body sum or a coarse graining of the system for polarizability

approximation or both. For example considering both a truncation to second order and an

effective localized isotropic polarizability αeff based on a partitioning of the electron density

(such as the Hirschfeld partitioning) in place of αsr, leads to:

E
(2)
corr,lr = −

1

2

∫ ∞

0

du

2π

∫∫
drdr′ × Tr[αeff(r, iu)Tlr(r, r

′)αeff(r
′, iu)Tlr(r

′, r)]

= −1

2

∫∫
dr dr′ ×

(
3

π

∫ ∞

0
duαeff(r, iu)αeff(r

′, iu)

)
Tr

[
1

6
Tlr(r, r

′)2
]

= −1

2

∫∫
dr dr′C6(r, r

′)
f(|r− r′|)2

|r− r′|6
, (2.41)

where we defined C6(r, r
′) = 3

π

∫∞
0 duαeff(r, iu)αeff(r

′, iu). Another commonly used approx-

imation is then aimed at modeling the frequency response of the αeff . While this can in

principle be very complex, it turns out that a good proxy for this is given by the well known

model of Quantum Drude Oscillators. This is essentially a charged harmonic oscillator that

has polarizability given by:

αQDO(ω) =
q2

m(ω̃2 − ω2 − iδω)
(2.42)
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where q is the charge of the oscillator, m is its mass, ω̃ is the characteristic frequency and

δ is an infinitesimally small number meaning that the absorption spectrum is a Dirac delta

located in ω̃. Thanks to this simplification we obtain an analytical form for the C6 coefficients

in the case of identical oscillator pairs as:

CQDO6 =
3

π

∫ ∞

0
dω αQDO(iω)αQDO(iω) =

3

4

(
αQDO(0)

)2
ω̃, (2.43)

while a convenient composition formula for pairs of oscillators (A, B) with different sets of

parameters:

CA,B6 =
3

π

∫ ∞

0
dω αA(iω)αB(iω) (2.44)

=
2CAA6 CBB6

CAA6
αB(0)
αA(0) + CBB6

αA(0)
αB(0)

,

albeit using this formula introduces a problem with the oscillator approximation as the char-

acteristic frequency needed to reproduce the results of the integral without the oscillator

approximation are different in the two integrations 2.42 and 2.44. This problem, though,

only leads to a 3% error on the heteroatomic C6 coefficients[22]. This results in a simplified

formula for the correlation energy at long range as:

Ecorr,lr =
∑
A<B

CA,B6

f(|RA −RB|)2

|RA −RB|6
. (2.45)

An example of a method leveraging on this level of approximation is the Tkatchenko-Sheffler

(TS) method[22], which is a pairwise coarse grained model for van der Waals interactions.

This relies on the observation that atomic polarizabilities of the free atoms linearly scale with

the available volume from the partitioning used for the coarse graining, yielding the relations:

αeff,A(0) = αA(0)
Veff [ρ]

Vfree
, C6,AA = Cfree6,AA

(
Veff [ρ]

Vfree

)2

(2.46)

which allows us to compute the long range correlation energy based on the current ρ and by

only referring to a table of precomputed quantities per each atomic species. If we now want
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to maintain this advantage which comes from the coarse-graining choice, but also consider

higher order in the many body summation, we can shift to the Many Body Dispersion (MBD)

framework[23]. In this framework we start from considering the atoms as three-dimensional

QDOs, with polarizability obtained by accounting for the short range dipole interaction with

a Dyson equation, considering the initial polarizability as obtained from the scaling law used

also in the TS method. After tracing over Cartesian components of the resulting polarizabil-

ities, and hence restoring isotropy, one can write an Hamiltonian for the interaction between

these charged harmonic oscillators as:

HMBD =
N∑
A=1

−1

2
∇2

ζA
+

N∑
A=1

ω̃A
2
||ζA||2 +

∑
AB

ω̃Aω̃B
2

√
α̃A(0)α̃B(0)ζ

T
AT

AB
lr ζB (2.47)

= Tζ +
1

2
ζTVζ,

where ζA =
√
mA(rA −RA) are the relative displacements and where V ijAB = ω̃Aω̃B(δij +√

α̃A(0)α̃B(0)T
ij
AB) with ζ being the direct sum of all the ζA and (i, j) running over the

cartesian components of the displacements. Diagonalizing this Hamiltonian, one obtains

a system of non interacting oscillators made of collective displacements with a new set

of characteristic frequencies {ηi}. This new system has an energy of half the sum of its

characteristic frequency. The interaction energy of this system is the equivalent of the long

range correlation energy that we are trying to approximate in the electron system and is then

trivially:

EMBD =
1

2

3N∑
i=A

ηi −
3

2

N∑
A=1

ω̃A. (2.48)

This method offers a significant improvement over pairwise-additive models by capturing

collective many-body effects. The MBD approach provides a balance between computa-

tional feasibility and accuracy, making it particularly useful for modeling vdW interactions in

large, complex systems such as molecular crystals[24], layered materials[25], and biological

macromolecules[26].
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2.2 Neural Networks in Chemistry: Can They Understand Molec-

ular Systems?

This section lays out the theory and current practice of the application of neural networks in

chemistry, focusing on their potential to understand and predict molecular systems. It starts

with a short discussion on classical regression methods leading to a definition of neural

network and an explanation of the Universal Approximation Theorem with a recipe for the

success of the current deep learning paradigm based on the bias-variance dilemma. Var-

ious molecular representations are then discussed as inputs for machine learning models,

including fingerprints, text-based representations, 2D graphs, and 3D structures. This is fol-

lowed by a final section where the main model architectures are introduced together with the

methods for molecular representation learning.

2.2.1 The Universal Approximation Theorem and Its Implications

In physics and data analysis, a common starting point is linear regression, where we aim to

model a system with a linear equation that best fits observed data. Given a dataset with N

samples, each having d features, we represent the input data as X = [x1,x2, . . . ,xN ]
⊤ and

the output as y = [y1, y2, . . . , yN ]
⊤. The linear regression model can then be written as yi ≈

w⊤xi + b for each sample i, where w is a vector of weights and b is the bias term. In matrix

notation, this becomes y ≈ Xw + b1, where b1 represents a vector where 1 is a vector of

ones, allowing for the bias term to be included in the matrix formulation. To find the best fit,

we minimize the Mean Squared Error (MSE), given by MSE = 1
N

∑N
i=1

(
yi −

(
w⊤xi + b

))2,
resulting in a solution for w that can be expressed as w = (X⊤X)−1X⊤y, assuming X⊤X

is invertible. This model, however, is limited to capturing only linear relationships, which are

often insufficient for modeling real-world phenomena where complex, nonlinear relationships

are common.

To capture more intricate patterns, we can expand the model by including polynomial

terms of the features. For instance, a second-order polynomial regression in one dimension

takes the form y = w0 +w1x+w2x
2, while higher-dimensional data might include terms like

23



xjix
m
k to represent interactions between variables. With this approach, we extend our feature

space by defining a new feature vector ϕ(x), which represents the polynomial expansion of

the original features. This transforms the model to y ≈ w⊤ϕ(x)+b, effectively applying linear

regression in a higher-dimensional space. While this approach can fit nearly any continu-

ous function with sufficient polynomial terms, it quickly becomes computationally expensive,

especially as the data’s dimensionality increases.

Figure 2.1: Schematic representation of a feed-forward neural network showing the structure from
the input layer (yellow nodes), through multiple hidden layers (red nodes), to the output layer (blue
nodes), emphasizing the unidirectional flow of information. Mathematically, the network’s output y is
given by y = WLσ(WL−1 . . . σ(W1x+ b1) · · ·+ bL−1) + bL, where x is the input vector, Wi and bi
are the weight matrices and bias vectors for each layer i, σ represents the activation function.

A natural evolution of this is kernel methods[27], where instead of computing the fea-

ture vector ϕ(x) and then finding the optimal weights w based on the training data {xi},

we directly use a kernel function K(x,x′) = ⟨ϕ(x), ϕ(x′)⟩, which does not require the direct

computation of ϕ while implicitly projecting data into a higher-dimensional space. A com-

mon example is the Gaussian or radial basis function (RBF) kernel, given by K(x,x′) =

exp
(
−∥x−x′∥2

2σ2

)
, which represents an infinite-dimensional feature space and allows us to

capture complex, nonlinear relationships. Prediction then follows by writing ỹ =
∑N

i=1 αiK(xi, x̃)

for any new data point x̃, where αi are the coefficients of the basis expansion determined
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by solving a linear system involving the kernel matrix of the training data K, with Kij =

K(xi,xj). This method thus provides a computationally efficient way to model nonlinear

data without an explicit feature transformation.

While kernel methods are powerful, they require us to select a kernel function before-

hand, which can be challenging for complex data where the optimal transformation is un-

known and can limit the expressive power of the regression law. Neural networks address

this challenge by learning the transformation directly from data. A neural network consists of

a set of layers, each made of a linear transformation and a non linear function, that subse-

quently transform the input. Mathematically, this can be expressed for a single-layer neural

network as y = w⊤σ(W(1)x+b(1))+b, where the matrix W(1) serves as the weight matrix for

the first layer of the neural network, mapping the input vector x to the hidden layer. Networks

such as these ones are the simplest ones and are called feed-forward neural networks or al-

ternatively Multi Layer Perceptrons (MLPs). Similarly, b(1) is a bias vector for this layer. The

term σ(W(1)x + b(1)) applies the nonlinear activation function σ(·) : R → R element-wise

to the linear transformation of the input, yielding the hidden layer activations. The vector

w represents weights applied to these hidden layer activations, while b is the output layer’s

bias term. The main result that makes neural networks such a powerful tool is the universal

approximation theorem. In its initial form, published in a work by Cybenko in 1989 [28], it

states:

Theorem 1 (Universal Approximation Theorem). Let σ be any continuous discriminatory

function. Then finite sums of the form

G(x) = w⊤σ(W(1)x+ b(1)) + b (2.49)

are dense in C(In). In other words, given any f ∈ C(In) and ϵ > 0, there exists a sum G(x)

of the above form for which

|G(x)− f(x)| < ϵ for all x ∈ In. (2.50)

Here, x ∈ Rn represents the input vector, and In = [0, 1]n is the n-dimensional unit in-
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terval over which the approximation is valid. For the definition of discriminative function as

well as the proof we refer to the original paper. In essence, this theorem states that a neural

network with a single hidden layer and an appropriate choice of activation function can ap-

proximate any continuous function f ∈ C(In) on a compact domain In to within any desired

accuracy ϵ, provided the hidden layer has a sufficiently large number of neurons. While Cy-

benko’s original theorem applies specifically to feedforward networks with a single hidden

layer and continuous, sigmoid-like activation functions, later research generalized these re-

sults. Hornik, Stinchcombe, and White [29] showed that the theorem holds for networks with

a variety of activation functions, not limited to sigmoids, as long as they are non-constant,

bounded, and continuous. In deeper networks, these transformations are repeated across

multiple layers, allowing the network to learn hierarchical, data-driven representations of the

input. Physicists can in fact think of neural networks as analogous to a generalized basis

expansion where each layer learns an adaptive basis, transforming inputs through nonlin-

ear functions in ways that correspond to nested interactions among variables. Unlike kernel

methods, neural networks do not rely on a pre-specified transformation; instead, they learn

the transformation that best fits the data as part of the optimization process. This flexibility is

why neural networks are so powerful in capturing high-dimensional, nonlinear relationships

that are common in physics and other natural sciences.

While the theoretical power of neural networks as universal approximators is well-established,

practical success has hinged on advances in optimization techniques, notably the backprop-

agation algorithm introduced by Rumelhart, Hinton, and Williams[30]. Backpropagation facil-

itates efficient computation of gradients for each network parameter through the application

of the chain rule, enabling the iterative optimization of a loss function L(w). The gradient

descent update for weights w for a given dataset is represented as:

w← w − η∇wLi,

where Li denotes the loss for a particular data sample, and η is the learning rate. This

approach is complemented by Stochastic Gradient Descent (SGD) [31], which applies back-
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propagation in practice. SGD operates by performing gradient descent steps based on a

surrogate of the actual loss calculated as the average over smaller subsets of the training

data, known as mini-batches.

In a more formal context, training a neural network can be framed within statistical learn-

ing theory. This framework defines a learning problem by the pair (D, L), whereD represents

the joint data distribution over the feature space X and the label space Y, while L is the cho-

sen loss function. Given the data, which will typically be a sample S from the distribution

D, the goal is to identify a function h∗ ∈ Hm : X → Y that minimizes the expected loss,

satisfying:

E[L(Y, f∗(X))|X = x] ≤ E[L(Y, h∗(X))|X = x] ≤ E[L(Y, h(X))|X = x] ∀h ∈ Hm, (2.51)

where f∗ is the optimal function minimizing the expected loss for any x ∈ X , while Hm

is the space of functions obtainable through algorithmic training on subsamples of S of

size m. In practice, as noted for SGD, we approximate the function that minimizes the

expected loss over mini-batches, with the Chernoff-Hoeffding lemma [32] guaranteeing that

this approximation closely resembles the expectation over the actual distribution with high

probability. Two critical aspects now emerge: (i) the distance between the best attainable

function h∗ and the actual optimal function f∗ is dependent on the data sample S and is

referred to as bias, and (ii) the function produced by a specific algorithm, denoted as halgo,

will not equate to h∗; this difference arises from the choice of model and optimization method,

known as variance. The bias-variance dilemma [33] highlights the essential ingredients for

successful deep learning: large, diverse, and high-quality datasets to reduce bias, alongside

expressive architectures and optimization strategies tailored to specific problems to reduce

the search space and facilitate convergence to the optimal result.

When these conditions are fulfilled, the outcomes can be remarkably impressive. A land-

mark example occurred in 2012 with the introduction of AlexNet [34], a neural network model

with approximately 60 million parameters trained on the extensive ImageNet dataset. This

dataset, which contained over 14 million labeled images, was the largest available at the
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time. AlexNet’s Convolutional Neural Networks (CNN) architecture, known for its effective-

ness in image processing, achieved unprecedented performance, marking a pivotal moment

in deep learning. Furthermore, the successful use of GPUs for training large, overparame-

terized models demonstrated the feasibility of this endeavours at scale, promising better and

better results attainable scaling both model and dataset dimension.

This spurred a revolution in deep learning, which has led to a whole landscape of appli-

cations and models. Learning how to deal with specific data modalities lead to specialized

architectures for diverse applications, especially with respect to inductive bias and symme-

tries. Convolutional Neural Networks (CNNs) excel in image processing [35] by leveraging

spatial hierarchies through convolutional and pooling layers, enabling efficient feature ex-

traction. Recurrent Neural Networks (RNNs), particularly with LSTM and GRU variants, are

designed for sequential data [36], capturing temporal dependencies essential for tasks like

language modeling. The Transformer architecture transformed Natural Language Process-

ing (NLP) [37, 38] by using self-attention mechanisms to model relationships between input

tokens, leading to breakthroughs in translation and text generation with models like BERT

[39] and GPT [40]. The flexibility of deep learning enables various approaches, including

pretraining and self-supervised learning, which are powerful strategies for enhancing model

performance. Pretraining on large datasets allows models to learn general representations

that can be fine-tuned for specific tasks, while self-supervised learning leverages unlabeled

data to extract meaningful features without requiring extensive labeled datasets. Moreover,

the possibility of learning arbitrary transformations from simple distributions, such asN(0, 1),

to complex data distributions facilitates innovative applications through generative models

across fields like art creation and drug discovery [41, 42]. As we turn our focus to the realm

of chemistry, we explore how these deep learning paradigms can be employed to define

and represent molecules, paving the way for advanced machine learning applications in this

field.
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2.2.2 Defining Molecules as Input for Machine Learning Models

Preparing data for neural network models is often straightforward for many inputs, but find-

ing optimal representations for molecules is complex and an active area of research. At

their core, as seen in previous sections, molecules are defined by the distribution in space

of positive and negative charges in a bound state. While this is true from the fundamental

point of view, a chemist will likely think of a molecule in different ways. Taking the example

of water, this can be simply called by the chemical formula H2O, less commonly using the

IUPAC-compliant name of oxydane, or again drawn as an undirected 2D graph using the

chemical structure. As one can see, the way we represent molecules can vary and depend

on what kind of information we need for the problem at hand as well as on other factors

such as practicality, namely a chemist writing down a formula for balancing a reaction will

not need to know the electronic ground state of the system. When addressing the problem

of representing molecules in a machine-readable format, the choice of molecular represen-

tation is hence crucial, with each representation providing unique advantages depending on

the applications [43]. For the purposes of this thesis, here we will discuss the most common

representations considering the categories of fingerprints, text-based, 2D graphs, and 3D

based, postponing learned representations to the following section. An overall illustration on

the possible ways to see a molecule is reported in Fig. 2.2, where some of the representa-

tions mentioned in this section are represented.

Starting from the category of fingerprints, these are compact, binary representations

encoding the presence or absence of specific structural fragments or substructures [44].

These binary vectors are highly effective in chemical similarity searches. Fingerprints like

Morgan and ECFP (Extended-Connectivity Fingerprints) [45] provide substructure resolu-

tion by varying the "radius" parameter, which determines the atomic environment size around

each atom. Fingerprints offer computational efficiency and robust performance for similarity-

based searches and provide a highly detailed description of molecular substructures, which

is particularly advantageous in machine learning and quantitative structure-activity relation-

ship (QSAR) modeling [46, 47], albeit the lack of invertibility limits their utility in generative

modeling applications.
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Figure 2.2: Overview of molecular representations for aspirin. (a) 3D ball-and-stick model of the
aspirin molecule, showcasing its atomic structure. (b) SMILES representation providing a textual
description of the molecule’s connectivity. (c) Coulomb matrix visualized in color, emphasizing atomic
interactions based on electrostatic potential. (d) Binary fingerprint indicating the presence or absence
of specific molecular features. (e) Bag-of-bonds matrix highlighting interatomic bond information
and corresponding features. (f) Two-dimensional molecular graph structure alongside the adjacency
matrix, depicting atomic bonds in a binary format.

For what concerns text-based representation, the representation that due to its efficient

storage and parsing capabilities is currently the standard in any cheminformatics applica-

tion is the Simplified Molecular Input Line Entry System (SMILES) [48]. This linear notation

simplifies molecular structures by encoding them as strings using specific symbols to de-

note atoms and bonds. SMILES employs atomic symbols and additional symbols to capture

structure. Aspirin (C9H8O4) is represented as CC(=O)OC1=CC=CC=C1C(=O)O. In this case,

CC(=O)O encodes the acetyl group, while C1=CC=CC=C1 describes a benzene ring, with the

1s marking where the ring begins and ends. However powerful, SMILES strings have the

disadvantage that they can be redundant, with multiple SMILES strings potentially repre-

senting the same molecule, complicating structural comparisons. While the success of this

representation in the world of cheminformatics predates the advent of deep learning, this
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representation is well suited for deep learning models for sequential data like LSTMs and

GRUs[49], finding application in property prediction tasks as well as generative modeling

[50, 51, 52].

2D Graph-based representations, instead, revolve around the fact that a molecule can

be seen as a graph G = (V, E) where in most cases the set of nodes (vertices) V is identified

with the atoms and the set of edges E with the chemical bonds. These representations

are very powerful in capturing a lot of the properties of the molecule and have spanned a

whole array of works which develop and apply a whole zoo of models from the category of

architectures known as Graph Neural Networks (GNN) [53]. A prominent approach within

GNNs is the Message Passing Neural Network (MPNN) [54] which will be discussed in the

next section. MPNNs, together with other variants such as Graph Convolutional Neural

Networks (GCNN) [55] and Spectral Graph Neural Networks (SGNN) [56], form the basis for

many models with very successful applications, such as for example the Chemprop model

[57]. A more flexible way of using connectivity information is instead found in the Graph

Transformer (GT) architecture, where the graph topology is used as a bias in self-attention

mechanisms.

3D representations of molecules, finally, are particularly significant as they capture the

spatial arrangement of atoms in three-dimensional space, which is crucial for understand-

ing a number of molecular interactions and behaviors. Starting from the set of positions

{Ri} and atomic numbers {Zi}, a number of possible ways to represent molecules become

available depending on our requirements. The idea behind these can be summarized into

finding a suitable transformation T : R3 × N → Rd1×d2×···×dN , where {d1, d2, . . . , dN} are

the dimensionalities of the output tensor space, so that for any molecule T ({Ri}, {Zi}) re-

spects a number of properties such as for example translation and permutation invariance,

and rotational invariance or equivariance. Following this definition a whole zoo of precom-

puted representations are available here which are usually based on some physical intuition.

Coulomb Matrix (CM) [58] for example represents molecules using the interaction matrix as-

31



sociated with the Coulomb potential, and is defined as:

CMij =


0.5 Z2.4

i , if i = j

ZiZi
|Ri−Rj | , if i ̸= j

(2.52)

This representation has the advantage of being rotationally invariant, and allows to retrieve

both the original atomic species and the atomic positions up to an affine transformation with

the drawback of not being permutation invariant. Bag of Bonds (BoB) [59] is an improve-

ment on this, and attains also permutational invariance by collects all the pairwise interac-

tions used in CMs in bags made of all bonds in which a certain atom is involved (excluding

repetitions) with some predefined sorting criterion. A more sophisticated representation that

also accounts for three-body interactions is the Spectrum of London and Axilrod-Teller-Muto

potential (SLATM) representation [60]. This method extends the ideas behind the Coulomb

Matrix and Bag of Bonds by incorporating the contributions from triplet interactions, captur-

ing more complex relational data among atoms, at the cost of a much higher dimensional

representation to handle. SLATM is an instance of a set of more sophisticated representa-

tions, which are based on the idea of representing the chemical environment around each

atom by leveraging on symmetry properties of specific sets of functions. We report here the

famous example of the symmetry functions put forth by Behler [61], which are radial and

angular symmetry functions that describe the local environment around atoms. The radial

symmetry function G1
i for atom i is given by

G1
i =

∑
j∈Ni

e−η(rij−Rs)2 (2.53)

where Ni is the set of neighboring atoms, rij = |Ri − Rj | is the distance between atoms

i and j, and η and Rs are parameters that control the width and position of the Gaussian

function, respectively. The angular symmetry function G2
ijk involving atoms i, j, and k is

defined as

G2
ijk =

∑
j∈Ni

∑
k∈Ni

fc(rij)fc(rik) cos(θijk)e
−η(rjk−Rs)2 (2.54)

32



where θijk is the angle formed by the bonds ij and ik, and fc(r) is a cutoff function. The

three-body angular symmetry function G3
ijk is defined similarly, incorporating interactions

among triplets of atoms. The result is a set of numbers that are expressive representa-

tion of the atomic environments and are differentiable w.r.t. atomic coordinates and in-

variant under global rotations and permutations of identical atoms, making them suitable

for neural network potentials [62]. Building on these predefined representations, more re-

cent advances have shifted focus towards learnable representations that adaptively capture

molecular features while maintaining some requested invariance properties by construction

as will be outlined in the next section. These representation are more commonly used in

applications where the 3D structure of the molecules and its physical properties become

relevant, examples of this are the prediction of HOMO-LUMO gap, dipole moment and at-

omization energy, as well as the already mentioned neural network potentials and others

[63, 64, 65, 66, 67, 68].

2.2.3 Architecture Search and Representation Learning in Neural Networks

for Chemistry

As the quest for deeper insights into molecular properties intensifies, representing complex

chemical structures in formats suited to computational analysis has become paramount.

Traditional representation methods, discussed earlier, have laid essential groundwork in the

application of machine learning in computational chemistry. These methods remain com-

petitive and, depending on the task, are still state-of-the-art [69, 70]. However, with re-

cent advancements in computational power and data availability, there is increased focus

on optimizing how neural network architectures perceive molecular inputs at their inner lay-

ers—a process termed molecular representation learning [71, 72]. This section explores

the key points of the most widely used model architectures, discusses the most common

representation learning techniques used for enhancing model accuracy, generalization, and

interpretability in molecular applications.

A widely adopted model is the already mentioned MPNN [54], which is a good starting

point since, as we will see, other approaches can be reduced to a similar form. MPNNs begin
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with an initial feature representation of nodes (atoms), denoted e ∈ Rn×d, where n repre-

sents the number of nodes and d the dimensionality of features. Each node’s representation

is iteratively updated based on "messages" pooled from neighboring nodes. Using an adja-

cency matrix A ∈ {0, 1}n×n, a transformation matrix W ∈ Rd×d with learnable weights, and

a non-linear activation f , we define initial and update steps as follows:

h0
ij = f

(∑
l

Ail
∑
k

elkWkj

)
(2.55)

hl+1
ij = hlij + f

(∑
l

Ail
∑
k

hllkWkj

)
, (2.56)

where we used the sum over messages as pooling. The final receptive field depends on the

number of update layers, yet increasing layers can lead to oversmoothing [73], where node

representations converge into indistinguishable states. Similarly, oversquashing [74] occurs

when pooling messages from numerous neighbors compresses important information into a

single representation, limiting distinctive features.

To mitigate these issues, researchers are exploring transformer architectures for graph

data [75, 76]. Transformers leverage self-attention mechanisms [38], where, given a latent

representation Xl at layer l, the update rule is (for simplicity of notation we do not consider

bias terms):

Xl+1 = Xl +MLP

(
softmax

(
XlWQW

T
KXT

l√
d

)
XlWV

)
(2.57)

Here, WQ,WK ,WV ∈ Rd×d are linear transformations for query, key, and value, respec-

tively, while MLP is a neural network applied uniformly across nodes. In graph-based

adaptations, a learnable encoding of topological information (such as an adjacency or topo-

logical distance matrix) C biases the attention mechanism, enabling the attention matrix

A = softmax
(
XlWQW

T
KXT

l√
d

+ C
)

to play the role of A in MPNNs but with adaptive capabili-

ties, capturing non-local interactions and reducing oversmoothing and oversquashing risks

[77].

Interestingly, the first applications of transformers as molecule encoders emerged from

text-based representations like SMILES [78, 79, 80]. Here, each SMILES character is to-
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kenized, allowing transformers to process molecules as sequential data, similar to natu-

ral language sequences. By adjusting attention weights, transformers can learn chemical

"grammar" from SMILES strings, yielding impressive results in property prediction, com-

pound generation, and reaction mapping [81, 82, 83].

When handling 3D molecular data, additional constraints like rotation invariance and

rotation equivariance are essential. For scalar quantities (e.g., atomization energy), the

learned representation should remain constant regardless of molecular orientation, while

tensorial properties (e.g., dipole moments) should vary consistently with rotation. Models

like SchNet [63] exemplify 3D molecular MPNNs, where after an initial learnable embedding

based on atom type, continuous filter convolution updates modify the atomic representations

based on atomic distances. Specifically:

xl+1
i = MLP

∑
j

xlj ◦W (||Ri −Rj ||)

 (2.58)

Here, ◦ denotes element-wise multiplication, and W (||Ri −Rj ||) is a filter which is learned

with a neural network applied to an RBF expansion of the interatomic distance. This ap-

proach inherently supports rotation and permutation invariance due to the filter properties

and the fact that the MLP(·) is an atom-wise transformation with shared weights. By adding

one extra dimension to the tensors involved, it is easy to take a step forward and achieve

equivariance. If we now consider for atom i at layer l scalar features sli ∈ Rd×1 and vec-

tor features si ∈ Rd×3 with d being the feature dimension, one can for example write the

following convolutions:

sl+1
i =

∑
j

MLP(slj) ◦W (||Ri −Rj ||) (2.59)

vl+1
i =

∑
j

vlj ◦MLP(slj) ◦W (||Ri −Rj ||) (2.60)

+
∑
j

MLP(slj) ◦W ′(||Ri −Rj ||)
Ri −Rj

||Ri −Rj ||
.

It is possible to see how here Eq.2.59 is rather similar to what encountered in SchNet,
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while in Eq. 2.60 the first sum is a way to introduce nonlinearity in the equivariant vector

features with a convolution of equivariant features with an invariant filter, while the second

sum is where the propagation of the directional information from the system happens via a

convolution of invariant features with an equivariant filter. It is easy to see that any rotation

applied to the input system results here in a rotation in the space of features. While this

is the updated used in PaiNN [68] and a similar method is used also in EGNN [84], more

complex and computationally heavy networks such as Nequip [64] make use of spherical

harmonics basis functions and an update rule based on Clebsch-Gordan coefficients.

This non-exhaustive list of network structures highlights powerful representation learn-

ers and molecule encoders that can be used in various ways to distill molecular representa-

tions optimal for specific tasks. Techniques such as masking [85, 86, 87], most commonly

used on text-based representations, allow models to learn the structure of the input data

by obscuring certain input features, improving generalization. Pretraining on large datasets

[88, 82, 89], equips models with rich feature representations before fine-tuning on specific

tasks, effectively addressing the challenge of limited labeled data. Additionally, contrastive

learning [90, 91, 92, 93] enhances the ability to differentiate between similar and dissimilar

molecular samples, as well as allowing for the combination of multiple data modality for the

same molecule fostering robust embeddings that capture multiple aspects of similarities and

dissimilarities between input samples. Other approaches involving simpler architectures and

precomputed representations can also be leveraged to learn guided latent representations

of molecular structures. Successful examples of this are all the representations learned

from autoencoders [94, 50], where a network is used to compress the input information into

a small dimensional representation that contains enough information for a second network

to be able to reconstruct the original input. This, usually coupled with some other opera-

tion to guide the shape of the compressed latent space, provides an efficient way to extract

meaningful features useful for prediction tasks as well as data analysis.
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Chapter 3

The Role of Quantum Chemistry

Datasets

Section 3.2 is based on Medrano Sandonas, L. et al. Sci. Data 2024, 11, 742.

Material, including figures, has been adapted under the terms of the Creative

Commons Attribution 4.0 International License (CC BY 4.0). For a copy of the

license, visit https: // creativecommons. org/ licenses/ by/ 4. 0/ .

Section 3.3 is based on Sarkis M. et al. Phys. Rev. Res. 2023, 5, 043072.

Material, including figures, has been adapted under the terms of the Creative

Commons Attribution 4.0 International License (CC BY 4.0). For a copy of the

license, visit https: // creativecommons. org/ licenses/ by/ 4. 0/ .

The success of machine learning in various domains has fueled great optimism about its

potential to accelerate progress in chemistry and materials science. However, realizing this

potential requires access to high-quality datasets that can capture the complex relationships

between molecular structure and function. This chapter explores the role of quantum chem-

istry datasets in enabling the development of advanced machine learning models. The chap-

ter begins by providing an overview of some key datasets that have become foundational

resources in the field. These datasets offer diverse chemical spaces and a wealth of com-

puted quantum mechanical properties, serving as crucial testbeds for evaluating machine
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learning models. Building on this foundation, the Aquamarine dataset, which was designed

to address gaps in existing resources by incorporating many-body dispersion interactions

and solvation effects via implicit models, is introduced and analysed. The analysis of this

dataset reveals that these collective effects become increasingly significant for large, flexible

drug-like molecules, particularly when considering solvation. This underscores the impor-

tance of accurately modeling non-covalent interactions, which are critical for understanding

molecular behavior in biologically relevant conditions. Motivated by these findings, the chap-

ter then explores how quantum computing can be leveraged to develop new approaches for

modeling non-covalent interactions, going beyond current approximations coming from com-

putational limitations. Harnessing photonic quantum simulation, a proof-of-concept study is

then presented, that maintains the full Coulomb interaction between QDOs, without the need

for truncated multipole expansions as commonly considered for most current computational

methods. This study, which features a quantum neural network ansatz, uncovers intriguing

emergent phenomena such as the formation of entangled "cat states" during the binding pro-

cess, and provides unique insights into the quantum mechanical underpinnings of molecular

interactions.

3.1 Overview of Key Datasets: QM7 and Beyond

As mentioned in the previous sections, the key ingredient of any machine learning applica-

tion is high-quality and extensive datasets. This enables models to learn effectively from

diverse examples and perform well on new, unseen inputs. In the context of computational

chemistry, this is indeed a problem as the complexity of the space of combination of atoms

is huge. The chemical compound space (CCS) is in fact estimated to contain ∼ 1060 chemi-

cal structures [95], and while enumeration of a high number of structures following chemical

rules is feasible, obtaining good quality quantum chemistry calculations for a single molecule

can take a non negligible amount of time depending on number of atoms and level of ap-

proximation [96], making the time required for calculations diverge quickly with the number

of molecules.
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Despite the effort to produce good enough datasets appears a gargantuan one, re-

searchers over time started producing and collecting quantum mechanical calculations fo-

cusing their interest on covering specific regions of this vast CCS. The generation of a quan-

tum chemistry dataset usually starts with the enumeration of structures based on some

chemical rules and constraints dependent on the application focus. For example, for appli-

cations in pharma and life sciences, one might want to cover parts of the CCS that are of

interest for medicinal chemistry producing synthesizable drug-like molecules. Options are

parsing public datasets of chemical structures like PubChem [97], the Cambridge Structural

Dataset (CSD) [98] or ZINC [99], or else the enumeration following chemical rules. Using

this last method, a strong structure enumeration effort comes from the whole GDB series

of datasets [100, 101, 102], which produced comprehensive libraries of chemical structures

through systematic techniques. The GDB datasets, such as GDB-13 and GDB-17, utilize al-

gorithms to explore and generate possible organic compounds based on predefined valence

rules, connectivity patterns and synthesizability constraints. By employing such methodolo-

gies, the GDB series has made a significant contribution to the field by generating billions

of unique molecular structures. The following step is to produce, from the chosen subset

of chemical structures, the set of 3D structures. Depending on whether conformers or non-

equilibrium geometries are needed, the correspondence can be one-to-one or one-to-many.

For conformers, a single molecular structure can yield multiple equilibrium spatial arrange-

ments, while non-equilibrium geometries typically correspond to specific states that can be

obtained via some sampling method of the PES of the molecule. The level of theory used to

produce these arrangements can vary and in general is chosen to be computationally lighter

than the one used in the final stages for computing the quantum mechanical properties. The

final step consists in running single-point quantum mechanical calculations, that is to say for

fixed atom arrangements the electron density is optimized following methods similar to the

ones outlined in Section 2.1 and molecular and atomic quantum mechanical properties can

be parsed and collected. The choice of approximation for these calculations can be dictated

by a number of factors, usually scientists try to find a trade off between computational cost

and their necessities in terms of accuracy and system under study.
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Following a similar procedure, among the first and most influential datasets, QM7 and

QM7b [101, 58, 103] have played a pivotal role in this field. Derived from the GDB-13

database, QM7 includes approximately 7k small organic molecules, exhaustively covering

the space of molecules with up to seven heavy atoms from the set (C, N, O, S) and with

atomization energies calculated using DFT at the PBE0 level. QM7b extends this dataset

adding Cl atoms to the set and by incorporating 13 additional quantum-chemical properties,

such as polarizabilities, HOMO-LUMO gaps, and dipole moments, computed using different

methods (ZINDO, SCS, PBE0, GW).

Building upon the foundation laid by QM7 and QM7b, QM7x [104] further extends these

datasets by offering more molecular diversity and including dispersion energy via MBD cor-

rections both at the stage of structures relaxation and for the final single point calculations.

QM7x includes approximately 42k equilibrium geometries resulting from a thorough search

of conformers per each molecule considered in QM7b relaxed using DFTB3+MBD. Addi-

tionally, QM7x includes multiple non-equilibrium geometries per each molecular structure,

obtained via normal modes sampling, resulting in ∼ 4.2M structures and making it espe-

cially useful for studies that require an understanding of molecular flexibility and the impact

of conformational diversity on molecular properties. The final single point calculations are

carried out using PBE0+MBD with tightly converged numeric atom centered orbitals [105]

and yield both global and atomic molecular properties for a total of 42 physicochemical prop-

erties.

QM9 [106], another foundational dataset, expands the scope of molecular diversity with

over 134k stable organic molecules containing up to nine heavy atoms in the set of (C, N, O,

F). Albeit a much smaller number than what found in QM7x, QM9 includes some quantum-

chemical properties like HOMO and LUMO energies, dipole moments, and polarizabilities

calculated using DFT at the B3LYP [107, 108] level (hybrid functional) with 6-31G* basis

set [109] with no dispersion correction. Also differently from QM7x, this dataset does not

consider conformers per each of the considered molecules. Together with the previously

mentioned datasets, this is among the most common benchmarks for machine learning

applications being employed in a number of works with different scopes.
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The QMugs dataset is a more recent addition to quantum chemistry resources, designed

specifically for drug discovery and pharmaceutical applications. It contains over 665k drug-

like molecules selected from the ChEMBL [110] database, a manually curated database of

bioactive molecules with drug-like properties. In this case three conformers per molecule are

considered and relaxed at the GFN2-xTB level [111], followed by single point calculations

at the ωB97X-D [112] level (hybrid functional with empirical dispersion correction) using the

def2-SVP basis set [113]. The properties considered here are 33, with 9 properties reported

both at GFN2-xTB and ωB97X-D/def2-SVP level and including vibrational frequencies and

thermodynamic data at the GFN2-xTB level. Also, wavefunctions data is included in the

form of densities and orbital matrices. Albeit the quantum chemistry methods used here

are a compromise between computational cost and accuracy when compared to the more

precise calculations found in QM7x, this dataset contains much bigger molecules with up to

100 heavy atoms. Furthermore, being sampled from ChEMBL, it is of particular interest for

applications in pharma and life sciences.

With another application in mind, the ANI (Atomic-Network-Inspired) datasets are a se-

ries of machine learning-ready datasets specifically curated for training neural network po-

tentials in quantum chemistry. Developed to provide accurate molecular energies and forces,

the ANI datasets include extensive collections of molecular conformations with associated

quantum mechanically computed energies and force vectors, generated using different lev-

els of density functional theory (DFT). Each dataset in the ANI family—such as ANI-1 [114],

ANI-1x and -1ccx [115], and ANI-2x [116] has distinct features and levels of accuracy. For ex-

ample, ANI-1 contains around 20 million configurations of small organic molecules (around

50k molecules with meta-stable geometries and extensive non-equilibrium sampling) with

energies and forces computed with DFT at the B3LYP level of theory. ANI-1x is instead

composed of 5M configurations obtained with an active learning approach and ANI-1ccx

enhances this by reporting the results of coupled cluster calculations on a selection of 10%

of the configurations in the ANI-1x dataset. ANI-2x is instead an extension of ANI-1x in

the range of included elements. These datasets have proven highly valuable for developing

transferable neural network potentials, enabling accurate energy predictions across a wide
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chemical space with minimal computational cost, and are particularly useful for simulations

requiring Ab Initio Molecular Dynamics (AIMD) at a fraction of its actual cost.

The GEOM dataset [117] provides a comprehensive collection of energy-annotated molec-

ular conformations, supporting machine learning applications in molecular property predic-

tion and generation. Compiled through advanced sampling and density functional theory

(DFT) methods, it includes approximately 37 million conformations across 450,000 unique

molecules. The dataset emphasizes the value of conformer ensembles rather than iso-

lated molecular structures, addressing a gap in existing resources. It consists of 133,000

molecules from the QM9 dataset and 317,000 experimental compounds relevant to bio-

physics, physiology, and physical chemistry, including 1,511 BACE-1 [118] inhibition samples

with high-quality energy annotations in an implicit water solvent. Additionally, the CENSO

[119] refinement process further optimizes 534 of these species with DFT in a water solvent

model, enhancing the dataset’s utility for biologically relevant modeling. GEOM facilitates

training models for predicting molecular properties based on accessible conformations and

for generating realistic 3D structures, positioning it as a valuable tool in computational chem-

istry and molecular design research

Together with others, these datasets provide a foundation of quantum chemistry data,

covering a wide array of molecular properties, conformational diversity, and, in datasets

like ANI and QM7x, non-equilibrium geometries. These extensive resources enables the

development of accurate, scalable, and interpretable machine learning models across appli-

cations in drug discovery, raging from molecular property prediction [120], to neural network

potentials [121], generative models for docking and pose estimation [122, 123, 124] and

can even serve as a pretraining for related endpoint tasks [125]. However, a crucial aspect

for life sciences remains underexplored: the role of modern dispersion corrections for non-

covalent interactions together with solvent effects on the molecular conformer ensembles

and quantum mechanical properties. In the following section, I delve into these interactions,

their implications in implicit solvent calculations, and introduce a new dataset specifically

designed to address these critical aspects.
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3.2 Non-Covalent Interactions and Solvation in Molecular Prop-

erties: the Aquamarine dataset

As seen in the previous section, with some exceptions, in the realm of existing quantum

chemistry datasets the most common dispersion corrections are generally methods that

considered some cut to the many body expansion, as mentioned in 2.1.3. This is justified by

the computational cost and the regimes in which these datasets cover the CCS. Many body

effects, though, can have significant repercussions on the potential energy surface (PES),

as demonstrated by studies comparing pairwise methods like TS with MBD corrections. For

example, research on polymers and polyalanine [126] has shown that MBD corrections pro-

duce a much smoother PES and a different force profile during MD when compared to pair-

wise corrections. This results in fundamentally distinct molecular conformations, especially

in systems where cumulative long-range interactions drive folding or clustering behavior. In

applications pertinent to the life sciences, understanding a molecule’s configurational land-

scape is often crucial, and particularly so in a solvated environment. Biological molecules,

including many drug-like compounds, interact within aqueous environments where the many

body nature of non-covalent interactions together with solvation can significantly alter both

conformational preferences and stability. Effectively modeling these two effects can help

simulate the molecule’s true functional shape in biologically relevant conditions by account-

ing for the electrostatic and dispersion forces in a more realistic environment, e.g. in so-

lutio. These interactions also influence key properties like binding affinity, solubility, and

overall reactivity [127, 128, 129, 130, 131]. Consequently, an accurate dataset that incor-

porates many-body dispersion alongside solvent effects is essential for realistic modeling

of molecular properties in life science applications. Notable mentions in this direction are

the GEOM dataset, which contains geometries generated considering molecule-solvent in-

teractions with the implicit analytical linearized Poisson-Boltzmann (ALPB) [130] for 1511

molecules form the BACE dataset (dataset of candidate inhibitors for a specific enzyme),

and the SPICE dataset [132], considering geometries for 26 aminoacids with an explicit sol-

vation model based on the AMBER-14 force field. Despite these efforts, a more systematic

43



assessment of solvent effects as well as collective dispersion interactions from small to large

drug-like molecules is still missing. In particular, such an effort would be useful: (i) study

the combined effects of different dispersion corrections and solvation on the conformational

landscape of molecules, covering different sizes from small to large drug-like molecules of

interest for medicinal chemistry applications (ii) to offer a large set of molecular (global) and

atom-in-a-molecule (local) physicochemical properties that would enable a comprehensive

exploration and analysis of these interactions in structure-property and property-property

relationships throughout chemical space, and (iii) to provide accurate and reliable QM data

that will enable the construction of models for describing covalent and non-covalent vdW

interactions in large (solvated) molecules.

Here the Aquamarine (AQM) dataset is discussed, as a dataset designed to address

these challenges. AQM features extensive conformational sampling of molecules containing

C, N, O, F, P, S, and Cl, spanning a wide range of sizes and compositions. Geometries are

optimized in both gas-phase and implicit solvent environments to enable direct comparisons.

Additionally, the dataset includes over 40 detailed physicochemical properties for gas-phase

structures and for solvent-optimized conformations.

3.2.1 Selection of relevant molecular structures

The dataset’s uniqueness originates already in the selection of molecules, which were specif-

ically chosen to reflect compounds typical of a pharmaceutical corporate library. To achieve

this, 5000 compounds were sampled from ChEMBL and compared with the Johnson & John-

son Innovative Medicines corporate database. Compounds were filtered by excluding those

with molecular weight above 1200, more than 30 rotatable bonds, QED scores under 0.4,

or heavy atom counts exceeding 200. After removing undesirable substructures through di-

versity selection and manual review, 2, 635 unique molecules remained (≤ 60 non-hydrogen

atoms, N ≤ 116). These included building blocks, lead-like compounds, protein degraders,

and macrocycles. RDKit was used to generate and optimize all possible stereoisomers while

maintaining connectivity. QM calculations assessed isomer stability, resulting in ∼ 10, 000

total structures. Initial 3D conformations were created using RDKit and optimized with
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MMFF94 force field [133, 134, 135, 136, 137].

3.2.2 Conformational sampling

Conformational sampling is pivotal in generating the AQM dataset, as it ensures compre-

hensive exploration of the potential energy surface (PES) and molecular property space

of large drug-like molecules. After evaluating various workflows, the CREST [138] code

was adopted, which employs metadynamics (MTD) and the semi-empirical extended tight-

binding method (GFN2-xTB) to generate 3D conformations. The MTD-based algorithm uses

atomic root-mean-squared deviation (RMSD) values to guide sampling, generating conform-

ers by an iterative process of exploration and semi-empirical optimization selecting conform-

ers when they overcome specific energy (> 12.0 kcal/mol) and RMSD (> 0.1 Å) thresh-

olds. The lowest-energy conformers undergo molecular dynamics simulations at 400K and

500K to explore low-energy barrier crossings, supplemented by a genetic Z-matrix crossing

algorithm to further diversify the conformer ensemble. Calculations, including geometry op-

timization and conformational searches, were performed in implicit water using the GBSA

model [139], which has been successfully used in the study of free solvation energies of

neutral/ionic molecules and the folding of short peptides. This procedure yielded 2242490

conformers for 2635 molecules. Unlike other public datasets, here a method was devised in

order to select representative conformers by clustering structures with RMSD values under

1.5 Å and performing energy-based filtering using DFTB3+MBD [140, 141, 142] single-point

calculations to identify those with distinct total (Etot) and many-body dispersion (EMBD) en-

ergies, where MBD was considered given its relevance in large molecules and molecular

crystals [143]. This method was applied on a subset of 1653 molecules with up to 54 heavy

atoms, and reduced the number of conformers for those from 280182 to 59783, prioritizing

structural and energetic diversity while maintaining stability assessments. The conformer

search method based on CREST was also validated against other common codes, namely

MAESTRO, Omega[144] and RDKit[145]. This was done by randomly selecting 18 chemical

compositions containing approximately 50 atoms, and resulted in a different total number

of conformers depending on the code employed for their generation, i.e., CREST → 3747
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Figure 3.1: (a) Dependence of the average number of clusters, ⟨M⟩, on the root-mean-square devi-
ation (∆R) between conformers generated by the four conformational search workflows analyzed in
this study (see legend above). The average is calculated over 18 randomly selected compositions,
each containing approximately N = 50 atoms. (b) Two-dimensional property space defined by EAT
and EMBD for the representative conformers obtained. Energy calculations were performed using
the DFTB3+MBD method. Examples of structures uniquely generated by the CREST workflow are
included in the graph.

conformers, Maestro → 100 conformers, Omega → 204 conformers and RDKit → 1872

conformers, confirming that CREST shows a more organized coverage of the energetic

space defined by DFTB-EAT and DFTB-EMBD (see the well-defined cluster in Fig. 3.1).

To enhance the dataset’s utility in studying molecule-solvent interactions, structures were

optimized in both gas phase and implicit water, resulting in the AQM-gas and AQM-sol sub-

sets. Calculations were conducted at the DFTB3+MBD level, using the Atomic Simulation

Environment (ASE)[146] interfaced with DFTB+ code [147] and using GBSA for solvated ge-

ometries. While most structures were identified as local minima, some remained at saddle

points on the PES.

3.2.3 Analysis of solvent effects in property space

The DFTB-optimized structures were then subjected to more accurate quantum mechani-

cal (QM) single-point calculations using dispersion-inclusive hybrid density functional the-
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ory (DFT) to compute energies, forces, and various physicochemical properties. AQM-gas

molecules were evaluated at the PBE0+MBD level, which has been chosen as baseline

level of theory for property calculations due to its well-established accuracy and reliabil-

ity in the description of intramolecular degrees of freedom as well as intermolecular in-

teractions in organic molecular dimers, supramolecular complexes, and molecular crystals

[148, 149, 150]. For AQM-sol molecules, instead, solvation effects were included on top of

PBE0+MBD through the modified Poisson-Boltzmann (MPB) model[151]. The MPB model,

which accounts for electrolytic solvation by solving the size-modified Poisson-Boltzmann

equation and models the Stern layer to include non-mean-field ion-solute interactions, has

been shown to provide an accurate description in the study of diverse electrochemical re-

actions [152, 153, 154, 155]. Calculations utilized the FHI-aims code (version 221103) with

“tight” settings for basis functions and grids, achieving energy convergence to 10−6 eV and

force accuracy to 10−4 eV/Å. MBD energies and atomic forces were computed using the

range-separated self-consistent screening (rsSCS) approach [23], while molecular polariz-

abilities and C6 coefficients (both atomic and molecular) were derived from the SCS ap-

proach [156]. TS dispersion energies, vdW radii, and Hirshfeld ratios were also calculated,

the latter representing Hirshfeld volumes normalized by free atom volumes. Atomization

energies were obtained by subtracting atomic PBE0 energies from the total molecular en-

ergy, and exact exchange energy reflected the Hartree-Fock exchange contribution within

the exchange-correlation energy. These calculations provided a comprehensive dataset of

electronic properties for both gas-phase and solvated conformers, covering both the inten-

sive/extensive range and the global/atomic range, which, together with the respective ge-

ometries, allows us to visualise and analyse the effects of solvation and dispersion under a

number of different points of view. Indeed, starting from the comparison of geometries from

AQM-gas and AQM-sol one can already get a picture of the effects of solvation on geome-

try configuration by system size. Fig. 3.2(a) illustrates, in fact, the size dependence of the

averaged RMSD deviation ∆R between geometries optimized in gas phase and in implicit

water (blue dots), along with the total range of ∆R values observed across different molec-

ular sizes (blue shaded region). The results indicate that the geometries coming from small
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Figure 3.2: (a) Averaged root-mean-square deviation (⟨∆R⟩) as a function of molecular size, com-
paring geometries optimized in the gas phase with those optimized in implicit water using the GBSA
model and the DFTB3+MBD method. The blue shaded region indicates the range of ∆R values
observed across different molecule sizes (N ). (b) Relationship between the gyration radius (Rg)
of conformations in the gas phase and in solution. Data points are color-coded by the number
of heavy atoms (non-hydrogen). This analysis includes the 59,783 conformers spanning low- and
high-energy states from the AQM-gas and AQM-sol datasets. Example conformations are included
to demonstrate structural changes induced by solvation, with solvated configurations highlighted by
pink spheres.

molecules (N≤20 atoms) exhibit ⟨∆R⟩ < 0.1 Å, implying that they are only minimally influ-

enced by solvent interactions. In contrast, for molecules with N > 40 atoms, solvent effects

become more pronounced, leading to greater deviations in ∆R values (greater than 2.0 Å). A

similar trend is observed when comparing the gyration radius Rg for gas-phase and solvated

molecular structures, as shown in Fig. 3.2(b). Notably, larger compounds (e.g., N∼90) ex-

hibit extensively constrained structures that remain largely unaffected by the interaction with

implicit water. These findings are of particular interest in pharmaceutical research, espe-

cially when generating non-equilibrium structures for ML force fields, as the differences just

outlined imply that solvent effects significantly alter the potential energy surface (PES) and

must be considered in dataset creation. The dataset can be further analyzed also from the

point of view of electronic global properties. As an example, the 2D property space defined

by isotropic molecular polarizability α and the HOMO-LUMO gap Egap for the 59783 confor-

mations in AQM-gas and AQM-sol was analysed, as well as the most stable conformer per
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Figure 3.3: (a) Two-dimensional projection of the AQM property space defined by the isotropic molec-
ular polarizability (αs) and the HOMO-LUMO gap (Egap). Property values are shown for the 59,783
low- and high-energy conformers from AQM-gas (blue) and AQM-sol (red), along with the most stable
conformer of the 1,653 unique molecules in AQM-sol (cyan). For comparison, equilibrium structures
from QM7-X are included (green). Distributions for each property and dataset are displayed in the
marginal plots (top and right). (b) Correlation between gas-phase and solvated structures for selected
QM properties: Egap, HOMO energy (EHOMO), isotropic polarizability (αs), and scalar dipole moment
(Ds).

molecule in AQM-sol (1,653 conformations), as shown in Fig. 3.3(a). For comparison, val-

ues for QM7-X equilibrium molecules are also plotted (green circles). The results show that

AQM molecules cover a much broader range of α, surpassing QM7-X by a factor of 6, due to

the extensive nature of α. The Egap range spans about 2.5 eV, with the mean value dropping

from 7.0 eV to 4.5 eV, as seen in the distribution plots in the top panel of Fig. 4(a). The slight

differences between AQM-gas and AQM-sol in this space are likely due to compensation

between fluctuations in α (mainly for α > 300a30) and the more sensitive behavior of Egap to

implicit water, as shown in the correlation plots in Fig. 3.3(b). These findings are especially

relevant when considering the problem of tailored design of large drug-like molecules with

specific (α,Egap) values[157, 158]. Notably, the conformational sampling improved coverage

of both properties, linking isolated regions tied to specific molecular sizes and compositions.

Fig. 3.3(b) also shows the correlation between HOMO energy EHOMO and dipole moment
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Ds for the conformers in AQM-gas and AQM-sol, illustrating that intensive properties are

more sensitive to solvent interactions in QM calculations compared to extensive properties.

Figure 3.4: (a) Two-dimensional projection of the AQM property space defined by Hirshfeld charges
(qH ) and atomic polarizabilities (αs). Property values are displayed for 59,783 low- and high-energy
conformers from AQM-gas (blue) and AQM-sol (red). For comparison, values from QM7-X equilib-
rium molecules are included (green). Arrows highlight the regions of the property space correspond-
ing to specific local chemical environments for different atom types (X). Marginal frequency plots
(top and right) show the distributions of each property for the datasets. (b) Correlation between gas-
phase and solvated structures for selected local QM properties, including total atomic forces (Ftot),
Hirshfeld charges (qH ), atomic polarizabilities (αs), and atomic Hirshfeld dipole moments (DH,s).

Focusing on atom-level properties, instead, enables a better understanding of how sol-

vent interactions impact chemical environments and the local electron density. For example,

Fig. 3.4(a) illustrates the 2D property space defined by Hirshfeld charges (qH ) and atomic

polarizabilities (αs) for all the conformations in AQM-gas and AQM-sol, alongside QM7-X

equilibrium molecules (green circles). Distinct clusters emerge, primarily associated with

specific atom types, with slight overlaps. This is especially interesting, and can potentially

be useful information for representation learning purposes, as a number of works in chem-

informatics use partial charges and similar information to induce better representations via

chemical environment understanding. Notably, implicit solvation strongly influences qH , es-

pecially for heavier atoms like P, S, and Cl—key elements in pharmaceutical compound
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Figure 3.5: (a) Variation of the non-electrostatic free energy (Enelec) as a function of the dispersion
energy (Edisp) for all solvated structures in AQM-sol. Two different dispersion models are considered:
Many-body dispersion (MBD) and Tkatchenko-Scheffler (TS). (b) Frequency distribution of the en-
ergy difference between MBD and TS models (∆Edisp = EMBD − ETS) for 720 low- and high-energy
conformers of the molecule C29H39N5O3S2. (c) Variation of Enelec as a function of EMBD for all
conformers of C29H39N5O3S2. In panels (a) and (c), the color coding corresponds to the gyration
radius (Rg) of each solvated structure. Selected conformations are shown in panels (b) and (c) to
highlight the impact of variations in these properties on the molecular structure.

design and property prediction. As shown in Fig. 3.4(b), molecule-solvent interactions ex-

ert a stronger influence on local properties than global ones, a trend further supported by

variations in atomic forces (Ftot). This observation is particularly noteworthy, as many neural

network potentials are trained on forces derived from gas-phase molecular configurations. It

underscores the importance of datasets that account for solvation effects to better represent

regions of phase space relevant to more realistic scenarios.

A final analysis focuses on the interplay between solvent effects and dispersion correc-

tions, which is key to understanding the behavior of large drug-like molecules. To this end, in

Fig. 3.5(a) a correlation plot between non-electrostatic component of solvation energy Enelec

and dispersion interaction energy, Edisp is reported, with the last one being calculated using

two established methods: MBD and TS. The data points, colored by the gyration radius Rg

of each solvated structure, reveal a strong correlation between these properties, emphasiz-

ing the importance of accounting for both molecule-solvent and dispersion interactions when
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studying large molecules, as in the generation of the AQM dataset. Notably, the increasing

divergence between energies obtained via the MBD and TS methods with growing system

size confirms the significant impact of considering many-body interactions on the energetic

description of these compounds. To explore this further, an analysis was conducted by se-

lecting the molecule C29H39N5O3S2 (N = 78 atoms) with 720 conformers, examining their

respective energy values. These conformers exhibit a dispersion energy difference between

the two considered methods, ∆Edisp, of up to ≈ 1.0 eV, with smaller values corresponding

to compact molecular structures and larger values observed for extended ones (see Fig.

3.5(b)). In addition to its size dependence, Fig. 3.5(c) shows that, like EMBD, Enelec also

varies with molecular conformation, further highlighting the interplay between solvation and

structural effects.

3.3 Modeling Non-Covalent Interactions Using Photonic Quan-

tum Simulation and Neural Networks

The analysis of the Aquamarine dataset in Section 3.2 demonstrated that many-body effects

in dispersion interactions can be significant, especially for large drug-like molecules and par-

ticularly so when considering solvation effects. As discussed in Section 2.1.3, considering

a pairwise model effectively truncates the series expansion of the correlation energy. While

the MBD model advances beyond this limitation by treating the full series, it still relies on the

approximation of localized dipoles for the QDOs. A more complete treatment considering the

full Coulomb interaction between QDOs could theoretically provide higher accuracy. Such

an approach was proposed by Whitfield and Martyna[159], who showed that by carefully se-

lecting the charge, mass, and characteristic oscillation frequency of QDO pseudo-particles,

one could enable the description of response properties, many-body induction, and disper-

sion interactions to infinite order. However, practical implementation of this model has been

limited by the computational expense of classical methods such as imaginary-time path in-

tegration or Diffusion Monte Carlo.

In this section, we examine how recent advancements in quantum computing can ad-
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dress the computational challenges inherent to classical approaches. Quantum computers,

which harness quantum mechanical phenomena such as superposition and entanglement,

hold significant promise for applications in chemistry for two main reasons. First, they can

efficiently represent quantum states that would otherwise require exponential resources on

classical hardware. Second, they enable the direct simulation of quantum systems by map-

ping the problem effectively onto quantum hardware. For a review on the topic see [160].

While the current state of hardware strongly limits quantum computing’s applicability, ap-

plications on noisy hardware are an active field of study, especially in quantum chemistry,

with the name of NISQ (Noisy Intermediate Scale Quantum) applications [161, 162, 163]. In

this context, this section presents an approach to simulating non-covalent interactions with

photonic quantum hardware. Simulating this kind of interaction is oddly something not very

explored in the current state of research. One previous excellent work on the topic is [164],

which simulates QDO interaction on NISQ hardware and goes beyond the dipole approxima-

tion, but still relies on a truncation in the multi-pole expansion, not treating a full-Coulomb in-

teraction. Here, it is shown that photonic hardware is a more natural choice for this purpose.

A novel method is proposed for simulating full Coulomb interactions in QDO systems, lever-

aging the observation that photons, like the modes of quantum harmonic oscillator states in

the QDO model, exhibit a bosonic nature. This proof-of-concept implementation focuses on

a system of two Coulomb-coupled QDOs (cQDOs), a simplified yet insightful scenario that

allows to establish core principles while facilitating detailed analysis. Beyond demonstrating

the viability of this quantum computing approach, these results unveil intriguing qualitative

features, such as characteristic binding curves and the formation of quantum states known

as entangled cat states at saddle points. This last point of particular interest, as entangle-

ment is a purely quantum property of multipartite states that cannot be separated in tensor

products of the single systems [165], while cat states are a family of quantum states that

are superposition of classical states, and are extensively studied for their connection to the

problem of obtaining macroscopic quantum superposition effects [166, 167].
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3.3.1 Definition of the Model

The fundamental description of the considered system of cQDOs begins with the Hamilto-

nian for N quantum Drude oscillators in three dimensions:

Ĥ =
N∑
i=1

(
p̂2
i

2mi
+

1

2
miω

2
i x̂

2
i

)
+
∑
i<j

VCoul(x̂i, x̂j). (3.1)

This Hamiltonian is the one of a charged harmonic oscillator where the nuclei are considered

positively charged particles with fixed position and the oscillators are negatively charged par-

ticles known as drudons. Here, x̂i and p̂i represent the position and momentum operators

for the i-th drudon relative to its nucleus, while mi and ωi denote the oscillator’s mass and

characteristic frequency respectively. The Coulomb interaction term VCoul(x̂i, x̂j) accounts

for all pairwise interactions between drudon-drudon and drudon-nucleus pairs:

VCoul(x̂i, x̂j) =
qiqj
rij
− 1

|rij + x̂i|
− 1

|rij − x̂j |
+

1

|rij − x̂j + x̂i|
(3.2)

where rij = ri − rj denotes the position vector between nuclei i and j. While this expres-

sion maintains the complete Coulomb interaction without truncation, to reconnect with the

approximation used in models such as MBD, we remind that this usually involves using a

multipolar expansion:

VCoul(x̂i, x̂j) =
∞∑
n=0

Vn(x̂i, x̂j) (3.3)

where each term Vn scales as r−n−3
ij . The leading term V0 corresponds to the dipole-dipole

interaction central to the MBD model, while V1 and V2 represent dipole-quadrupole and

quadrupole-quadrupole interactions respectively. This expansion, while mathematically con-

venient, assumes the nuclear separation substantially exceeds the typical drudon-nucleus

distance, imposing a lower bound on the interatomic distance. Moving forward, one can

introduce dimensionless position and momentum operators:

X̂i :=

√
miωi
ℏ

x̂i, P̂i :=

√
p̂i

ℏmiωi
. (3.4)
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These operators allow us to express the creation and annihilation operators for each oscil-

lator:

âi =
X̂i + iP̂i√

2
, â†i =

X̂i − iP̂i√
2

, (3.5)

leading to a reformulation of the Hamiltonian particularly suitable for quantum simulation:

Ĥ =
N∑
i=1

ℏωi
(
â†i âi +

3

2

)
+

∑
i<j

VCoul

(
ℏ

miωi

(
âi + â†i

)
,

ℏ
mjωj

(
âj + â†j

))
.

(3.6)

For this proof-of-concept implementation, a system of two QDOs (N = 2) separated by

distance d is considered, and to reduce the computational complexity while maintaining the

essential physics, the motion of the drudons is restricted to a common axis defined by unit

vector êθ, forming an angle θ ∈ [0, π/2] with the internuclear axis. This geometric config-

uration allows the study of the interplay between binding and smoothness of the potential

energy surface, with particularly interesting behavior emerging at intermediate values of θ.

For a general angle θ and interatomic distance d, the one-dimensional Coulomb potential

becomes:

V Coul
θ,d (x̂1, x̂2) =

q1q2
d
− 1√

d2 + 2d cos θx̂1 + x̂21
−

1√
d2 − 2d cos θx̂2 + x̂22

+
1√

d2 − 2d cos θ(x̂2 − x̂1) + (x̂2 − x̂1)2
,

(3.7)

while the corresponding one-dimensional Hamiltonian in terms of creation and annihilation

operators takes the form:

Ĥθ,d = ℏω1

(
â†1â1 +

1

2

)
+ ℏω2

(
â†2â2 +

1

2

)
+

V Coul
θ,d

(
ℏ

m1ω1

(
â1 + â†1

)
,

ℏ
m2ω2

(
â2 + â†2

))
.

(3.8)

For the numerical implementation, natural units are adopted where ℏ = 4πϵ0 = 1 and set

all oscillator parameters (masses, charges, and frequencies) to unity. This choice, while
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Figure 3.6: A single layer of the optical quantum circuit, consisting of various gates such as beam-
splitters, rotation, squeezing, displacement, and Kerr gates, is collectively parameterized by ω.

simplifying the calculations, preserves the essential physical features of the system and

allows focusing on the fundamental aspects of the quantum simulation.

3.3.2 Neural Network Ansatz, Photonic Circuit and Variational Algorithm

In order to map the physical model onto the photonic hardware, the intrinsic bosonic nature

of QDOs is leveraged by mapping their Hilbert space directly onto that of photonic quantum

hardware. In this framework, the Fock space of a single harmonic oscillator is identified

with the Fock space of one mode of the quantum electromagnetic field, allowing a very

natural correspondence between the position and momentum of the drudon particle and the

quadratures of the electromagnetic field. Then, to find the ground state of the system, a

continuous-variable version of the Variational Quantum Eigensolver (VQE) algorithm[168] is

employed. Without a priori assumptions on the form of the ground state solution, the ansatz

chosen for this variational approach will have to be as expressive as possible. Following

previous work [169, 170], the already mentioned universal function approximation theorem

is leveraged in the form of a quantum neural network ansatz. This ansatz is in fact easily

attained in optical circuits despite the linear nature of quantum mechanics thanks to the

possibility to introduce optical non-linearities in the form of Kerr gates[171]. Starting from

encoding a multipartite state as |x⟩ = |x1⟩⊗|x1⟩⊗· · ·⊗|x1⟩, the idea is to encode the equation

for an MLP as |σ(Wx+ b)⟩. This is achieved by applying singular value decomposition to

W as W = O1ΣO2, where Ok are orthogonal matrices and Σ = diag({ci}) is a positive

diagonal matrix. In this optical setting these transformations are easily achieved. Orthogonal

transformations are unitary transformations obtained through phaseless interferometry, e.g.

Û(θk, 0) |x⟩ = |Okx⟩, while the positive definite diagonal matrix can be obtained through
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mode-wise squeezing operations such as ⊗Ni=0Ŝ(log(ci)) |x⟩ = |Σx⟩. The bias term can

then be introduced via the application of a displacement operator, namely ⊗Ni=0D̂(bi) |x⟩ =

|x+ b⟩, and finally the non-linearity can be introduced via the mode-wise application of a

Kerr gate such that ⊗Ni=0Φ̂(λi) |x⟩ = |σ(x)⟩. Altogether, the application of one quantum

neural network layer will read:

Φ̂ ◦ D̂({bi}) ◦ Û(θ2, 0) ◦ Ŝ({log(ci)})Û(θ2, 0) |x⟩ = |σ(Wx+ b)⟩ , (3.9)

where it is interesting to notice that Kerr gates are the only operations that allow the ansatz

to escape the strictly Gaussian nature of the state, which would otherwise be preserved by

Gaussian transformations such as the ones previously mentioned [172].

The resulting optical circuit for this case study, hence, implements a unitary transfor-

mation Û(ω) which will be the subsequent stacking of a number of layers such as the

one in Eq.3.9 acting on an input reference state (see Fig. 3.6), which is taken to be

the Fock vacuum state |0⟩ ⊗ |0⟩. The state prepared by the circuit is therefore given by

|ψ(ω)⟩ = Û(ω)|0⟩ ⊗ |0⟩, where ω represents the set of all circuit parameters. The optimiza-

tion objective for the variational algorithm is the expectation value of the Hamiltonian in this

state:

⟨Ĥ⟩ = ℏω1(⟨â†1â1⟩+
1

2
) + ℏω2(⟨â†2â2⟩+

1

2
)+ (3.10)〈

V Coul
θ,d

(√
ℏ

m1ω1
X̂1,

√
ℏ

m2ω2
X̂2

)〉
.

The evaluation of this expectation value requires computing terms of the form ⟨f(X̂1, X̂2)⟩,

which is obtained by extracting the joint statistics of the position quadratures through prepa-

ration and measurement of the state |ψ(ω)⟩ in the quadrature basis. The joint probability

density ρ of (X̂1, X̂2) in the state |ψ(ω)⟩ allows then to compute:

⟨f(X̂1, X̂2)⟩ =
∫
R6

f(x1, x2)ρ(x1, x2)dx1dx2, (3.11)
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where the integral is implemented as a finite sum over a sufficiently refined grid in the po-

sition quadratures plane. For the numerical simulations, a linear grid of 500 points in the

interval [−6, 6] and using the Xanadu’s STRAWBERRY FIELDS simulator, the output state

vector in the Fock basis is directly accessed:

|ψ(ω)⟩ =
∞∑

n1,n2=0

αn1n2(ω)|n1⟩ ⊗ |n2⟩, (3.12)

where a truncation at 5 modes per oscillator is applied, following the observation in previous

full configuration interaction approaches[173]. The amplitude of a specific pair of quadra-

tures (X̂1, X̂2) is then given by:

⟨X1, X2|ψ(ω)⟩ =
∞∑

n1,n2=0

αn1n2(ω)

2∏
i=1

e−X
2
i /2Hni(Xi)√
π1/22nini!

(3.13)

in terms of the Hermite polynomials, yielding the joint probability density:

ρ(X1, X2) = |⟨X1, X2|ψ(ω)⟩|2. (3.14)

The circuit parameters are finally optimized iteratively following 1 to minimize the cost func-

tion:

C(ω) = ⟨ψ(ω)|Ĥ|ψ(ω)⟩. (3.15)

Through this variational optimization procedure, a close approximation to the ground state

of the coupled QDO system is obtained, enabling the study of binding energies and other

quantum mechanical properties that will be explored in subsequent sections.

3.3.3 Binding Energy Curves and Ground State Properties

For each configuration of the quantum system, characterized by angle θ and interatomic dis-

tance d, the continuous-variables VQE algorithm is used to extract properties of the ground

state |ψθ,d⟩ of the Hamiltonian defined in Eq. 3.10. This is done for a grid Gθ × Gd ⊂

[0, π/2] × (0, 3.5], where the cardinality of Gθ is 20 and the cardinality of Gd is 200. The
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Algorithm 1: Training of the parameterized photonic circuit
Parameters: Model (θ, d), Nsteps ∈ N, initial circuit parameters ω0 ∈ RK , learning
rate η ∈ R+

Result: Optimized hyperparameters ω ∈ RK

Initialize hyperparameters ω ← ω0;
for i = 1 to Nsteps do

Compute the loss C according to eq. (3.15);
Compute the gradient ∇ωC with the shift rule;
Update the parameters ω ← ω − η∇ωC;
end for

return ω.

binding energy, which quantifies the strength of interaction between the two QDOs, is then

defined as the difference between the ground state energy of the interacting system and that

of the non-interacting system:

Ebθ(d) = ⟨ψθ,d| Ĥθ,d |ψθ,d⟩ − ⟨ψ0| Ĥ0 |ψ0⟩ (3.16)

where Ĥ0 represents the Hamiltonian with electric charges turned off, effectively describing

two independent harmonic oscillators. The analysis of the results reveals a rich dependence

of the binding behavior on the angle θ. For intermediate values around θ = 0.58, binding

curves exhibit remarkable agreement with a Morse potential [174, 175, 176, 177, 178], char-

acterized by:

f(d) = Eb

(
e−2

d−db
s − 2e−

d−db
s

)
, (3.17)

where db represents the equilibrium distance, Eb the binding energy, and s the characteristic

length scale of the interaction. For θ = 0.58, it is found that db ≈ 0.54 with binding energy

−Eb ≈ 0.46 and length scale s ≈ 2.75 (see Fig. 3.7b). The quality of the Morse fit, in

particular, reveals a fascinating interplay between the angle θ and the nature of the QDO

interaction. As θ varies, we observe two distinct regimes with competing effects (see Fig.

3.7a). For small angles (θ ≈ 0), corresponding to drudons moving predominantly along the

internuclear axis, the binding curve starts showing extreme behaviours, and it is found to

strongly deviate from the Morse form, particularly at short distances. This deviation stems
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Figure 3.7: (a) The binding energy curve is shown for three different values of the angle θ, highlighting
the tension between models near θ = 0 and those near θ = π

2 . For small angles (blue curve),
the steep curvature hinders an effective Morse fit. In contrast, for large angles (green curve), the
transverse configuration of the drudons prevents the formation of a bound state. The orange curve
represents an intermediate angle, demonstrating both binding and an excellent Morse fit. (b) Morse
fit of the binding curve obtained for the value of θ = 0.58 which provides the best Morse fit while still
exhibiting binding behaviour.

from configurations where the drudons can approach arbitrarily close to each other, leading

to divergent Coulomb repulsion in the one-dimensional geometry. The extreme case of

θ = 0 is in fact found to produce highly non-smooth behavior at short interatomic distances.

Conversely, as θ increases toward π/2, the binding curves become progressively smoother

and better described by the Morse potential. However, this improved smoothness comes

at the cost of binding strength. Beyond a critical angle θ∗, the system transitions to an

unbound state, characterized by the disappearance of the negative global minimum in the

binding energy. This behavior can be understood physically by considering the transverse

model (θ = π/2), where two dominant configurations emerge: either the drudons align on

opposite sides of the internuclear axis, experiencing primarily nuclear repulsion, or they align

on the same side, experiencing both nuclear and drudon-drudon repulsion. Both scenarios

preclude binding, and by continuity, this extends to a neighborhood of θ = π/2.

These observations suggest a natural prescription for modeling molecular interactions:

while the longitudinal model (θ = 0) correctly predicts the existence of bound states, its insta-

bility due to overlapping drudon configurations makes it impractical. By introducing a finite

angle θ, it is possible to regularize the model while maintaining binding behavior. The optimal

angle should be large enough to ensure smoothness (quantified by the quality of the Morse
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fit) but smaller than the critical angle θ∗ where binding disappears. This analysis reveals

a fundamental trade-off in quantum mechanical models of molecular binding: the competi-

tion between stability of the numerical description (favoring larger angles) and the strength

of quantum mechanical binding (favoring smaller angles). The existence of an optimal in-

termediate regime suggests that this quantum simulation approach successfully captures

essential features of molecular interactions while maintaining computational tractability. The

emergence of the Morse potential form is particularly significant, as it reproduces a char-

acteristic feature of covalent bonding in molecular systems. This suggests that the QDO

model, despite being primarily motivated by dispersion interactions, could capture broader

aspects of molecular binding. The binding curves obtained through the quantum simula-

tion thus provide a valuable bridge between simplified classical models and full quantum

mechanical treatments of molecular interactions.

3.3.4 Phase Space Analysis and Quantum Correlations

To gain deeper insight into the nature of the quantum mechanical ground state and the bind-

ing mechanism, one can analyze the system’s representation in phase space at different

interatomic separations. Focusing on the model at angle θ = 0.58, which exhibits optimal

binding behavior as discussed in the previous section, for each QDO, it is possible to com-

pute the marginal Wigner function. This provides a quasi-probability distribution in phase

space [179], alongside the joint probability distribution of the position quadratures that re-

veals spatial correlations between the oscillators. This phase space analysis reveals a

rich evolution of the quantum state as the interatomic distance varies (see Fig. 3.8). At

large separations (d ≈ 3.16), the two QDOs behave essentially as independent systems,

with their marginal Wigner functions displaying the characteristic Gaussian distributions of

ground state harmonic oscillators (Fig. 3.8, top row). The joint position quadrature distribu-

tion shows a simple product state structure, confirming the absence of quantum correlations.

As the QDOs approach each other (d ≈ 1.36), their quantum states begin to deviate from this

simple picture, with the marginal Wigner functions showing elongation primarily along the

position quadrature axis, indicating spatial reorganization in response to the inter-oscillator
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Figure 3.8: Visualization of the evolution of the quantum state across binding configurations. Top
to bottom: separation distances d ≈ 3.16, 1.36, 0.82, and 0.54. Left column shows marginal Wigner
functions for QDO 1 (first) and QDO 2 (second), displaying phase space distributions of individual
oscillators. Right column shows joint probability distributions of position quadratures, revealing spatial
correlations between the oscillators. The progression demonstrates the transition from independent
oscillators to the bound configuration.
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considering the diagonal section of both for better visualization of the binding mechanism.
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interaction (Fig. 3.8, second row). The most interesting behavior emerges at intermediate

distances (d ≈ 0.82), where we observe maximal quantum correlations between the oscil-

lators (Fig. 3.8, third row). Here, the marginal Wigner functions exhibit significant spread

in both position and momentum quadratures, accompanied by regions of negative quasi-

probability - a distinctive signature of non-classical behavior and a witness of entanglement

in bipartite states [180, 181]. Finally, in the bound configuration (d ≈ 0.54), the marginal

Wigner functions show predominant elongation along the momentum quadrature axis, re-

flecting relatively well-localized drudons with increased momentum uncertainty due to their

close proximity and strong interaction (Fig. 3.8, bottom row). This evolution becomes even

more revealing when examining the system at smaller angles, where tunneling effects be-

come more pronounced (see Fig. 3.9). For θ = 0.17, one can clearly observe the interplay

between the classical potential landscape and the quantum state distribution. At large sep-

arations (d ≈ 3.16), the classical potential shows a single minimum and the joint distribution

remains localized signaling the usual unbound case (Fig. 3.9, top row). The most intrigu-

ing behavior appears at intermediate distances (d ≈ 1.75), where the classical potential

V (X1, X2) = VCoul(X1, X2) + (X2
1 + X2

2 )/2 develops two distinct local minima. At this dis-

tance, the joint distribution becomes distinctly bimodal, providing clear evidence of tunneling

between the quadratic and Coulomb wells (Fig. 3.9, middle row). The diagonal section of

both the joint distribution and the potential further illuminates this tunneling phenomenon. Fi-

nally, in the deep bound state (d ≈ 0.51), the system settles into a new configuration with the

distribution centered away from the origin, indicating that the displacements of the drudons

are locked in to form a bound state (Fig. 3.9, bottom row).

The findings just discussed, pertaining Fig. 3.8 and Fig. 3.9, gives us an intuition of

what happens to the ground state of the system along the binding curve, allowing for an

interpretation of the solution found via the quantum neural network ansatz. For d → ∞ the

two QDOs will not interact and hence the natural state for them will be the vacuum state |0⟩|0⟩

(ground state of independent harmonic oscillators). On the other hand when d ∼ dbonding we

see that the system is shifted towards an antisymmetric configuration where ⟨X1⟩ = −⟨X2⟩

and ⟨P1⟩ = ⟨P2⟩ = 0, which can be approximated by the bipartite coherent state |α⟩| − α⟩
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with α = ⟨X1⟩. In the transition region, instead, the system will pass through an intermediate

state, which is reflected in the position joint probability by the transition from a single mode

to a bimodal distribution, which is naturally represented as a superposition of the form:

1

N
(|0⟩ ⊗ |0⟩+ |α⟩ ⊗ | − α⟩) (3.18)

where N is a normalization factor and α quantifies the displacement from the origin. This

Figure 3.10: (a) Entanglement entropy plotted against the distance d between QDOs for various
values of θ. (b) Smoothed entanglement entropy as a function of interatomic distance for θ = 0.58.
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Figure 3.11: Comparison between simulated ground states and fitted cat state ansatz. Top row
shows the Wigner functions of the ground states obtained from VQE at entropy peaks. Bottom row
displays the Wigner functions of the fitted cat state ansatz 1

N (|0⟩ ⊗ |0⟩ + |α⟩ ⊗ | − α⟩) at the same
points. Wigner functions are sliced along the plane (X = X1 = −X2, P = P1 = −P2) to obtain 2D
visualizations. The high fidelity (F ∼ 0.96) between simulated and fitted states validates the cat state
description of the bonding mechanism.
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state is indeed an entangled state, and also is of the form of a cat state. This simple expres-

sion for the state at the transition point of the binding curve elegantly explains the observed

bimodality in the position distribution. Furthermore, this interpretation is supported by ex-

amining the von Neumann entropy, or entanglement entropy, through the binding curve.

This is defined as S(ρ1) = −Tr[ρ1log(ρ1)] where ρ1 is the partial trace of the density matrix

ρ =
∑

n1,n2
m1,m2

α∗
m1m2

αn1n2 |n1⟩⟨m1| ⊗ |n2⟩⟨m2| of the whole system over the Hilbert space of

the second cQDO and is symmetric in the choice of cQDO to be traced out. In Fig. 3.10,

it is indeed found that the entanglement entropy shows a characteristic peak that coincides

with the maximal tunneling between the two configurations and converges to the inflection

point of the binding energy curve for increasing values of θ in agreement with 3.18.

The quality of this entangled cat state description at the transition point can be tested.

This is done by tuning the parameters defining the state in Eq. 3.18 for each of the transition

points obtained at different values of θ in order to maximize quantum state fidelity F ∈ [0, 1]

(overlap between two quantum states) with the actual state resulting from the neural network

ansatz. The results are reported in Fig.3.11, and show that F remains high throughout the

binding regime, with values of F ∼ 0.96 even as θ varies. The emergence of entangled cat

states in this system is particularly noteworthy as it naturally explains the necessity of includ-

ing Kerr gates in the quantum circuit - these non-Gaussian operations can indeed be used for

cat state generation [182, 183]. Furthermore, the role played by such non-classical effects

in the binding process suggests a fundamental connection between quantum correlations

and the binding mechanism, providing an unexpected bridge between the disparate fields

of quantum optics and molecular binding and suggests that quantum optical concepts and

techniques might offer new perspectives on molecular interactions, particularly in regimes

where quantum effects dominate.
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Chapter 4

A Whole Chemical Space in a Set of

Properties

This chapteris is based on Fallani A. et al. Nature Communications 2024, 15,

6061. Material, including figures, has been adapted under the terms of the Cre-

ative Commons Attribution 4.0 International License (CC BY 4.0). For a copy of

the license, visit https: // creativecommons. org/ licenses/ by/ 4. 0/ .

A recurring theme across the work laid out so far has been the use of different ways

to characterize molecular systems: from electronic densities to Cartesian coordinates, up

to representations for machine learning and representation learning techniques. When dis-

cussing the analysis of the Aquamarine dataset, though, it became increasingly clear how

the analysis of property-property relations could reveal substantial information about molec-

ular structures. Together with the idea of ’freedom of design’ in property space put forth

in [158], this naturally leads us to a deeper question about the nature of chemical space

itself: can we use molecular properties as coordinates to navigate the chemical compound

space (CCS)? The idea is compelling: while structures encode “what a molecule is”, prop-

erties encode “what a molecule does”. A parameterization based on properties could there-

fore provide not only a more natural way to explore chemical space from the perspective

of molecular function but also a much more efficient approach to exploring an otherwise
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incredibly vast and high-dimensional space.

This chapter develops this idea by constructing a differentiable parameterization of CCS

using quantum-mechanical properties as intrinsic coordinates. We demonstrate how com-

bining variational auto-encoders with property encoders enables us to learn a common latent

representation that bridges structures and properties in the case of the QM7x dataset. This

representation reveals fundamental insights about the organization of chemical space - how

certain properties naturally cluster molecules, how others provide local coordinates for ex-

ploring specific regions, and how the interplay between intensive and extensive properties

shapes molecular diversity. Beyond these conceptual insights, we show how this framework

can be used in principle also for applications like targeted exploration of chemical space

and even prediction of transition pathways between conformers. The tools developed here

thus provide both a new lens for understanding chemical space and practical methods for

navigating it guided by molecular properties.

4.1 Compressing Chemical Space with Variational Auto-Encoders

(VAE)

In chapter 3, we mentioned the challenges associated with the exploration of the vast and

complex CCS. While exhaustive screening via quantum mechanical calculations is unfeasi-

ble regardless of computational power, there we saw that an effort for covering interesting

regions of this space is ongoing and strong. From the ML side, in order to facilitate and give

a direction to this exploration effort, different approaches have been developed. The main

branch of these methods certainly regards generative models [184], that with the aim of

generating molecules based on the correlations learned from the datasets, has emerged as

a promising approach to navigate this vast space more efficiently. In the family of generative

models used for drugs and material discovery, we can find approaches such as Generative

Adversarial Networks (GANs)[185], which generate realistic molecular structures through

adversarial training [186], Recurrent Neural Networks (RNNs) [36], which are often used to

produce molecular SMILES strings or other sequential representations[51], diffusion models,
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which transform random noise into structured molecular forms through iterative refinement

[187, 188], and Variational Autoencoders (VAEs) [189], compressing molecular data into a

low-dimensional latent space that facilitates the creation of novel compounds by sampling

and decoding from a finite-size learned continuous latent space [50].

Focusing on this last family of models, VAEs consist of two neural networks: an encoder

that compresses input data into a lower-dimensional latent space representation, and a de-

coder that attempts to reconstruct the original input from this compressed representation.

Unlike traditional autoencoders, VAEs are probabilistic models - the encoder and decoder

networks parameterize probability distributions rather than deterministic functions. Specifi-

cally, for an input molecule x, the encoder defines a distribution qϕ(z|x) over latent vectors

z, while the decoder defines a distribution pθ(x|z) over reconstructed molecules. VAEs are

trained by optimizing the Evidence Lower BOund (ELBO):

lossELBO = DKL[qϕ(z|x)||p(z)]− Eqϕ [log(pθ(x|z))] (4.1)

where DKL is the Kullback-Leibler divergence and p(z) is typically chosen as a standard

normal distribution N (0, I). The first term acts as a regularizer, ensuring the latent space

remains compact and avoids sparsity and memorization by pushing the encoded distribu-

tions close to the prior. The second term instead has the function of encouraging accurate

reconstructions by maximizing their log-likelihood.

Several landmark works have demonstrated the power of VAEs for molecular applications

[190, 191, 192, 50]. Gómez-Bombarelli et al. showed that VAEs trained on SMILES strings

and coupled with a prediction task from latent space could learn chemically meaningful la-

tent spaces suitable for optimization of molecular properties [50]. Their success sparked

numerous follow-up studies exploring different molecular representations and model archi-

tectures. These approaches have consistently shown that the discrete, variable-sized space

of molecular structures can be effectively compressed into a continuous latent space of

fixed dimensionality. This remarkable ability to compress the complex combinatorial space

of molecules into a smooth, continuous representation of fixed size suggests an intriguing
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possibility: that the underlying complexity of chemical space might be captured by a lim-

ited number of continuous degrees of freedom. Such an observation naturally leads to the

hypothesis that molecular structures could be parameterized using a fixed set of physical

descriptors - specifically, quantum mechanical properties that themselves arise from the

fundamental laws governing molecular systems. This insight motivates the investigation into

whether quantum mechanical properties can serve as intrinsic coordinates for navigating

chemical space.

4.2 A Differentiable Mapping Between Properties and Molecules

To address this fundamental question, the QIM (Quantum Inverse Mapping) model is here

presented, where the standard VAE framework is adapted to enable a differentiable mapping

from molecular properties to structures. The key idea is to introduce a third network, the

property encoder, that learns to map the molecular properties y to the same latent space

variable z which the VAE uses to encode the correspondent molecular structure x, producing

the probability distribution pψ(z|y). During training, the VAE and the property encoder are

jointly optimized by modifying the ELBO loss to include an additional likelihood term, so that

the latent z sampled from the VAE training is also used to train the property encoder. The

new loss reads:

Loss = βDKL[qϕ(z|x)||p(z)]− Eqϕ(z|x)[log pθ(x|z)]− τEqϕ(z|x)[log pψ(z|y)] (4.2)

where β and τ are adjustable coefficients introduced as hyperparameters to control the

relative importance of the KL divergence and the property encoding. The training proce-

dure involves sampling a molecular structure x and its corresponding properties y from the

dataset, encoding x into the latent representation z using the VAE encoder qϕ(z|x), recon-

structing x from z using the VAE decoder pθ(x|z), encoding the properties y into the latent

space probability distribution pψ(z|y) using the property encoder, and finally computing the

modified ELBO loss and updating the networks’ parameters via backpropagation. By jointly
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Figure 4.1: (a) The Quantum Inverse Mapping (QIM) model is based on a Variational Auto-Encoder
(VAE) architecture. During training, molecular structures x (depicted with atoms as colored spheres)
are encoded into a latent distribution qϕ(z | x). A latent variable z is sampled from this distribution and
passed to a decoder to reconstruct the original structure. Simultaneously, a property encoder maps
the associated quantum-mechanical (QM) properties y into a distribution pψ(z | y). Both networks
are trained jointly using the Evidence Lower Bound (ELBO) loss, which combines a molecular recon-
struction term log(pθ(x | z)), a Kullback-Leibler (KL) regularization term DKL(qϕ(z | x) ∥ N(0, 1)), and
an additional loss term log(pψ(z | y)) to link the latent z with the properties y. This results in a shared
latent space representation that unifies molecular structures and QM properties. (b) During infer-
ence, the property encoder is coupled with the VAE decoder to approximate the parameterization of
Chemical Compound Space (CCS) using QM properties as intrinsic coordinates. This differentiable
CCS representation facilitates identifying key properties in molecular reconstruction and enables var-
ious molecular design tasks.

optimizing the VAE and the property encoder, a shared latent space is induced that captures

the salient features of both molecular structures and their properties. After training, this al-
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Symbol Property Description Units Type Class
EAT Atomization energy eV M,G E
EMBD MBD energy eV M,G E
EXX Exchange energy eV M,G E
ENN Nuclear-nuclear energy eV M,G E
EEE Electron-electron energy eV M,G E
EKIN Kinetic energy eV M,G E
EGAP HOMO-LUMO gap eV M,G I
E0

HOMO HOMO energy eV M,G I
E0

LUMO LUMO energy eV M,G I
E1

HOMO HOMO-1 energy eV M,G I
E1

LUMO LUMO+1 energy eV M,G I
E2

HOMO HOMO-2 energy eV M,G I
E2

LUMO LUMO+2 energy eV M,G I
ζ Total dipole moment e·Å M,G I
α Isotropic molecular polarizability a30 M,R E

DMAX Maximum atom-atom distance Å S,G I

Table 4.1: This table lists the QM properties (and their corresponding symbols) obtained from the
QM7-X dataset [104], which were utilized during the training of our model (see Fig. 4.1). The units
specified for these properties include a0, the atomic unit of length (Bohr radius). All listed properties
are scalars, meaning they have a dimensionality of 1. Properties were classified into the following
categories: structural (S), global/molecular (M), ground-state (G), response (R), extensive (E), and
intensive (I).

lows to combine the property encoder and the VAE decoder to establish a differentiable

mapping from properties y to structures x:

y → z ∼ pψ(z|y)→ x ∼ pθ(x|z). (4.3)

where the mean of the parameterized distributions is used in place of the sampling operation

as maximum likelyhood points.

For what concerns the molecular representation, the Coulomb Matrix (CM) is here used

[58], which encodes both the atomic positions and species (see Sec. 2.2.2) considering im-

plicit hydrogen atoms and hence treating directly only heavy atoms. The CM is invariant to

translations and rotations, and allows for the retrieval of atomic positions and atomic species.

While a graph-based representation would treat molecular fragments more robustly, it would

introduce a number of complications in architecture design, hence a distance based repre-
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sentation such as the CM is more lightweight and practical for this proof-of-concept imple-

mentation as it makes it easier to be associated with a fixed size vector of scalar molecular

properties. Moreover, using an appropriately padded CM using fixed rules enables the QIM

model to potentially generate molecules with more heavy atoms than the largest molecule

in the QM7-X dataset.

The retrieval of Cartesian coordinates and chemical composition is then achieved with

a two-step process. First, the chemical composition {Zi} is obtained from the diagonal

elements using the inverse transformation g = (·)
1
2.4 , then the interatomic distances dij are

computed from the off-diagonal elements as dij =
(
CMij

ZiZj

)
, and classical multidimensional

scaling (MDS) is applied to the resulting Euclidean Distance Matrix (EDM) to obtain the

Cartesian coordinates [193]. Hydrogen atoms are finally added back to the reconstructed

heavy-atom structures using the OpenBabel [194] software and their positions are optimized

with the DFTB3+MBD method while keeping the heavy atoms fixed.

The performances of the QIM model in reconstructing molecular structures from their

quantum mechanical properties are assessed by training and testing on a random split of

the 40988 equilibrium structures of the QM7x dataset including only molecules with (C, N,

O) heavy atoms and considering 17 QM global extensive and intensive properties (listed in

Table 1). This is done with 28000 structures for training, 2000 for validation and the remain-

ing used for testing. The testing phase consists into using the obtained map from Eq. 4.3

and comparing the original molecular structures to the ones generated from properties. The

comparison is made first in terms of relative error on the reconstruction of the representation

(CMs) for varying number of properties considered, and then for the full set considering the

RMSD between reconstructed geometries. In Fig. 4.2a we present boxplots of the relative

error in CM reconstruction as a function of the number of properties used to train the model.

This is defined as ∆ = |C̃−C|
|C| × 100 where C is the original CM, and C̃ is the reconstructed

CM, both treated as vectors. The analysis focuses on the relative error in the CM rather than

the root-mean-squared deviation (RMSD) between molecular structures since RMSD is only

defined for molecules with correctly predicted compositions, leading to greater fluctuations

when fewer properties are used—an outcome of higher chemical composition errors in such

73



cases. The results show that the QIM model achieves an average reconstruction error on

the representation that stabilizes around 5% when more than seven properties are included.

Beyond this threshold, the error distribution becomes increasingly skewed, as evidenced by

the median value. While the mean and standard deviation of the CM reconstruction error

are reported, it is important to note that this metric does not fully capture the quality of the

mapping due to its noisy and nonlinear relationship with RMSD.

The distribution and the cumulative distribution of the RMSD over the test set is hence

reported in Fig. 4.2b for the case of the full set of properties. The model achieves an aver-

age RMSD of 0.62 Å, with over 70% of the molecules reconstructed within an RMSD of 0.7

Å (see Fig. 4.2 in the main text). This threshold was empirically found to separate molecules

with an acceptable reconstruction of the heavy-atom structure in terms of topology and ori-

entation (in Fig 2c some examples of reconstructions as a reference). As a side note, albeit

somewhat expected given the low diversity of the chemical compositions in the dataset, the

model correctly predicts the heavy atom composition for 99.96% of the test set molecules.

Interestingly, the QIM model’s performance is enhanced when both extensive and intensive

properties are used in the training process, compared to using either type of property alone.

This highlights the complementary information captured by these two classes of properties.

While extensive properties primarily govern the overall molecular size and composition, in-

tensive properties refine the finer details of the 3D structure.

4.3 Scientific Insights from a Neural Network

To analyze how the QIM model functions and what insights it can provide about chemical

space at hand, a gradient attribution map was implemented which enables the assessment

of the individual contributions of each property to the output structures. Similar to standard

approaches in machine learning applications with image inputs [195], one can compute an

attribution map A for each property by calculating the gradient of the CM components with

respect to that property. Specifically, the Jacobian matrix is here computed and its norm is

taken over the output dimension of the CM, averaging over a subset of best reconstructed
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Figure 4.2: (a) Boxplots showing relative error in Coulomb matrix (CM) reconstruction from QM prop-
erties versus number of training properties. Analysis spans 10988 test molecules, with whiskers from
15th-85th percentiles. Property definitions in Table 4.1. (b) RMSD frequency distribution between
original and reconstructed geometries, with cumulative distribution (orange). (c) Example molecules
comparing originals to QM property-based reconstructions at various RMSD values. RMSD < 0.7 Å
indicates acceptable heavy atom structure and topology reconstruction. Atoms: carbon (gray), oxy-
gen (red), nitrogen (blue), hydrogen (white).

molecules. Namely, for a given property pj :

Aj =
1

N

∑
k∈B
∥∂CMk

i

∂pj
∥, (4.4)

where B is of best reconstructed molecules (150 molecules with RMSD ≤ 0.2 Å). The nor-

malized A values for each property reveal that extensive properties are more informative

than intensive ones for molecular reconstruction (Fig. 4.3d). This can be explained by the

fact that these extensive properties depend on crucial molecular features that are also con-

sidered in a 3D representation like the Coulomb matrix, such as number of atoms, number

of electrons (related to chemical composition), and geometry. When comparing CMs, even a

slight difference of one atom can significantly increase the loss, leading to a larger sensitivity
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(d)

Figure 4.3: Two-dimensional PCA projection of the VAE latent space, with data points colored by (a)
EXX , (b) α, and (c) E1

LUMO values (hyperbolic tangent scaling applied to prevent outlier dominance).
(d) Attribution values A for each molecular property, obtained by computing the partial derivatives
of the reconstructed Coulomb Matrix w.r.t. the selected property and taking the norm. Values are
averaged over the set of best reconstructed molecules and normalized over the maximum value
among the properties.

of the model to variations in system size and composition. Consequently, A values for the

components of the total energy and molecular polarizability are higher compared to those

for molecular orbital energies and dipole moment; in particular, EXX and EKIN present

the largest A values. This finding correlates remarkably with the identification of molecular

clusters in the two-dimensional principal component analysis (PCA) of the latent space of

the VAE encoder, where the higher the A value of a property, the more correlated it is with

respect to the PCA representation (Fig. 4.3a-c).

The hierarchy of QM properties revealed by the attribution analysis provides deeper in-

sights into how they organize chemical space. Starting with the properties showing highest

A values, EKIN and EXX , the two-dimensional projection of the QM7-X molecular prop-
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Figure 4.4: Analysis of QM7-X chemical space organization based on property hierarchies. (a) Dis-
tribution of molecules in (EXX , EKIN ) space, with colors indicating distinct heavy atom compositions
(each color in the colormap is a different composition), showing linear clustering by composition. (b)
Detailed view of a high-density cluster (yellow ellipse in (a)), colored by hydrogen atom count, with
a selected isomer subspace marked (blue ellipse). Comparison of molecular structure distribution
within an isomer subspace using property pairs with (c) high and (d) low attribution values A.

erty space defined by these properties is considered (Fig. 4.4a). Despite their high inverse

correlation (Pearson coefficient = -0.92), the molecules in the dataset organize into linear-

shape clusters containing molecules with the same heavy atom composition. Upon closer

examination, it becomes evident that EKIN is mostly influenced by the heavy atom com-

position within a molecule, while EXX is highly sensitive to the number of hydrogen atoms,

indicating a dependence on particular bond types. A closer examination of one highly pop-

ulated cluster reveals a finer local structure with almost perfect inverse correlation (Pearson

coefficient = -0.99) as well as very compact clusters formed by isomers (Fig. 4.4b). This
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(a) (b)

(c)

Figure 4.5: (a) Two-dimensional PCA projection showing overlap between property encoder and VAE
latent representations. (b) RMSD between original and reconstructed structures versus latent space
difference ∥∆z∥ = ∥z − z̃∥, where z is the property encoder latent representation and z̃ is obtained
by re-encoding reconstructed structures with the VAE encoder. (c) Distribution of RMSD values for
different ∥∆z∥ intervals (±0.1 Å width, whiskers from 15th to 85th percentile), leading to the definition
of optimal generation criterion ∥∆z∥ ∈ [0, 0.4].

behavior can be understood by considering the qualitative aspects of EKIN and EXX : the

dominant contribution to EKIN stems from the inner shell electrons (a trivial consequence

of the virial theorem) while the primary influence on EXX arises from the valence elec-

trons. Exchange-related quantities have been found to play a significant role in character-

izing bonds [196, 197], explaining their sensitivity to the number of hydrogen atoms in a

molecule. Going further, when examining molecular isomer subspaces using other pairs of

QM properties with high and low A values (Fig. 4.4c,d), we find that properties with high

A values serve as better local coordinates for exploring these subspaces. These proper-

ties present relatively smaller changes in their values across related structures compared

to properties with low A values. This demonstrates their efficiency in identifying molecular

structures within a specific molecular isomer subspace while effectively distinguishing them

from other structures spanning the entire property spectrum.

From the point of view of the latent space, in order to probe the hypothesis of having ob-
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tained a common latent space representation for molecular structures and properties, one

can look at the similarity between the latent representation of the properties and structures.

This correspondence is indeed confirmed by the significant overlap between the PCA pro-

jections of both latent representations (Fig. 4.5a), verifying the initial assumption about the

joint training procedure. Moreover, the correlation between the differences in latent space

representation and the quality of the reconstructed molecules is analysed, aiming to obtain a

self-consistent method for error estimation. To this end, if z is the latent representation from

the property encoder, one can take the reconstructed representations and encode them

again with the VAE encoder, producing a new latent representation z̃. Analysis of the corre-

lation between the quantity ∥∆z∥ = ∥z − z̃∥ and the RMSD between the original structures

and those reconstructed from properties reveals an approximate bulk correlation with nu-

merous outliers (Fig. 4.5b). Further investigation through boxplots of the RMSD for varying

values of ∆z shows a nonlinear but monotonic behavior for the relationships between these

quantities, with a minimum for RMSD in the region of low ∥∆z∥ values (∈ [0, 0.4]) (Fig. 4.5c).

Since the primary interest is having a low RMSD when reconstructing actual molecular struc-

tures, it is possible to use this interval to filter out generated structures, thereby enhancing

the quality of molecules generated with a targeted set of QM properties.

Altogether, these insights demonstrate how this methodology is explainable and flexible

enough to obtain fundamental insights int the structure-property relationship at hand, as well

as an empirical estimation of the quality of the reconstructed geometry.

4.4 Multi-Objective Targeted Structure Generation

The QIM model, while not developed to be a generative model per se, can indeed be adapted

to act as a conditional generative model for multi-objective targeted generation. For this pur-

pose, it is necessary to define a way to sample the property space conditionally, namely

obtaining the diversity that usual models obtain by sampling a known latent distribution by

sampling a conditional distribution in property space for fixed values of the targeted prop-

erties. This procedure is implemented through a multi-Gaussian fitting of the distribution of
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Figure 4.6: Generated molecular distributions around specified targets (A-F, colored crosses) in (a)
(α,EMBD) and (b) (α, ζ) spaces, with sample density indicated by shading intensity and QM7-X
reference molecules shown as gray dots. Top 5 generated molecules per target highlighted as colored
circles, with one representative structure shown per target. Atoms colored as: carbon (gray), oxygen
(red), nitrogen (blue), hydrogen (white).

the QM7-X property space. This approach begins by constructing a model with 91 multi-

variate Gaussian distributions N(µk,Σk), with µk and Σk representing the mean value and

covariance matrix of each Gaussian k (the choice of 91 distributions was determined through

Bayesian information criterion analysis). When targeting specific property values m∗, one

can select the most likely Gaussian k∗ using the maximum likelihood criterion:

k∗ = argmax
k

Nm(m = m∗|µk,Σk) (4.5)

where Nm is the marginal distribution for the targeted properties {m}. The conditional prob-

ability formula for multivariate Gaussian distributions then allows the retrieval of the distribu-

tion of non-targeted properties {n} for m = m∗:

p(n|m = m∗) = N(n|µ̃, Σ̃) (4.6)
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where µ̃ and Σ̃ are defined as:

µ̃ = µn +ΣnmΣ
−1
mm(m

∗ − µm) (4.7)

Σ̃ = Σnn − ΣnmΣ
−1
mmΣmn. (4.8)

Multiple values for non-targeted properties are sampled from this distribution, with each

sample corresponding to a complete set of properties that maintains a fitted consistency

with the targeted values. These property sets are then passed through the QIM model to

generate molecular structures. The generated samples undergo filtering based on the self-

consistency criterion ∥∆z∥ ∈ [0, 0.4], followed by reconstruction of Cartesian coordinates

and optimization of hydrogen atom positions using DFTB3+MBD. The model’s targeted gen-

eration capabilities are then evaluated across two distinct property spaces: (α,EMBD) and

(α, ζ), as shown in Fig. 4.6. For the (α,EMBD) space, which pairs two properties with high

attribution values, fifteen samples were generated per target, achieving mean relative errors

of approximately 3.2% for EMBD and 1.3% for α in the optimal 5-molecule sets. The mod-

erate correlation between these properties (Pearson coefficient = 0.60) enabled exploration

of diverse molecular structures while maintaining target accuracy. When targeting the more

weakly correlated (α, ζ) space (Pearson coefficient = 0.44), combining extensive and inten-

sive properties, the model achieved 2.8% error for α but higher 5.9% error for ζ across ten

samples per target. This aligns with the attribution analysis findings regarding the model’s

reduced accuracy for intensive properties. Furthermore, it is found that the spread of gen-

erated molecules correlates with the relative variance of non-targeted extensive properties,

offering a hint into the mechanism that controls generation diversity. Targets with lower neg-

ative log-likelihood values and small relative variances in extensive properties showed more

precise generation, demonstrating the model’s ability to balance accuracy and molecular

diversity in targeted regions of chemical space.

As it is, the current model did not generate any molecule with unseen composition. While

on one side this is reasonable, as QM7x is exhaustively complete for the molecules up to

7 heavy atoms, this also hints at limitations of this approach for obtaining molecules with a
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Figure 4.7: Generation of molecules with eight heavy atoms in (α,EMBD) space. Results from mod-
ified QIM model trained with fragment-independent masking procedure, showing generated eight-
atom molecules (colored circles) for targets T1 (blue star) and T2 (red star), with QM7-X reference
molecules as gray dots. Representative novel structures shown for each target, with atoms colored
as: carbon (gray), oxygen (red), nitrogen (blue), hydrogen (white).

higher number of atoms. This is likely due to using a padded representation which treats the

molecule as a whole, and hence lacks the ability to treat molecular fragments independently.

In this sense, one can modify the training procedure to reduce bias towards existing molec-

ular fragments by using a masking method that randomly masks atoms during training (with

probability p = 0.5) and applies leaky masking to padded entries. While this slightly reduces

reconstruction accuracy (〈RMSD〉 decreased by 0.05 Å), it enables generation of unseen

molecular scaffolds, particularly those containing eight heavy atoms. Testing this modified

model across the (α,EMBD) space revealed that generation of unseen compositions was

primarily confined to regions of low dataset coverage, characterized by high α and large

|EMBD| values (see Fig. 4.7). For target T1, the model achieved errors of approximately

10% for EMBD and 8% for α - comparable to results on seven-atom molecules. Target

T2 showed higher errors of approximately 20% for EMBD and 16% for α. Analysis of the

generated structures revealed varying chemical diversity depending on target location. T2

samples consisted exclusively of (C,N)-based molecules, while T1 samples showed greater

chemical diversity, including (C,N,O)-based compositions. All generated molecules exhibited
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physically reasonable property values for eight-atom systems (−0.6 eV < EMBD < −0.09

eV and 66 a.u. < α < 160 a.u.) and maintained chemical validity. The increased structural

complexity of T1 molecules naturally corresponded to larger |EMBD| values compared to

similar targets for seven-atom systems, aligning with chemical intuition.

These results, while showing the limitations of a proof-of-concept implementation, vali-

date that this methodology successfully adapts the QIM framework for conditional molecular

generation while maintaining the advantages of a physically-grounded, differentiable map-

ping between properties and structures.

4.5 Energy Barrier and Transition Structures Estimation in One

Method

Throughout the preceding sections, the versatility of the QIM model in learning a CCS pa-

rameterization that supports both molecular reconstruction and targeted generation was dis-

played. A notable observation from the analysis is that the latent space exhibits clear struc-

ture with respect to energetic properties that show high attribution values, even under linear

transformations like PCA (see Fig. 4.3). This characteristic suggests that linear interpolation

in the latent space could generate structures with smoothly varying energetic properties - a

direct consequence of linear transformations preserving convexity properties up to a sign.

This insight, naturally leads to exploring whether the learned latent representation could

serve as an intrinsic coordinate system for generating transition geometries between confor-

mational isomers in QM7-X. The geodesic interpolation algorithm for VAEs from [198] can

indeed be adapted to find curves in property space that are geodesics with respect to the

metric induced by the latent space encoding. For this investigation, three pairs of conforma-

tional isomers were selected: C4H9NO2 (case I), C4H5NO2 (case II), and C5H5NO (case III).

The selection criteria required that the structures be achiral and reconstructed with RMSD

≤ 0.2 Å. The interpolated geometries shown in Fig. 4.8(a-c) illustrate the model’s ability to

generate plausible transition paths between conformers, with the exceptions of some un-

physical transitions that are observed in cases II and III between steps 1 and 2. These are
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Figure 4.8: Interpolated geometries generated by geodesic interpolation in VAE latent space for
three conformational isomer pairs: (a) C4H9NO2 (case I), (b) C4H5NO2 (case II), and (c) C5H5NO
(case III). QIM-generated structures shown as yellow balls, with optimized transition structures from
ML-NEB calculations shown as solid colored balls (atoms colored as: carbon (cyan), oxygen (red),
nitrogen (blue), hydrogen (white)). (d) Relative energy profiles ∆Ei = Ei − E0 versus interpolation
step i for each isomerization, comparing geodesic interpolation in property space (blue) with ML-
NEB optimized paths (red). Results demonstrate the effectiveness of the learned latent space as an
intrinsic coordinate system for predicting transition paths between conformers in QM7-X.

likely due to two factors: (1) the CM representation’s sensitivity to small changes, leading

to large mirror-like transformations, and (2) degraded model performance in unexplored la-

tent space regions. Remarkably, without explicit energy optimization, the relative energy

profiles (∆Ei = Ei − E0) of geodesics exhibit barrier-like behavior, with energy barriers be-

tween 0.6 eV and 1.4 eV (Fig. 4.8d). This is noteworthy since the model was trained solely

on equilibrium geometries and had no exposure to non-equilibrium structures. To validate

these predictions, the generated geometries were used as initial guesses for nudged elastic

band (NEB) calculations, following the ODE method [199]. Hydrogen atoms were added via

OpenBabel, and endpoint geometries were optimized before performing NEB calculations
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with a machine learning force field [200], trained on PBE0+MBD energies and forces from

QM7-X. The resulting energy profiles (Fig. 4.8d) reveal that geodesic interpolations consis-

tently overestimate energy barriers but capture the qualitative features of the transitions. The

RMSD between interpolated and NEB-optimized heavy-atom structures ranged from 0.14 Å

to 0.35 Å, indicating reasonable accuracy. These results highlight a connection between

this property-based interpolation and geodesic transition path methods [201]. Moreover,

they demonstrate that the model’s latent space effectively captures essential physical as-

pects of molecular conformational changes, despite being trained exclusively on equilibrium

structures, suggesting possible applications in rapid reaction pathway estimation.
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Chapter 5

Quantum Chemistry Data for Better

Drug Discovery

This chapteris is based on Fallani A. et al. arXiv 2024, arXiv:2410.08024. Ma-

terial, including figures, has been adapted under the terms of the Creative Com-

mons Attribution 4.0 International License (CC BY 4.0). For a copy of the license,

visit https: // creativecommons. org/ licenses/ by/ 4. 0/ .

Throughout this thesis, different ways of representing and understanding molecular sys-

tems have been explored through the lens of quantum mechanics. The first part of Chap-

ter 3 demonstrated how quantum mechanical calculations can be used to cover portions

of interest of the vast CCS and produce both structures and properties at very high level of

quality. The second part of Chapter 3 showed how Neural Networks can be used to push the

boundaries of quantum chemistry in emerging technologies like quantum computing, while

Chapter 4 illustrated how these networks can be used together with quantum chemistry data

to gain insights into the structure-property relationship and achieve a better navigation of the

CCS. As a natural progression, this chapter shifts the focus of the synergy between quan-

tum chemistry and deep learning to explore how quantum chemistry data can be leveraged

in a representation learning capacity to produce better deep learning models for molecular

properties that cannot be directly computed from first principles. Particularly, the focus lies
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on absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties - crucial

endpoints for drug discovery that are only accessible through experimental measurements

that are often costly, time-consuming, and prone to variability. Through a systematic study of

a Graph Transformer network pretrained on different types of quantum mechanical data, this

work investigates how various pretraining strategies influence the quality of learned molec-

ular representations. Importantly, the validation extends beyond public benchmark data,

which are known to be small and sometimes unreliable, to include a large internal pharma-

ceutical dataset of microsomal clearance measurements, demonstrating how these methods

translate to real-world drug discovery applications.

5.1 The Current Issues with ADMET Modeling

Absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties play a cru-

cial role in determining a drug candidate’s success. These properties govern how a drug

moves through and interacts with biological systems, ultimately determining its safety and ef-

ficacy [202]. A major challenge in developing effective machine learning models for ADMET

properties stems from data availability [203]. Unlike quantum mechanical properties which

can be computed systematically for any molecule, ADMET properties must be measured ex-

perimentally. These experiments are costly, time-consuming, and prone to variability, leading

to relatively small datasets. This is evident in public benchmarks like the Therapeutic Data

Commons (TDC) [204], where individual ADMET tasks often contain only hundreds to a few

thousand samples. Such limited data makes it difficult to draw reliable conclusions about

model performance or establish robust benchmarks. As discussed in Chapter 2, the suc-

cess of deep learning approaches relies heavily on two key ingredients: sophisticated model

architectures and large amounts of high-quality training data. While the field has made sig-

nificant advances in architectural design - from molecular fingerprints to graph neural net-

works and transformers - the fundamental limitation of experimental data scarcity remains.

This creates an imbalance in the recipe for success, where increasingly powerful models

exist but there is insufficient data to fully leverage their capabilities. The limited data issue is
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particularly problematic given the complexity of biological systems and the high-dimensional

nature of molecular space. As shown in recent studies [205, 206, 207, 208, 209], machine

learning models often struggle with generalization when applied to molecules outside their

training distribution. This is especially challenging for drug discovery applications, where

novel chemical scaffolds are constantly being explored. Traditional approaches to improving

ADMET characterization have focused primarily on engineering better molecular descrip-

tors or developing more sophisticated architectures. However, these approaches alone may

not be enough to overcome the fundamental constraint of limited experimental data. This

suggests the need for alternative strategies that can leverage more abundant sources of

molecular information to enhance ADMET modeling capabilities. In this sense, more re-

cent work has explored the possibility to use additional data for representation learning by

pretraining [210, 211, 212, 213, 214]. Quantum mechanical calculations, as explored in

Chapters 2 and 3, are a promising option in this direction as they are known to be related

to fundamental aspects of molecular behavior [215, 216, 217, 218]. Unlike experimental

ADMET measurements, quantum mechanical properties can be computed systematically at

scale for any molecule. If this approach can demonstrably produce better and more reliable

representations of molecules, then the increasing number of public QM datasets such as the

ones mentioned in Chapter 3 will find a very strong and useful case of application for drug

discovery. In the following sections, the chapter explores how pretraining on quantum me-

chanical data can help address the data scarcity challenge, but more importantly how and

why this can produce better molecular representations for ADMET modeling in real-world

applications.

5.2 Pretraining on Quantum Mechanical Data for Better Perfor-

mance

Starting from the challenges just mentioned in the previous section, this study systemati-

cally evaluates different pretraining strategies based on quantum mechanical data. For what

concerns the model of choice, the case of Graphormer architecture (see Chapter 2) is con-
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sidered as an increasingly popular model for handling molecular data at the intersection

between GNNs and Transformers. In particular, this study employs the architecture intro-

duced in [219], where the centrality encoding incorporates both explicit atoms and implicit

hydrogens. This allows the model to handle atom hybridization implicitly, avoiding the need

for a separate edge encoder component. The output values for atomic properties are then

obtained by applying a linear layer to the last layer latent representations of the atom tokens,

while the representation of the global token (called CLS token) is used in a similar fashion

for global properties estimation. Here the focus is not on optimizing the model’s absolute

performance, but rather on the evaluation of pretraining effects on deep models. With this

in mind, to ensure a fair comparison, the hyperparameters are kept consistent across all

models during both pretraining and fine-tuning stages, and a configuration with 20 hidden

layers is chosen, which is deeper compared to typical models, while maintaining a compara-

ble parameter count to other well-known Transformer-based approaches. For what concerns

the pretraining part, the decision was made to train the model on three distinct types of pre-

training data: atom-level quantum mechanical properties, molecular quantum mechanical

properties, and self-supervised masking. For atom-level properties, a dataset containing

approximately 136,000 organic molecules totaling over 2M heavy atoms is utilized [220].

Each atom is characterized by multiple quantum mechanical properties calculated using

DFT methods (B3LYP/def2svp): atomic charges, NMR shielding constants, and electrophilic

and nucleophilic Fukui function indices. These properties were chosen as they represent

different aspects of electronic structure and chemical reactivity. Models are pretrained both

on individual properties and in a multi-task setting combining all properties. For molecular-

level pretraining, the PCQM4Mv2 dataset containing HOMO-LUMO gaps calculated for over

2M molecules is used [221]. This provides a comparison point using a quantum mechanical

property defined at the whole-molecule level with a number of molecular structures compa-

rable to the number of labeled atoms in the atom-level QM dataset. Finally, the masking

pretraining, which serves as the self-supervised baseline, follows standard BERT-like ap-

proaches by randomly masking 15% of atom nodes and training the model to restore the

correct atom types. After pretraining, all models are fine-tuned on 22 ADMET tasks from the
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Therapeutic Data Commons benchmark [204]. These tasks span various molecular prop-

erties crucial for drug development, including membrane permeability (Caco2), blood-brain

barrier penetration, toxicity, and metabolic stability. The evaluation metrics vary by task, in-

cluding MAE for regression tasks and ROC-AUC or PR-AUC for classification. Results are

summarized in Table 5.1 in terms of mean and standard deviation computed over 5 prede-

fined training/validation splitting seeds. Here, the best results are highlighted based on their

mean values and then, for every other model, a t-test paired by seed is performed to test

the hypothesis that the best model is significantly better than the others. All the models that

have results that are not significantly worse than the best one are highlighted as well.

Table 5.1: Global results obtained from the ADMET group of TDC are presented. Each row cor-
responds to a specific task, along with the metric used for evaluation. Columns represent different
pretrainings considered. Highlighted values denote the best performance achieved among our mod-
els, based on the average value and t-tests paired across seeds. Additionally, cases where our
results surpass in mean value the top-performing model in the TDC leaderboard are marked with an
asterisk (∗).

task metric scratch all charges nmr fukui_n fukui_e masking homo-lumo

caco2_wang MAE↓ 0.442 ± 0.041 0.354 ± 0.015 0.404 ± 0.069 0.364 ± 0.046 0.346 ± 0.034 0.483 ± 0.036 0.471 ± 0.080 0.381 ± 0.040
hia_hou ROC-AUC ↑ 0.972 ± 0.015 0.982 ± 0.003 0.973 ± 0.027 0.977 ± 0.011 0.967 ± 0.011 0.908 ± 0.019 0.981 ± 0.013 0.869 ± 0.037
pgp_broccatelli ROC-AUC ↑ 0.892 ± 0.011 0.913 ± 0.015 0.902 ± 0.019 0.917 ± 0.009 0.896 ± 0.020 0.911 ± 0.008 0.921 ± 0.003 0.870 ± 0.016
bioavailability_ma ROC-AUC ↑ 0.606 ± 0.040 0.673 ± 0.028 0.662 ± 0.071 0.640 ± 0.040 0.663 ± 0.025 0.616 ± 0.082 0.698 ± 0.035 0.667 ± 0.031
lipophilicity_astrazeneca MAE ↓ 0.539 ± 0.036 0.393 ± 0.005∗ 0.425 ± 0.023∗ 0.424 ± 0.007∗ 0.457 ± 0.008∗ 0.463 ± 0.011∗ 0.462 ± 0.005∗ 0.451 ± 0.011∗

solubility_aqsoldb MAE ↓ 0.878 ± 0.031 0.720 ± 0.010∗ 0.726 ± 0.011∗ 0.728 ± 0.014∗ 0.756 ± 0.012 0.771 ± 0.015 0.769 ± 0.007 0.772 ± 0.019
bbb_martins ROC-AUC ↑ 0.860 ± 0.016 0.872 ± 0.021 0.874 ± 0.011 0.869 ± 0.014 0.848 ± 0.018 0.845 ± 0.014 0.861 ± 0.025 0.883 ± 0.007
ppbr_az MAE ↓ 8.477 ± 0.483 7.589 ± 0.203 7.668 ± 0.236 7.542 ± 0.215 7.530 ± 0.318 8.026 ± 0.222 8.056 ± 0.340 7.874 ± 0.287
vdss_lombardo Spearman ↑ 0.554 ± 0.049 0.624 ± 0.020 0.637 ± 0.022 0.616 ± 0.034 0.616 ± 0.015 0.652 ± 0.012 0.620 ± 0.023 0.580 ± 0.029
cyp2d6_veith PR-AUC ↑ 0.549 ± 0.043 0.621 ± 0.046 0.675 ± 0.014 0.643 ± 0.036 0.660 ± 0.009 0.638 ± 0.011 0.612 ± 0.021 0.612 ± 0.028
cyp3a4_veith PR-AUC ↑ 0.799 ± 0.012 0.797 ± 0.029 0.847 ± 0.022 0.824 ± 0.021 0.838 ± 0.016 0.828 ± 0.018 0.817 ± 0.014 0.794 ± 0.018
cyp2c9_veith PR-AUC ↑ 0.706 ± 0.014 0.703 ± 0.022 0.726 ± 0.024 0.739 ± 0.011 0.722 ± 0.021 0.734 ± 0.014 0.736 ± 0.014 0.708 ± 0.010
cyp2d6_substrate_carbonmangels PR-AUC ↑ 0.546 ± 0.042 0.648 ± 0.031 0.634 ± 0.050 0.653 ± 0.023 0.619 ± 0.057 0.578 ± 0.052 0.677 ± 0.022 0.582 ± 0.036
cyp3a4_substrate_carbonmangels ROC-AUC ↑ 0.637 ± 0.027 0.630 ± 0.015 0.646 ± 0.020 0.642 ± 0.009 0.645 ± 0.015 0.635 ± 0.031 0.641 ± 0.030 0.685 ± 0.015
cyp2c9_substrate_carbonmangels PR-AUC ↑ 0.360 ± 0.022 0.374 ± 0.028 0.404 ± 0.027 0.394 ± 0.024 0.405 ± 0.036 0.375 ± 0.030 0.396 ± 0.024 0.439 ± 0.043
half_life_obach Spearman ↑ 0.373 ± 0.076 0.462 ± 0.154 0.559 ± 0.034 0.487 ± 0.045 0.486 ± 0.030 0.476 ± 0.015 0.462 ± 0.052 0.426 ± 0.039
clearance_microsome_az Spearman ↑ 0.448 ± 0.038 0.548 ± 0.029 0.620 ± 0.007 0.613 ± 0.014 0.554 ± 0.019 0.513 ± 0.022 0.555 ± 0.022 0.565 ± 0.032
clearance_hepatocyte_az Spearman ↑ 0.336 ± 0.050 0.382 ± 0.032 0.456 ± 0.015 0.460 ± 0.019 0.374 ± 0.021 0.353 ± 0.028 0.478 ± 0.018 0.413 ± 0.030
herg ROC-AUC ↑ 0.709 ± 0.080 0.788 ± 0.029 0.824 ± 0.046 0.834 ± 0.030 0.752 ± 0.042 0.758 ± 0.053 0.880 ± 0.003 0.790 ± 0.031
ames ROC-AUC ↑ 0.772 ± 0.022 0.822 ± 0.005 0.821 ± 0.010 0.833 ± 0.014 0.820 ± 0.009 0.823 ± 0.012 0.801 ± 0.008 0.808 ± 0.008
dili ROC-AUC ↑ 0.856 ± 0.037 0.892 ± 0.033 0.859 ± 0.055 0.898 ± 0.022 0.847 ± 0.016 0.812 ± 0.122 0.906 ± 0.021 0.854 ± 0.017
ld50_zhu MAE ↓ 0.593 ± 0.038 0.559 ± 0.016 0.571 ± 0.012 0.538 ± 0.014∗ 0.592 ± 0.029 0.618 ± 0.014 0.577 ± 0.010 0.582 ± 0.031

Number of best models 1 12 17 13 7 5 11 5

Overall, while all pretraining strategies generally lead to improvements, pretraining on

HLG excels distinctly in only one property, though it ranks among the top-performing models

in four additional cases. Similarly, masking pretraining outperforms others significantly in

just one instance but matches the highest performance across ten other tasks. Models pre-

trained with atom-level quantum mechanical (QM) properties collectively demonstrate strong

performance, with at least one model outperforming both masking and HLG in ten tasks

and tying for the best in twenty out of twenty-two cases. Within this group, pretraining on
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properties like charges, NMR shifts, and comprehensive atomic QM attributes yields more

consistent top results compared to models trained on Fukui functions. Additionally, for solu-

bility, lipophilicity, and toxicity (LD50), the results surpass those of the best models currently

listed on the TDC leaderboard. To validate the benefits of different pretraining strategies

Table 5.2: Results of the fine-tuning on internal microsomal clearance dataset. Results are reported
for both values of clearance in the dataset and for all pretraining strategies both in terms of R2

coefficient and in terms of Spearman’s rank coefficient.

METRIC SCRATCH ALL CHARGES NMR FUKUI_N FUKUI_E MASKING HOMO-LUMO

CLEARANCE_1 R2 ↑ 0.505 ± 0.010 0.640 ± 0.004 0.629 ± 0.006 0.635 ± 0.006 0.599 ± 0.004 0.593 ± 0.004 0.580 ± 0.012 0.602 ± 0.006
SPEARMAN ↑ 0.728 ± 0.008 0.807 ± 0.003 0.799 ± 0.004 0.801 ± 0.003 0.785 ± 0.003 0.785 ± 0.001 0.774 ± 0.007 0.786 ± 0.004

CLEARANCE_2 R2 ↑ 0.534 ± 0.006 0.653 ± 0.004 0.633 ± 0.003 0.643 ± 0.005 0.598 ± 0.007 0.610 ± 0.008 0.597 ± 0.002 0.607 ± 0.005
SPEARMAN ↑ 0.750 ± 0.005 0.818 ± 0.003 0.807 ± 0.004 0.811 ± 0.002 0.789 ± 0.002 0.795 ± 0.006 0.786 ± 0.002 0.794 ± 0.002

beyond public benchmarks, the models are evaluated on a large internal dataset of human

liver microsome intrinsic clearance measurements containing approximately 138,000 com-

pounds. The training is here conducted over 3 different training/validation splittings and

results are reported as mean and standard deviation in Table 5.2. This evaluation on a more

extensive dataset reveals clearer distinctions between pretraining strategies and also some

differences w.r.t. what was found in the public benchmark. The models pretrained on all

atomic QM properties significantly outperform all other approaches except NMR pretraining,

achieving R2 values of 0.640±0.004 and 0.653±0.004 for the two clearance assays. This rep-

resents a substantial improvement over models trained from scratch (R2 of 0.505±0.010 and

0.534± 0.006) and notably better performance than masking pretraining (R2 of 0.580± 0.012

and 0.597 ± 0.002). Pretraining only on NMR is found to have a lower mean performance

(R2 of 0.635± 0.006 and 0.643± 0.005), but to not be significantly worse than the best model,

while charges also provides close results (R2 of 0.629 ± 0.006 and 0.633 ± 0.003). Models

pretrained only on Fukui functions are found to have worse results that are comparable to the

ones from models pretrained on HOMO-LUMO gap (R2 of 0.602± 0.006 and 0.607± 0.005).

Finally, in contrast with what found on the public benchmark, models pretrained with masking

provide the worst results among pretrained models (R2 of 0.580 ± 0.012 and 0.597 ± 0.002)

while still improving over the non-pretrained baseline. Overall, these results demonstrate
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that quantum mechanical pretraining can effectively address the data scarcity challenge in

ADMET modeling producing models that are better than models trained from scratch. The

superior performance of atom-level pretraining over HOMO-LUMO gap, despite the drastic

difference in dataset size, suggests that these features provide a much more efficient way

for pretraining than its global counterpart. Calculation of atomic properties, in fact, typically

requires only a fraction of overall computational resources spent on geometry optimization

and electronic structure refinement during QM modeling, hence providing a finer grade phys-

ical description of molecular structures with a non-dramatic overhead in the data generation

phase. While the comparable performances of masking pretraining on the public bench-

mark seem to point at a less expensive pretraining strategy (as masking does not require

any quantum calculation), on the larger internal HLM dataset it is found to provide the worst

results, not confirming its usefulness in this particular experimental setting. The stronger

differentiation between pretraining strategies on the larger clearance dataset strongly high-

lights the limitations of evaluating models solely on smaller public benchmarks.

5.3 The Effects of Atom-Level Pretraining on Graphormer

To understand how pretraining with quantum mechanical data influences model behavior

beyond raw performance metrics, a comprehensive analysis of model representations and

behavior is conducted. This analysis spans multiple aspects of the model’s learned rep-

resentations and reveals key insights into why atom-level quantum mechanical pretraining

proves particularly effective.

5.3.1 Preservation of Pretraining Information

A crucial question when employing pretraining strategies is whether the learned represen-

tations retain information about the pretraining task after fine-tuning. To address this, the

latent representations obtained in the last layer of the fine-tuned models are analyzed using

a simple linear probe approach. For each model, the network is frozen after fine-tuning on

ADMET tasks, and a sample of 5000 molecules from the pretraining datasets is encoded.
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These latent representations are then split into equal size train/test sets and fit with a regular-

ized linear regressor [222] to assess to what extent the representation still preserves linear

correlation with the pretraining labels. The analysis is conducted in an all-to-all fashion,

meaning that every differently pretrained model was tested for prediction of its own property

but also for the properties used to pretrain the other models (only pretraining strategies with

labels were considered, hence excluding masking).
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Figure 5.1: The R2 for the regression tasks using the representations of a sample of the pretraining
data obtained with fine-tuned models is reported. The mean and standard deviation are computed
over all fine-tuning cases (mean and standard deviation over twenty-two cases).

The results, shown in Fig. 5.1, reveal that fine-tuned models retain substantial linear

correlation with their pretraining tasks. Models pretrained on NMR shifts maintain their pre-

dictive power quite well, achieving R2 ≈ 0.95 for their own property while also maintaining

good correlation with atomic charges (R2 ≈ 0.82). This suggests that NMR shifts contain

richer information about local chemical environments compared to other atomic properties,

aligning with their known sensitivity to electronic and steric effects. Models pretrained on

Fukui function values and HOMO-LUMO gap exhibited slightly lower correlations with their

respective pretraining tasks but still outperformed models trained from scratch, particularly

when accounting for the standard deviation of results. Pretraining on all four atomic prop-
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erties provided versatile representations, with strong correlations observed especially for

charges and NMR shifts. Also, an asymmetry emerged in cross-task correlations: models

pretrained on NMR shifts, Fukui indices, or all atomic properties exhibited some degree of

alignment with HOMO-LUMO gap labels, whereas models pretrained on HOMO-LUMO gap

showed limited correlation with atomic properties. This difference could stem from how the

final network layers handle latent representations - atomic-property pretraining influences

both atom-level and molecular CLS token representations, while HOMO-LUMO gap pre-

training primarily impacts CLS token representations.

5.3.2 Latent Expressivity Across Layers

To gain deeper insights into how different pretraining strategies shape the network’s internal

representations, an analysis of the expressivity of learned features across network layers

is performed. A common phenomenon in deep graph neural networks and transformers

alike is the tendency for representations to become increasingly similar or "collapse" as

information propagates through the layers. This effect has been extensively studied [223,

224, 225, 226, 227], in particular recent work on transformers [228] studies this in terms of

representation rank collapse. Following this line of research, the similarity of the latent token

representations at each layer is measured using the metric:

ρL =
||res(GTL(X))||1,∞
||GTL(X)||1,∞

(5.1)

whereGTL(X) is the latent representation at layer L, res(X) = X−1xT with x = argminx ||X−

1xT ||, and || · ||1,∞ =
√
|| · ||1|| · ||∞. This metric measures how close the representation is

to having all tokens equal to the same vector, with higher values indicating more distinct

token representations. The results, shown in Fig. 5.2, reveal distinct patterns across pre-

training strategies. All pretraining strategies mitigate the collapse in latent expressivity seen

in models trained from scratch. However, the trend of ρL across layers varies significantly

between approaches. Models pretrained on all atomic quantum properties exhibit a strong

increase in expressivity in the early layers of the network, reaching higher maximum values
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Figure 5.2: The expressivity of the latent representation, measured using the quantity ρL, is plotted
as a function of layer number. This quantity is computed for a sample of 2200 structures, extracted
uniformly from all the fine-tuning test sets (100 structures for each of the 22 tasks). The results
are reported as boxplots for each layer. This analysis is conducted for models pretrained on HLG,
models pretrained on all atom-level QM properties, models pretrained with masking, and models
trained from scratch. The whiskers represent the 15th to the 85th percentiles to better visualize
trends, and outliers are excluded for the same reason.

than other approaches, followed by a decrease in the last layers closer to the regression

head. In contrast, models pretrained on HOMO-LUMO gap maintain a relatively constant

level of expressivity across layers. Models pretrained using masking present a contrasting

behavior, showing more similar atomic latent representations in the first few layers and more

dissimilar representations in the last ones. This pattern appears opposite to models pre-

trained on atomic quantum properties, suggesting a fundamental difference in how informa-

tion is processed through the network depending on the pretraining objective. For models

pretrained on individual atomic properties, NMR shifts and charges models show similar

behavior reaching higher maximum expressivity, while those pretrained on Fukui indices

achieve lower maximum expressivity more similar to models pretrained on HOMO-LUMO

gap. The absence of complete expressivity collapse in pretrained models likely stems from

the much higher number of examples they were trained on compared to models trained

from scratch. The sharp decrease in expressivity in the final layers of models pretrained on

atomic properties may be related to the need for atom representations to capture correla-

tions within molecular structures when close to the last layer, as these properties depend on

surrounding atoms. This interpretation is supported by the opposing trend found in models
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pretrained with masking, which require maximally distinct atomic representations near the

network output for atom type classification, as this task is trained using a loss function that

rewards higher certainties.

5.3.3 Spectral Analysis of Attention

To analyze how pretrained models mix information from different tokens, a natural approach

is to use the attention rollout matrix [229]. This method iteratively stacks attention matrices

from various layers and is defined as follows:

Ã(li) =


A(li)Ã(li−1) if i > j

A(li) if i = j

(5.2)

where A(li) represents the attention matrix averaged over heads at layer li. This approach

serves as a useful proxy for analyzing how a model mixes information from different input

tokens. In particular, a spectral analysis of the attention rollout matrices from various models

reveals an intriguing observation: the attention rollout matrix of a model pretrained on atom-

level QM properties closely resembles the low-frequency eigenmodes of the Laplacian of the

input molecular graph (see Fig. 5.3). This motivates a detailed examination of how different

pretraining strategies influence the model’s processing of molecular graph information.

The method used to explore the relationship between the eigenstructure of the attention

rollout matrix Ã and the graph Laplacian eigenmodes of input molecules is novel and outlined

here. The attention rollout matrix can be decomposed as:

Ã =
N−1∑
i=0

ai|ai⟩⟨ai| (5.3)

where ai are eigenvalues sorted by magnitude and |ai⟩ are the corresponding eigenvectors.

Similarly, for the molecular graph Laplacian L, the decomposition is:

L =

N−1∑
i=0

li|li⟩⟨li| (5.4)
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+ +

Figure 5.3: A visual representation of a molecule from the TDC dataset comparing the most relevant
eigenvectors of the attention rollout matrix from a model pretrained on atom-level QM properties with
the low-frequency eigenvectors of the graph Laplacian associated with the molecular structure. |ai⟩
are the eigenvectors of the attention rollout matrix Ã with eigenvalue ai, and |li⟩ are the eigenvectors
of the graph Laplacian L with eigenvalue li.

with eigenvalues sorted in ascending order. By analyzing the overlap matrix Cij = |⟨li|aj⟩|,

it is possible to assess how the model’s attention aligns with the natural modes of the graph.

To quantify the degree of graph-spectral perception, the following definition is used:

ζ = η

N−1∑
i=1

Θ(max
j
Ci,j − 0.9) (5.5)

where η is the fraction of non-trivial eigenvalue magnitude contained in Laplacian-like modes,

Θ is the Heaviside function, and the threshold 0.9 identifies strong overlap. The value of ζ

is then evaluated as an average over the test set for each downstream task, with the distri-

bution across tasks reported for each pretraining condition. The results, reported in Fig. 5.4

as a distribution of 22 values over the downstream tasks per each group of studied models.

This reveal that models trained from scratch exhibit values of ζ close to 0, indicating mini-

mal perception of graph Laplacian eigenmodes. In contrast, every pretrained model shows

nonzero values ranging from∼ 1 to∼ 6, with models pretrained on atom-level quantum prop-
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Figure 5.4: The spectral perception of the input graphs for the models fine-tuned on the TDC datasets
is reported, grouped by pretraining strategy. This is presented in the form of swarm plots of the values
of ζ, averaged across each of the 22 fine-tuning test sets for a fixed pretraining strategy.

erties showing the strongest graph-spectral perception. The model pretrained on all proper-

ties in a multi-task fashion achieves the highest ζ values, followed by models pretrained on

charges, NMR shifts, and Fukui function indices. Models pretrained on HOMO-LUMO gap

show lower but still significant graph-spectral perception, while masking pretraining yields

the lowest values among pretrained models. This analysis suggests that atomic quantum

mechanical pretraining enhances the model’s ability to process molecular graph structure

through attention mechanisms that naturally mimics a low-pass Fourier convolution with a

wider filter than its non-pretrained counterpart. This improved structural perception may help

explain the superior performance of these models on large-scale ADMET prediction tasks,

and is also a sign of reduced oversmoothing, a well-known problem in GNN literature [230].

5.3.4 Neighbor Sensitivity Analysis

Building on the spectral analysis that revealed how models process global molecular graph

structure, the focus now shifts to examining their ability to capture local chemical environ-

ments. This analysis is particularly relevant in light of the known challenge of oversquashing

in graph neural networks [73], where bottlenecks in the message passing mechanism hin-

der proper information propagation between distant nodes. This issue can be interpreted

as characterizing the effective receptive field of each atom’s latent representation. To ad-
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dress this, the Jacobian matrix of the network is used to analyze how sensitive each atomic

representation is to changes in the input embedding of its k-th neighbors within the same

molecule, analysing a quantity closely related to the one used in [231]:

Sk =

〈√√√√ d∑
ν=0

d∑
µ=0

(
δGT (X)i, ν

δXk, µ

)2

k∈Ki

〉
i∈M

(5.6)

where Ki is the set of k-th neighbors of atom i andM is the set of atoms in the molecule.

For each molecule, the vector of sensitivities [S0, S1, . . .] is standardized by subtracting the

minimum value and dividing by the maximum (which is usually S0). The results, shown in
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Figure 5.5: Boxplots of the k-th neighbor normalized sensitivities Sk for k ∈ [1, . . . , 5] are presented.
Each boxplot summarizes a sample of 1100 structures, extracted uniformly from all the fine-tuning
test sets (50 structures for each of the 22 tasks). This quantity is reported for all studied pretraining
strategies, as well as for the models trained from scratch. The whiskers cover the values from the
15th to the 85th percentile to better visualize trends, and outliers are excluded for the same reason.

Fig. 5.5, reveal distinct patterns across pretraining strategies. Models trained from scratch

exhibit constant and low sensitivity to neighboring atoms, suggesting an inability to develop

meaningful local chemical environment representations. In contrast, all pretrained models

show a clear descending trend with topological distance, indicating the ability to process

atomic information with a good perception of the underlying molecular graph. Models pre-

trained on all atomic QM properties demonstrate the strongest sensitivity pattern, particularly

for first and second neighbors, suggesting the development of the most refined representa-

tion of local chemical environments. This aligns with previous findings regarding enhanced
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graph-spectral perception. Models pretrained on HOMO-LUMO gap show moderate sensi-

tivity patterns, higher than those achieved through masking pretraining but not reaching the

level of atom-level QM pretraining. Among models trained on individual atomic QM proper-

ties, sensitivity ranges tend to overlap but consistently position themselves between models

pretrained on HOMO-LUMO gap and those pretrained on all atomic QM properties. This hi-

erarchy in local environment sensitivity mirrors the one found for the analysis of ζ, and more

importantly that of performance trends observed in modeling results on the large-scale clear-

ance dataset, suggesting that the ability to effectively capture local chemical environments

is crucial for modeling molecular properties in biological contexts. The analysis indicates

that atomic quantum mechanical pretraining helps models develop more sophisticated rep-

resentations of molecular structure, characterized by pronounced sensitivity to local atomic

environments that naturally decays with topological distance. This behavior not only aligns

with chemical intuition about the importance of local structural features but also suggests

that QM pretraining helps mitigate the oversquashing problem by establishing more effective

mechanisms for processing local chemical information.
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Chapter 6

Discussion and perspectives

The convergence of multiple decades of computational science in the form of quantum me-

chanical methods for chemistry and machine learning has emerged as a powerful paradigm

for advancing our understanding and design of molecular systems. This thesis has explored

this synergy through multiple complementary approaches, which together populate the fore-

front of the development of a new and interdisciplinary way of approaching chemistry and

drug discovery problems which has rapidly progressed in recent years. The contributions

puth forth in this thesis include advancements from dataset development and novel compu-

tational methods, up to using neural networks for revealing both fundamental insights and

practical applications. Here we synthesize our key findings and discuss their broader impli-

cations for the field.

Our investigation began with the development and analysis of the Aquamarine dataset.

This is aimed at investigating the effects of non-covalent interactions and solvation on the

conformational landscape of a set of molecules covering a similar chemical space to the

one of a pharmaceutical company in the realm of medicinal chemistry. The analysis re-

vealed the critical importance of many-body dispersion effects and solvation in drug-like

molecules, and demonstrated that these collective effects become increasingly significant

with molecular size and flexibility. In particular, strong differences were found in the total

forces in the analysed structures when comparing molecules optimized with and without

implicit solvation models, indicating that the inclusion of these more realistic non-covalent
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effects has a strong impact on the forces at play, the form and hence the functionality of the

molecules. This finding has immediate implications for drug discovery pipelines, suggest-

ing that accurate modeling of these effects is essential for reliable prediction of molecular

behavior in biological environments, as is the case in datasets developed for training neural

network potentials. Furthermore, when correlating the many body and pairwise dispersion

corrections in conformer ensambles of solvated structures, it was found that the pairwise ap-

proximation underestimates the corrections due to van der Waals interactions increasingly

with molecular size.

Considering that the two main approximations involved in the treatment of dispersion

corrections are the truncation of the many-body expansion to pairwise interactions and the

use of the localized dipole approximation for charge fluctuations, we then considered the

problem limiting many body approaches like MBD from a full-Coulombic treatment of non-

covalent interactions. This led us to explore the possibility to use quantum computing ap-

proaches, specifically through photonic quantum simulation, in order to simulate this kind

of interaction without dipole approximation. Our proof-of-concept study demonstrated the

feasibility of maintaining full Coulomb interactions between quantum Drude oscillators with-

out requiring truncated multipole expansions, and was made possible by the use of a neural

network ansatz for the quantum state of the pair of cQDOs. The analysis of the results ob-

tained revealed intriguing quantum mechanical phenomena, among which the presence of

a binding curve following a Mueller potential in a specific range of model parameters, and

also the emergence of cat states at the transition point of the binding curve. This last re-

sult is particularly interesting as it explains very well a peak in the entanglement entropy of

the quantum state of the system. While currently limited to this simple case and of difficult

implementation on real hardware, this work establishes a foundation for quantum-classical

hybrid approaches that could eventually enable more accurate modeling of complex molecu-

lar systems, but also shows how the interpretation of results obtained from a neural network

can give rise to interesting observations and span new research directions.

Building on the insights into molecular interactions coming from dataset analysis, we

then tried to answer the natural question of whether it is possible to reduce the exploration
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complexity of the chemical compound space by using quantum mechanical properties as

coordinates. To this end we developed the Quantum Inverse Mapping (QIM) framework,

establishing a differentiable parameterization of chemical compound space using quantum

mechanical properties as intrinsic coordinates. This approach, which leverages on a VAE

architecture, provides a novel way to navigate chemical space, where the differentiability is

leveraged to reveal fundamental insights about its organization and also finds application

in transition state interpolation. This proof-of-concept implementation, in fact, not only pro-

vided the answer to the initial scientific question, but was also used to reveal hierarchies in

the properties used for navigation via explainability methods applied to the neural networks

composing the model. Also, other than the possibility to retrieve the well-known conditional

generative paradigm, the framework’s ability to predict transition pathways between con-

formers as well as barrier-like behaviours in the energy coordinates, despite training only

on equilibrium structures, hints at some degree of abstraction to the underlying physical

mechanisms associating properties to structures.

Finally, the use of quantum mechanical data is put to the test with an application that is

closer to the applicability in every day situations in the drug development processes. This

is done by systematically analysing the impact of pretraining Graph Transformer models on

quantum mechanical data as a mean to obtain better representations for the modeling of

ADMET properties, which notoriously suffer from data scarcity and experimental noise. This

evaluation, done both on the public TDC benchmark as well as on the internal JNJ HLM

dataset, demonstrated that there is practical value of incorporating quantum mechanical in-

formation into machine learning pipelines as a mean to obtain more meaningful and robust

molecular representation from deep learning models. This hypothesis is then put to the test,

revealing through multiple model weight analysis that the superior performance achieved

through atom-level quantum mechanical pretraining, indeed comes from molecular repre-

sentations which have a better perception of the input molecular graph. The results from the

multiple analysis conducted, and in particular the Fourier analysis of the attention weights,

could potentially provide guidance for future model development.

Overall, looking forward, several promising research directions emerge from our findings.
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Beyond the specific results outlined above, this body of work establishes a broader method-

ology for addressing research problems where mechanistic and physics-grounded under-

standing exists but proves hardly scalable due to intractable emerging complexities. This

is evident across all works presented here, from the combinatorial intractability of chemical

space itself, spanning an inconceivable number of structures, to the intractability of many-

body electron wavefunctions in electronic structure problems, and finally to the complex

interactions governing drug-like molecules in ADMET properties and drug discovery. Our

approach addresses these challenges through three main steps: using local mechanistic

knowledge to create focused simulations of complexity, delegating the complexity to appro-

priate machine learning methods (particularly leveraging the universal function approxima-

tion theorem of neural networks), and analyzing the resulting tools to gain new scientific

insights about both the problem and the successful model’s inner mechanisms. While this

methodology has proven particularly effective in our proof-of-concept implementations, scal-

ing these approaches to practical applications presents significant challenges. The compu-

tational cost of accurate quantum mechanical calculations remains a fundamental constraint,

particularly evident in our Aquamarine dataset analysis where the gap between more and

less accurate methods for dispersion correction widens with system size. When combined

with the needs for conformational sampling and solvation effects, this creates substantial

computational barriers. Similarly, while our quantum Drude oscillator simulation revealed in-

teresting quantum phenomena, extending such approaches to practically relevant molecular

systems faces both implementation challenges and hardware limitations inherent to quantum

computing. In the realm of molecular representation, our QIM framework demonstrated that

quantum mechanical properties can provide natural coordinates for understanding molecular

behavior, though currently limited to small molecules with restricted chemical diversity. The

work on Graphormer suggests that integrating atom-level quantum mechanical information

can significantly enhance model performance, even on internal pharmaceutical data, but

questions remain about optimal pretraining strategies and chemical space coverage. The

complex nature of biological systems suggests that purely quantum mechanical approaches

may need to be complemented with other types of domain knowledge and multimodality,
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while maintaining rigorous analysis of how additional data affects model behavior beyond

simple performance metrics. Nevertheless, this thesis demonstrates the potential of com-

bining mechanistic understanding with machine learning approaches, providing both prac-

tical tools for molecular design and deeper understanding of fundamental principles. The

future of molecular modeling likely lies in strongly interdisciplinary approaches that lever-

age both quantum mechanical accuracy, machine learning efficiency and chemical domain

knowledge while maintaining some degree of interpretability. As computational capabilities

advance and our understanding deepens, this synthesis of physical understanding, chem-

ical intuition and data-driven methods will play an increasingly central role in advancing

molecular science and drug discovery, with this thesis providing both concrete tools and a

methodological framework for future development in this rapidly evolving field.
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