
PhD-FSTM-2020-71
The Faculty of Science, Technology and Medicine

DISSERTATION

Presented on 11/11/2020 in Luxembourg

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN PHYSIQUE

by

Martin STÖHR
Born on 22 August 1991 in Garmisch-Partenkirchen (Germany)

VAN DER WAALS DISPERSION INTERACTIONS IN

BIOMOLECULAR SYSTEMS:
QUANTUM-MECHANICAL INSIGHTS AND

METHODOLOGICAL ADVANCES

Dissertation defense committee

Dr. Alexandre Tkatchenko, Dissertation Supervisor
Professor, Université du Luxembourg

Dr. Ludger Wirtz, Chairman
Professor, Université du Luxembourg

Dr. Massimiliano Esposito, Vice Chairman
Professor, Université du Luxembourg

Dr. Marcus Elstner
Professor, Karlsruher Institut für Technologie

Dr. Frank Noé
Professor, Freie Universität Berlin



University of Luxembourg

Campus Limpertsberg
162a, avenue de la Faïencerie
L-1511 Luxembourg
Luxembourg



“I may not have gone where I intended to go, but I think I have ended up where I needed to be.”

— Dirk Gently, holistic detective.

From “The Long Dark Tea-Time of the Soul” by Douglas Adams





Abstract

Intermolecular interactions are paramount for the stability, dynamics and response of systems
across chemistry, biology and materials science. In biomolecules they govern secondary structure
formation, assembly, docking, regulation and functionality. van der Waals (vdW) dispersion
contributes a crucial part to those interactions. As part of the long-range electron correlation,
vdW interactions arise from Coulomb-coupled quantum-mechanical fluctuations in the instan-
taneous electronic charge distribution and are thus inherently many-body in nature. Common
approaches to describe biomolecular systems (i.e., classical molecular mechanics) fail to capture
the full complexity of vdW dispersion by adapting a phenomenological, atom-pairwise formalism.
This thesis explores beyond-pairwise vdW forces and the collectivity of intrinsic electronic behav-
iors in biomolecular systems and discusses their role in the context of biomolecular processes
and function. To this end, the many-body dispersion (MBD) formalism parameterized from
density-functional tight-binding (DFTB) calculations is used.

The investigation of simple molecular solvents with particular focus on water gives insights into
the vdW energetics and electronic response properties in liquids and solvation as well as emergent
behavior for coarse-grained models. A detailed study of intra-protein and protein–water vdW
interactions highlights the role of many-body forces during protein folding and provides a funda-
mental explanation for the previously observed “unbalanced” description and over-compaction
of disordered protein states. Further analysis of the intrinsic electronic behaviors in explicitly
solvated proteins indicates a long-range persistence of electron correlation through the aque-
ous environment, which is discussed in the context of protein–protein interactions, long-range
coordination and biomolecular regulation and allostery. Based on the example of a restriction
enzyme, the potential role of many-body vdW forces and collective electronic behavior for the
long-range coordination of enzymatic activity is discussed. Introducing electrodynamic quantum
fluctuations into the classical picture of allostery opens up the path to a more holistic view on
biomolecular regulation beyond the traditional focus on merely local structural modifications.

Building on top of the MBD framework, which describes vdW dispersion within the interatomic
dipole-limit, a practical extension to higher-order terms is presented. The resulting Dipole-

Correlated Coulomb Singles account for multipolar as well as dispersion-polarization-like contri-
butions beyond the random phase approximation by means of first-order perturbation theory
over the dipole-coupled MBD state. It is shown that Dipole-Correlated Coulomb Singles become
particularly relevant for relatively larger systems and can alter qualitative trends in the long-range
interaction under (nano-)confinement. Bearing in mind the frequent presence of confinement in
biomolecular systems due to cellular crowding, in ion channels or for interfacial water, this so-far
neglected contribution is expected to have broad implications for systems of biological relevance.

Ultimately, this thesis introduces a hybrid approach of DFTB and machine learning for the accu-
rate description of large-scale systems on a robust, albeit approximate, quantum-mechanical
level. The developed DFTB-NNrep approach combines the semi-empirical DFTB Hamiltonian
with a deep tensor neural network model for localized many-body repulsive potentials. DFTB-
NNrep provides an accurate description of energetic, structural and vibrational properties of a
wide range of small organic molecules much superior to standard DFTB or machine learning.

Overall, this thesis aims to extend the current view of complex (bio)molecular systems being
governed by local, (semi-)classical interactions and develops methodological steps towards an
advanced description and understanding including non-local interaction mechanisms enabled
by quantum-mechanical phenomena such as long-range correlation forces arising from collective
electronic fluctuations.
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CHAPTER 1
Introduction

Computational modeling and simulation has by now become an integral part of understanding
systems across chemistry, biology and materials science. It plays a key-role for pharmacolog-
ical and technological developments from drug therapy to energy materials. On a meso- to
macroscopic scale, systems can be described by the rules of classical mechanics, but below that
one enters the peculiar realm of quantum phenomena. The behaviors and properties of matter
thereby follow the laws of quantum mechanics as established in the early 20th century. Quoting
Paul A.M. Dirac, “The underlying physical laws necessary for the mathematical theory (...) are

thus completely known, and the difficulty is only that the exact application of these laws leads to

equations much too complicated to be soluble.” [5] Overcoming this seemingly minor difficulty,
however, turned out to become a major subject of research, where various developments ap-
proached higher and higher levels of accuracy and sophistication over the past century. Among
others, it gave rise to the fields of theoretical chemistry and chemical physics, which even today
are as much concerned with the identification and improvement of the deficiencies of such
approximate theories as with their application. As a general rule of thumb, the more sophisticated
and reliable a given approach is, the more computationally demanding it is and the more steeply
its computational workload scales with the size of the system. Despite the tremendous growth of
the availability of computational resources and high-performance implementations, this limits
the most accurate theories to rather small systems and studying phenomena at increasing length
and time scales requires to resort to increasingly approximate approaches. This bears an inherent
complication: While applicable methods become less and less complete, many-body (quantum)
effects make the systems increasingly more complex before transitioning to classical behaviors.
This quantum-to-classical transition can be qualitatively explained in various ways, e.g., based
on Heisenberg’s uncertainty relation, Bohr’s correspondence principle, decoherence theory, the
emergence of statistical determinism when averaging over a sufficiently large number of (inde-
pendent) quantum phenomena or simply the limited measurement accuracy on the macroscale.
While a quantitative or formal description of the classical limit of quantum mechanics is still
heavily debated, the (broad) transition region can generally be expected around the nano- to
microscale, where systems are small enough to render classical treatments insufficient, but large
enough for complex many-body effects to cause decisive deviations from the well-studied be-
haviors of few-particle quantum systems. Identifying such deviations, potential shortcomings of
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1 Introduction

conventional approximations and their implications for systems in this intermediate regime is
paramount for a reliable description of the emergent phenomena and effective interaction laws
as well as for a better understanding of the quantum-to-classical transition in general. Gaining
a more fundamental understanding and description of systems at the nano- or microscale is
further motivated by the ongoing miniaturization of technological devices and especially the
ever-growing interest in an atomistic and molecular understanding of biomolecular systems and
processes.

Molecular Mechanics as Workhorse Method for Biomolecular Simulations

Since the first successful simulations of protein structure and dynamics in atomistic detail, [6,7]

computational and theoretical modeling of biomolecular systems has boosted our understanding
of the building blocks of living organisms and how their dynamics and response provide the
function needed. While the tremendous progress in the experimental study of biomolecules
cannot be discarded, this seldom allows to directly investigate full dynamical pathways. Based
on physical models for the interactions and forces acting on the individual atoms of the system,
computer simulations provide access to such pathways by consecutively solving Newton’s equa-
tions of motion for the individual atoms. Thanks to manifold methodological advances and the
increasing availability of (special-purpose) computational resources, this approach known as
molecular dynamics simulation by now provides access to the mapping of folding processes of
proteins with a few tens of residues and folding times of a few milliseconds or less at full atomic
resolution. [8] This allows to not only predict protein behavior and likely folding path ensembles,
but together with the advances of experimental techniques also enables the atomistic interpre-
tation of experimental observations. [9,10] Computational modeling and simulation have since
provided essential insights to, e.g., the structure of membranes [11,12] and molecular mechanisms
of protein folding, [13–15] signal transduction, [16,17] enzymatic activity [18,19] or ion channels. [20–22]

The physical models that these studies are based on are predominantly molecular mechanics
(MM) “force fields”, which provide a physically-motivated, yet empirical, description of the free
energy landscape of the system. As a first classification, MM approaches distinguish bonded and
non-bonded (or non-covalent) contributions. Spatial proximity of atoms can lead to a localization
of electrons along the direction connecting the two. The resulting stabilization binds the two
atoms strongly together, which is known as a chemical (covalent) bond. Bonded contributions to
the total energy then include all interactions among atoms that are connected via such chemical
bonds. This already introduces a significant limitation to conventional force fields: The bonding
characteristics or connectivity has to be predetermined and cannot change during the simulation
(for the purpose of clarity we will not discuss so-called reactive force fields, which partly alleviate
this limitation). The mathematical form of bonded interactions then typically follows a many-
body expansion of the total energy (body is mostly used synonymously to atom in this thesis). The
energy and interatomic forces are then described in terms of a linear combination of potential
energy contributions from local degrees of freedom including bond distances (two-body), angles
(three-body) and dihedral angles (four-body). The non-bonded interactions, finally, describe
all interactions and relevant energy contributions not covered so far. Given the considerable
size and complex, intertwined structure of biomolecular systems, these play an essential role
for an accurate description. In protein folding, as in a majority of biomolecular processes, for
example, chemical bonds remain stable. The structure and dynamics of the system are then
governed by non-bonded interactions, while bonded terms mostly only provide given constraints
to the accessible conformations. In fact, non-bonded interactions are responsible for the con-
densation of molecular systems. In MM potentials, non-bonded terms are mostly based on a
cumulative, phenomenological formalism of pairwise-additive, effective potentials. Finally, the
parameters defining the individual energy contributions are optimized to provide satisfactory
agreement with reference results from experiment or less-approximate methods. As a result of

2



1 Introduction

this parameterization, different force fields may reproduce the same key quantities like native
structures and folding rates of proteins, the predicted mechanistic pathways, however, can vary
substantially among different parameterizations. [23,24] Given that MM force fields are usually
designed to predict the free energy landscape of the system, they include the quantum-mechanical
(electronic) energy as well as the effect of thermodynamic conditions such as finite temperature
and ambient pressure. As a result, a given force field for biomolecular simulations is usually
extremely limited in its applicability and is mostly designed to perform well for (near-)native
proteins in aqueous solution at ambient temperature and pressure. This emphasizes the consid-
erable lack of completeness of the physical description they provide. In order to identify potential
shortcomings and so-far neglected interaction mechanisms, it is thus desirable to investigate the
relevant interactions in biomolecular systems on a more fundamental level. This particularly
concerns non-covalent contributions given their pivotal role for biomolecular systems and that
these are treated on the arguably least-physical basis in MM approaches.

Non-covalent Interactions

The fundamental basis for non-covalent interactions is the same as for all phenomena con-
tributing to the non-relativistic energy of a molecular system: the Coulomb interaction among
electrons and nuclei. From the framework of intermolecular quantum-mechanical perturbation
theory, they are typically classified into individual terms with a specific, physical interpretation.
The main (i.e. leading-order) contributions are electrostatics, polarization (or induction), van

der Waals (vdW) dispersion and exchange repulsion. [25] As schematically represented in Fig. 1.1,
electrostatics describes the simple, Coulombic interaction among static (average) charge distribu-
tions. In the case of electrons, this average distribution can then be modified due to the presence
of one (or more) additional molecular entities. The resulting change in the energy represents
polarization/induction interactions. Due to their quantum character, the distribution of elec-
trons is not static, however. As a simple result of Heisenberg’s uncertainty principle, [26,27] the
instantaneous electronic charge distribution shows intrinsic, quantum-mechanical fluctuations.
These fluctuations give rise to instantaneous electronic multipoles with non-zero net interaction.
This is what is referred to as vdW dispersion interaction (for a more detailed introduction and
discussion, see Sec. 2.3). Exchange repulsion, finally, arises from the Pauli exclusion principle, [28]

Fig. 1.1: Schematic illustration of non-covalent interactions: Electrostatics represents the interaction
between unperturbed charge densities, polarization (also known as induction) the interaction due to induced
static multipoles (i.e. changes in the charge density with zero frequency). van der Waals dispersion describes the
interaction among intrinsic quantum-mechanical fluctuations in the instantaneous electronic charge distribution.
Exchange interaction, the fourth major type of non-covalent interactions, is not shown for the sake of clarity.
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1 Introduction

which leads to an additional, repulsive interaction (see Sec. 2.1). Considering the interplay of the
above phenomena, various higher-order terms arise. These are typically believed to be negligible,
however. Note that, while the original formulation of this classification and illustration in Fig. 1.1
are given for intermolecular forces, the same effects and phenomena appear among parts of
extended molecules or materials leading to intramolecular non-covalent interactions, which
can be interpreted and classified in the same way. In the language of classical MM force fields,
non-bonded interactions are typically described by Lennard-Jones-type, pairwise potentials (dis-
persion + exchange) together with the cumulative terms steric effects (electrostatics + exchange)
and hydrogen-bonding (electrostatics + polarization + dispersion).

Total Energy Description and Force Field Design

Designing the final MM force field is usually done within a top–down philosophy: A given para-
metric expression of the total energy is optimized to reproduce a select set of reference properties.
The functional form of this expression is thereby typically motivated by the knowledge on simple,
small systems. However, the far-from-trivial origin of the majority of non-covalent interactions
outlined above gives rise to pronounced non-additive and collective effects. This renders sim-
ple pairwise-additive potentials based on the interaction and scaling laws in small systems
incomplete and often insufficient for describing non-bonded energy contributions in large-scale
systems. This applies in particular to coarse-grained models, where the interactions between
multiple atoms are combined into effective potentials. As we shall see below, especially vdW dis-
persion is highly collective and many-body in nature. For molecular crystals and supramolecular
complexes, which show similar bonding characteristics as biomolecular systems, this has been
shown previously to be of utmost importance for an accurate and reliable description. [29–35] So,
establishing a reliable functional space for top–down parametric optimization of atomistic force
fields and the construction of effective potentials for coarse-grained models requires knowledge
of the emergent effects in many-atom systems and their energetic implications. As an alternative
to traditional MM force fields, recent years have witnessed an ever-growing interest in machine
learning potentials for molecules and materials. While avoiding the limitations of fixed functional
expressions in the total energy, the employed descriptors and architectures still suffer from a lack
of physical design rules, which is due to the limited knowledge of the energetics and dynamical
behaviors in large-scale systems. Such insights can be gained by a more bottom–up approach
using a more complete, quantum-mechanical description. A more fundamental theoretical treat-
ment in addition provides access to properties on an electronic level, which is completely absent
in the more phenomenological MM force fields. These properties are essential for the accurate
description of charge transport and conductivity, optical response and many other paramount
aspects for technological applications and the understanding of biomolecular processes.

Aim and Outline

Following the above-mentioned bottom–up philosophy, the focus of this thesis is the investigation
of collective electronic behaviors and the emergent (many-body) vdW physics in biomolecular
systems including solvation and intramolecular aspects to advance our general understanding
of vdW forces in complex systems. One step in this regard is to identify effects on the vdW
interaction beyond current state-of-the-art methods and to highlight their potential role for
biomolecular processes and function. As a second important step, this thesis develops practical
methodologies towards an efficient, yet more complete, description of complex, large-scale
systems such as (solvated) biomolecules. Given that most of our current understanding of
biomolecular systems is predominantly based on conclusions from simple classical potentials,
such insights and more complete theoretical methods hold the key to also advance our conceptual
understanding and interpretation of complex phenomena as relevant to biological processes. In
turn, this understanding can provide essential guidelines for the construction of more accurate
and reliable MM force fields, coarse-grained models or machine learning potentials.
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1 Introduction

This thesis is organized as follows: Chapter 2 provides a brief introduction to the theoretical
background and methodological approaches that the remainder of the work is build on. This
introduction focuses on the theory of vdW interactions in the context of atomistic modeling
and the density-functional tight-binding approach as used in this work. Unless explicitly noted
with the according references, the derivations in chapters 3 to 6 then represent the outcome
of work done during this doctorate. Chapter 3 provides first insights into the vdW physics and
electronic behaviors of liquids and solvated systems. In Chapter 4, a detailed study of the vdW
energetics in solvated proteins as obtained in a dipolar many-body treatment is given. The
results and underlying interaction mechanisms are discussed in the context of biomolecular
processes and function. Chapter 5 presents a practical approach to capture many-body vdW
forces beyond the usual dipolar or random phase approximation and highlights their role in
complex systems. In Chapter 6, a combined approach of density-functional tight-binding and
machine learning potentials is developed, which substantially improves upon state-of-the-art
semi-empirical methods and aims at providing a reliable and transferable quantum-mechanical
description of large-scale systems. The chapter concludes with a perspective on promising steps
for advancing the presented methodology towards this aim. Chapter 7, finally, provides a brief
summary of the results given in this thesis and a general outlook on future work and projected
implications of the presented findings. In general, the thesis is written in a semi-cumulative
manner, where each chapter features a short, more specific introduction and discussion of the
respective contents.
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CHAPTER 2
Theoretical Background

Parts of Sec. 2.3 in this chapter have been reproduced from

M. Stöhr, T. Van Voorhis, and A. Tkatchenko, Chem. Soc. Rev. 48, 4118 (2019)
with permission from the Royal Society of Chemistry.

Sec. 2.1 provides a brief introduction to the basics of quantum mechanics in the context of
electronic-structure theory and Kohn-Sham (KS) density-functional theory (DFT). For the sake of
brevity and clarity, this section only covers a few of the essential steps towards the methodologies
used in this thesis. For a more in-depth introduction and overview of the theory and practical
methods, see the books by, e.g., Atkins & Friedman, [36] Levine, [37] Szabo & Ostlund, [38] Cramer [39]

or Parr & Yang, [40] which this section is based on. All derivations provided in this thesis are thereby
given in atomic units.

Sec. 2.2 summarizes the methodological aspects of the density-functional tight-binding [41,42]

(DFTB) formalism as an efficient semi-empirical approximation to (semi-local) DFT. In particular,
the third order variant [43] (DFTB3) and how it originates from KS-DFT will be introduced. The
section concludes with a brief discussion of some of the major limitations of the basic DFTB for-
malism. For further details, the reader is referred to the original publications or reviews provided
in Refs. 44–47, for example.

Sec. 2.3 provides an introduction to van der Waals (vdW) dispersion interactions in particular in
the context of DFT and its approximate formulation as represented by DFTB. The section includes
an exact formulation based on the adiabatic-connection fluctuation-dissipation theorem as well
as an approximate reduction to pairwise-additive interatomic interaction potentials. As examples
of state-of-the-art atom-pairwise vdW methods also used in this thesis, the vdW(TS) [48] and
Grimme’s D3 approach [49] are summarizes in detail. This is followed by an overview on beyond-
pairwise effects and the non-additivity of vdW forces — both from theoretical considerations and
recent experimental observations. The section concludes with an introduction to the many-body
dispersion (MBD) formalism [50,51] as a practical many-body approach to vdW interactions in-
cluding a discussion of the coupled quantum harmonic oscillator model of (non-local) electronic
response and intrinsic quantum electrodynamic behaviors.
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2.1 Basics of Electronic-Structure and Density-Functional Theory

2.1 Basics of Electronic-Structure and Density-Functional Theory

Quantum mechanics is based on a series of postulates formulated at the turn of the 20th century. It
is stated that any closed quantum-mechanical (QM) system is fully described by a wave function,
Ψ. Any physically-acceptable wave function thereby has to be continuous, single-valued and
square-integrable (with the exception of continuum states). [36,39] The wave function can be
interpreted as probability amplitude and its absolute square as measure for the probability
density of finding a particle at a given coordinate. [52] Any observable of a quantum system is
represented by a linear, hermitian operator. [36] The observable can be obtained as an expectation
value of the operator acting on the wave function:

〈O 〉 =
∫

Ψ
∗ÔΨdτ

∫

Ψ∗Ψdτ
≡

〈

Ψ
∣
∣Ô

∣
∣Ψ

〉

〈Ψ |Ψ〉 , (2.1)

where the integrals go over all coordinates and the full space on which Ψ is defined. Expanding
Ψ in the complete basis of eigenfunctions of Ô together with the hermiticity of Ô shows that
any physical observable according to Eq. (2.1) (given by a linear combination of eigenvalues) is
real-valued. In the case of discrete eigenspectra, this leads to a quantization of observables. The
fundamental relation connecting the definition of a (non-relativistic) quantum system and its
wave function is the so-called Schödinger equation (SE). [53–56] For a system of nuclei and electrons
it is given by,

i
∂

∂t

∣
∣Ψ

(

R,r,s, t
)〉

= Ĥ
∣
∣Ψ

(

R,r,s, t
)〉

, (2.2)

where the (total) wave function Ψ depends on the spatial coordinates of all nuclei, R, and elec-
trons, r, and the electrons’ spin, s, as well as time, t , and Ĥ is the (QM) Hamiltonian containing
all kinetic and potential energy terms. For the following paragraphs, we shall combine the elec-
tronic position and spin into the electronic coordinate, q = (r,s). For what concerns a majority of
chemical physics, we can limit our description to stationary states. After separating the above
differential equation into a time-dependent phase factor oscillating in the complex plane and a
stationary part of the wave function, one arrives at the time-independent SE,

Ĥ
∣
∣Ψ

(

R,q
)〉

= Etot
∣
∣Ψ

(

R,q
)〉

(2.3)

with Etot being the observable of the Hamiltonian operator. So, the energy of the system. As
proposed by Born and Oppenheimer, [57] one can further factorize the above into a nuclear and
an electronic part. This approximation, commonly referred to as Born-Oppenheimer or adiabatic

approximation, is motivated by the large separation between the masses of nuclei and electrons.
Instead of treating electrons and nuclei simultaneously as in Eq. (2.3), we write

Ĥ
∣
∣Ψ

(

R,q
)〉

≈
(

Ĥnuc +Ĥel
)∣
∣Ψnuc

(

R
)〉∣

∣Ψel
(

q;R
)〉

= (Enuc +Eel)
∣
∣Ψnuc

(

R
)〉∣

∣Ψel
(

q;R
)〉

(2.4)

with Ĥnuc
∣
∣Ψnuc

(

R
)〉

= Enuc
∣
∣Ψnuc

(

R
)〉

(2.5)

and Ĥel
∣
∣Ψel

(

q;R
)〉

= Eel
∣
∣Ψel

(

q;R
)〉

, (2.6)

where the electronic wave function, Ψel, depends only parametrically on the nuclear positions. [38]

The time-independent SE for nuclei (2.5) is thereby usually solved in the classical limit, where
Enuc simplifies to the classical Coulomb repulsion between point-like nuclei. It is worth noting,
however, that this is strictly speaking not part of the Born-Oppenheimer approximation. Eq. (2.6)
describes the electronic SE, which provides a spectrum of possible solutions referred to as elec-
tronic states. The lowest-energy solution is thereby known as ground-state, Ψel,0. When two or
more electronic states are close in energy, the adiabatic approximation breaks down. [36] For the
systems considered in this thesis, however, Eq. (2.4) is expected to be a viable approximation.
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2 Theoretical Background

Considering a system of multiple indistinguishable particles, it is obvious that swapping particles
in Ψel describes the same state as before. This means Ψel has to be an eigenfunction of the
exchange (or permutation) operator, P̂ , which for two particles has the eigenvalues ±1. [37] So, the
wave function has to be symmetric (+1) or anti-symmetric (−1) with respect to particle-exchange.
In detail, the wave function has to be symmetric with respect to the interchange of any two
indistinguishable particles with integral spin (bosons) and anti-symmetric for the exchange of
two particles with half-integral spin (fermions) such as electrons. This statement, known as
spin-statistics theorem, has important consequences: For an N -electron system, it requires

P̂i j

∣
∣Ψel

(

q1, ...,qi , ...q j , ...,qN

)〉

=
∣
∣Ψel

(

q1, ...,q j , ...qi , ...,qN

)〉 (!)=−
∣
∣Ψel

(

q1, ...,qi , ...q j , ...,qN

)〉

,
(2.7)

which further implies that there is zero probability of finding any two (or more) electrons with
the same q at the same time [37,52] (known as Pauli exclusion principle [28]). This condition leads
to a form of repulsion between electrons with equal spin called exchange or Pauli repulsion.
This “repulsion” is not a physical force per se, but a manifestation of the spin-statistics theorem
affecting the non-relativistic electronic energy. Solving Eq. (2.6) under the constraint of Eq. (2.7) is
at the center of theoretical chemistry and chemical physics as, together with a classical treatment
of nuclei, it dictates the total energy and enables the theoretical treatment of molecules and
materials. Unfortunately, a closed-form, analytical solution of the electronic SE is only possible
for a hydrogen or hydrogen-like atom. Over the past century, numerous methods have been
devised to solve Eq. (2.6) for many-electron systems at various levels of approximation.

2.1.1 Hartree-Fock Theory and Beyond

The probably most decisive step enabling the QM treatment of molecules and materials is to
map the N -electron problem to N effective one-particle problems. [38] The corresponding single-
particle states, ψa , are also known as spin orbitals and can be written in the non-relativistic
case as ψa(qi ) = φa(ri )σ(si ) with spatial part φ and spin part σ. The notation ψa(qi ) refers to
particle i in state a. Representing the basis for most of quantum chemistry, the Hartree-Fock (HF)

method treats the individual single-particles via a set of coupled equations, where each electron
is subject to the average potential generated by the remaining electrons and all nuclear charges.
The total electronic wave function, Ψel, is thereby expressed as an anti-symmetrized product of
single-particle states referred to as Slater determinant. For N electrons,

Ψel
(

q1,q2, ...,qN

)

= 1
p

N !

∣
∣
∣
∣
∣
∣
∣
∣
∣

ψ1
(

q1
)

ψ2
(

q1
)

· · · ψN

(

q1
)

ψ1
(

q2
)

ψ2
(

q2
)

· · · ψN

(

q2
)

...
...

. . .
...

ψ1
(

qN

)

ψ2
(

qN

)

· · · ψN

(

qN

)

∣
∣
∣
∣
∣
∣
∣
∣
∣

, (2.8)

which by construction fulfills the spin-statistics theorem [38] and naturally gives rise to exchange
repulsion. As the electrons are treated within the average field of each other (known as mean-field

approach), the potential for particle i depends on the solution for particle j and vice versa. Hence,
the HF equations have to be solved iteratively until self-consistency is reached. One significant
shortcoming of the mean-field approach is the neglect of the instantaneous, Coulomb-coupled
motion of electrons. The resulting lack in energy is referred to as (electron) correlation energy.
While this energy contribution is typically small in magnitude, it is essential for the description
of chemical and biomolecular systems as well as materials. In order to recover the missing
correlation energy, numerous post-HF methods have been developed in the quantum chemistry
community. The most renowned approaches are configuration interaction, [58] which expresses
the total wave function as a linear combination of (virtually) excited determinants, coupled-

cluster theory [59] using a cluster expansion of determinants, or perturbational treatments such as
Møller-Plesset perturbation theory. [60] For further details, see Refs. 36–39 and Sec. 2.3.
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2.1 Basics of Electronic-Structure and Density-Functional Theory

2.1.2 Basis Set Representation and Variational Principle

Thus far, we have not defined the shape of the spatial (orbital) part of the single-particle states. As
its mathematical form is generally not known, one typically employs a finite-elements approach.
In the context of electronic-structure theory, this is referred to as basis set expansion, where

φa(r) =
∑

i

ci a ϕi (r) (2.9)

with ci a as expansion coefficient and ϕi as basis functions. By representing the single-particle
wave functions in a given basis one bypasses the problem of explicitly solving complex wave
equations. Instead, the problem can be represented in terms of coefficients, which ultimately
allows efficient numerical solutions. The optimal choice of ci a and thus the shape of the single-
particle orbitals is then obtained via the Rayleigh-Ritz variational principle, which states that for
any normalized, physically-acceptable trial wave function, Ψtrial,

Etrial =
〈

Ψtrial
∣
∣Ĥel

∣
∣Ψtrial

〉

≥
〈

Ψel,0
∣
∣Ĥel

∣
∣Ψel,0

〉

= Eel,0 . (2.10)

So, the expectation value of the energy for any trial wave function is greater or equal to the true
ground-state electronic energy, Eel,0. Furthermore, for non-degenerate ground-states, the equal-
ity holds if and only if Ψtrial =Ψel,0. Thus, optimal coefficients can be obtained by (numerically)
minimizing the energy of the system with respect to ci a .

2.1.3 Density-Functional Theory

The basic idea behind DFT is to express the total energy as a functional of the three-dimensional
electronic charge density, ρ(r), instead of the complex 4N -dimensional wave function (spatial
coordinate plus spin). For systems with non-degenerate ground-state, Hohenberg and Kohn [61]

have proven the mathematical existence of such an energy functional as well as the validity of
a variational principle analogous to Eq. (2.10). While significantly reducing the complexity of
the problem, this seminal reformulation still does not allow for a straightforward solution of the
many-electron problem. In lieu thereof, Kohn and Sham formulated a corresponding effective
independent-particle system. [62] This formulation is termed KS-DFT. Exchange and electron
correlation effects, which are not covered by the mean-field description in the independent-
particle framework, are thereby collected into the so-called exchange-correlation (xc) functional,
Exc. [37,39] All other terms as well as the (classical) nuclear repulsion energy are well-known and
can be determined at arbitrary accuracy. The mathematical form of Exc, on the other side, is
generally unknown. Current applications rely on approximative density functionals, for which
several formulations at various levels of sophistication are available. To a first approximation, one
may assume a uniform electron distribution, for which Exc can be determined in an efficient and
straightforward manner. The corresponding approach is known as local density approximation

(LDA). A more profound ansatz to account for the non-uniform electron distribution inherent to
all finite systems is to also include the gradient of the density, which is then called generalized

gradient approximation (GGA). In some more detail, the generic KS energy functional reads

Etot
[

ρ(r) ;R
]

=
∑

a

fa

〈

ψa

∣
∣
∣
∣−

1

2
∇2

r +Vext
(

R
)

+VH
[

ρ(r)
]
∣
∣
∣
∣ψa

〉

+Exc
[

ρ(r) ,∇rρ
]

+Enuc
(

R
)

, (2.11)

where fa denotes the occupation number of the single-particle wave function, ψa , and Vext and
VH the external (electron–nuclei) and Hartree (mean-field electron–electron) potential. Going
beyond the typically insufficient description of exchange interactions within the LDA or GGA,
hybrid DFT functionals such as the popular PBE0 [63] include a given fraction of exact (HF-like)
exchange repulsion, which can substantially improve upon some of the shortcomings of pure
GGA functionals such as the description of hydrogen-bonding, for instance. [64,65]
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2 Theoretical Background

2.2 Density-Functional Tight-Binding

KS-DFT represents the state-of-the-art approach for electronic-structure calculations of molecules
and materials and has been successfully applied in various computational studies. Despite the
ever-growing availability of computing resources and high-performance implementations, the
intrinsic scaling of DFT with the system size limits its applicability to complex biomolecular
systems or nanostructures. In this regard, semi-empirical methods represent a more efficient
alternative, while still offering an explicit QM treatment of electrons and a reasonable, inter-
mediate level of accuracy. As such, they pose a promising tool for pushing the boundaries of
current computational studies and the exploration of larger length and time scales as relevant to
biomolecular or other nanoscale systems, for example.

Among other approaches, [66–71] the DFTB formalism [41–43] is one of the most popular represen-
tatives of semi-empirical QM methods. The DFTB method is thereby based on a perturbation
expansion of the KS energy functional (2.11) in a minimal basis representation of atomic orbitals.
This perturbation expansion is performed around a given non-interacting reference electron
density, ρ0(r), given as the superposition of (effective) atomic densities, ρA(r). The true density of
the interacting system, ρ(r), and the corresponding energy functional are then represented in
terms of perturbations to this reference, δρ(r). [44] In an expansion series up to third order, the
corresponding approximate energy functional is given by,

Etot =
∑

a

fa

〈

ψa

∣
∣
∣
∣
∣
−1

2
∇2 +Vext

(

R
)

+VH
[

ρ′
0

]

+
δExc

[

ρ
]

δρ

∣
∣
∣
∣
ρ0

∣
∣
∣
∣
∣
ψa

〉

+ 1

2

Ï

R6

(

1

‖r− r′‖
+

δ2Exc
[

ρ
]

δρδρ′

∣
∣
∣
∣
∣
ρ0

)

δρδρ′ drdr′

+ 1

6

Ñ

R9

δ3Exc
[

ρ
]

δρδρ′δρ′′

∣
∣
∣
∣
∣
ρ0

δρδρ′δρ′′drdr′dr′′

+
∑

A<B

ZA ZB

‖RA −RB‖
− 1

2

∫

R3

VH
[

ρ′
0

]

ρ0 dr+Exc
[

ρ0
]

−
∫

R3

δExc
[

ρ
]

δρ

∣
∣
∣
∣
ρ0

ρ0 dr + O
((

δρ
)4

)

,

(2.12)

where fa denotes the occupation number of the single-particle state ψa , ρ ≡ ρ(r), ρ′ ≡ ρ(r′) and
ρ′′ ≡ ρ(r′′). Vext is the external or nuclear–electron potential, VH is the Hartree potential and Exc

the xc energy. δ/δρ denotes the functional derivative with respect to ρ and ZA corresponds to
the atomic number of atom A. The first line in Eq. (2.12) is the so-called band structure term,
which equals the DFT energy of the starting density, ρ0. The second line is the Coulomb energy,
or second-order term, the third line the third-order contribution and the last line is collectively
referred to as the repulsive energy. [44,46] As mentioned above, DFTB then represents the single-
particle states as a linear combination of atomic orbitals (LCAO) according to Eq. (2.9) using a
minimal basis set of atomic valence orbitals. [47] The orbitals are thereby obtained by solving the
atomic DFT problem,

(

−1

2
∇2 +Veff

[

ρatom
]

+Vconf

)
∣
∣ϕi

〉

= ε̃i

∣
∣ϕi

〉

, (2.13)

where Veff
[

ρatom
]

is the effective potential for an isolated atom. In order to improve numerical
stability in the long-distance limit and effectively model the confining effect of neighboring
atoms, an additional confinement potential, Vconf, is added. Typically, a simple harmonic po-
tential is chosen, [44] but other forms such as the less-invasive Woods-Saxon potential have been
proposed. [72]
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2.2 Density-Functional Tight-Binding

2.2.1 Band Structure Energy

The band structure energy, EBS, can be written in compact form as

EBS =
∑

a

fa

〈

ψa

∣
∣
∣
∣
∣
−1

2
∇2 +Vext

(

R
)

+VH
[

ρ0
]

+
δExc

[

ρ
]

δρ

∣
∣
∣
∣
ρ0

∣
∣
∣
∣
∣
ψa

〉

=
∑

a

fa

〈

ψa

∣
∣Ĥ(0)

∣
∣ψa

〉

. (2.14)

Within the basis set representation described above and ci a as LCAO coefficients, the band
structure energy from Eq. (2.14) simplifies to

EBS =
∑

a

fa

∑

i , j

c∗i aĤ
(0)
i j

c j a (2.15)

Using a two-center approximation, the Hamiltonian elements Ĥ(0)
i j

can be precalculated using

KS-DFT. With the help of Slater-Koster transformation rules, [73] they can further be tabulated for
varying interatomic distances. At run time, the appropriate matrix element can then be obtained
by interpolation. In order to guarantee correct convergence towards isolated atoms the diagonal
elements Ĥ(0)

i i
are approximated by the valence energies of the corresponding unconfined, neutral

atom, εA,i . So,

Ĥ
(0)
i j

=







εA,i if i = j ∧ (i , j ) ∈ A
〈

ϕi

∣
∣−1

2∇
2 +Veff

[

ρA +ρB

]∣
∣ϕ j

〉

if i ∈ A ∧ j ∈ B 6= A

0 else

, (2.16)

where ρA denotes the ground state electron density of the isolated, neutral atom A and Veff

corresponds to the effective KS-DFT potential for the diatomic molecule AB . [45]

2.2.2 Beyond Tightly-Bound Electrons: Second- and Third-Order Contributions

In the above, electrons were considered to be fixed at (i.e., tightly-bound to) their respective atoms
as assumed by the reference density. As such, the theory thus far represents a classic tight-binding
formalism. This, however, neglects important effects arising from the relaxation or transfer of
charge upon the interaction among atoms. This charge rearrangement as represented by δρ gives
rise to additional electrostatic interactions. This effect is captured to within first-order by the
coulombic term, EC. Expressing δρ as a sum of atomic contributions with single-exponential
decay from the respective nucleus and employing an atomic monopole approximation allows to
express the second-order term as

EC = 1

2

∑

A,B
∆qA γAB (RAB )∆qB , (2.17)

where ∆qA is the (partial) charge of atom A obtained via Mulliken analysis: [74]

∆qA = n(A)
val −

∑

a

fa

[

∑

i∈A

(

c∗i aci a +
1

2

∑

j∉A

c∗i aSi j c j a

)]

(2.18)

with n(A)
val as the number of valence electrons on atom A and Si j =

〈

ϕi

∣
∣ϕ j

〉

as (precomputed and
tabulated) overlap integrals. For on-site terms, one finds γA A =UA corresponding to the Hubbard
U parameter (i.e., twice the chemical hardness of atom A). With the neglect of xc effects, one can
also identify the off-site terms, [42]

γA 6=B (RAB ) =
1

RAB
−e−(κAB+κB A)RAB (2.19)

with κAB = 16

5
UA

(

16

10

UAU 4
B

(

U 2
A
−U 2

B

)2 +
3U 2

AU 4
B −U 6

B
(

U 2
A
−U 2

B

)3
RAB

)

. (2.20)
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U can be approximated by the difference between the (first) ionization potential and the (first)
electron affinity, which can be obtained by reference DFT calculations for the corresponding
cation and anion. In cases where species do not have stable ions in the corresponding reference
calculation, one can also relate U to the orbital energy of the highest occupied molecular orbital
via Janak’s theorem. [45,75]

Considering the inconsistent correlation between the atomic size and chemical hardness of
hydrogen, a modification of the γ-function was introduced for H–X contributions. [76] In the
modified form, γAB (RAB ) is damped at intermediate ranges with a U -dependent Gaussian if A

or B correspond to a hydrogen atom. [43,76] To account for the changes in the chemical hardness
with changes in ∆qA , the third-order term introduces the derivative of the above γ-function with
respect to the (partial) atomic charges,

ΓAB = ∂γAB

∂qA

∣
∣
∣
∣

q (ref)
A

=
(

1− δAB

2

)
∂γAB

∂UA

∂UA

∂qA

∣
∣
∣
∣

q (ref)
A

, (2.21)

where δAB is the Kronecker delta. The corresponding energy contribution can be written as, [43]

E3rd = 1

6

∑

A,B
∆qA

(

∆qAΓAB +ΓB A∆qB

)

∆qB = 1

3

∑

A,B
∆q2

AΓAB∆qB . (2.22)

The derivative of γ with respect to U as it enters Γ can thereby be done analytically, [43] while the
derivative of the Hubbard U with respect to the atomic charge is provided as input in practical
calculations.

2.2.3 Solution of the Electronic DFTB Problem

The optimal set of LCAO coefficients is finally obtained via the Rayleigh-Ritz variational princi-
ple (2.10). The resulting secular equations representing the DFTB equivalent of the KS equations
in DFT are given by

∑

j

c j a

(

Ĥi j −ǫaSi j

)

= 0 ∀ (i , a) , (2.23)

where with definition (2.16) the full electronic Hamiltonian for DFTB3 is given by, [43,46]

Ĥi j = Ĥ
(0)
i j

+Si j

∑

C

∆qC

[
γAC +γC B

2
+ ∆qAΓAC +ΓC B∆qB

3
+ ΓAC +ΓC B

6
∆qC

]

∀ i ∈A, j ∈B .

So, the electronic Hamiltonian and thus the secular equations depend on the (partial) atomic
charges, which, in turn, depend on the LCAO coefficients. Solving Eq. (2.23) requires a self-
consistent procedure — a given set of ci a determines the charges ∆qA and Eq. (2.23) yields a
new set of ci a until a certain threshold in the change of ∆qA in subsequent iterations is reached.
In practical applications, Hamiltonian elements and overlap integrals are interpolated from
precalculated values, while atomic charges can be obtained solely on the basis of the system’s
density matrix. As a result, DFTB avoids the time- and memory-consuming construction of the
real-space electron density and numerical integration. This allows DFTB to achieve a remarkable
speed-up and favorable scaling with system size in comparison to full DFT, yet it still provides
access to most electronic-structure properties.

2.2.4 The Repulsive Energy

With the electronic DFTB problem defined and solved above, we are left with the last line of
Eq. (2.12): the repulsive energy, Erep, formally defined as

Erep =
∑

A<B

ZA ZB

‖RA −RB‖
− 1

2

∫

R3

VH
[

ρ′
0

]

ρ0 dr+Exc
[

ρ0
]

−
∫

R3

δExc
[

ρ
]

δρ

∣
∣
∣
∣
ρ0

ρ0 dr . (2.24)
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2.2 Density-Functional Tight-Binding

By similar division into atomic contributions, as was also done for the coulombic term above, and
a two-center approximation the (formal) repulsive energy can be divided into pairwise repulsive
terms (see Sec. 6.3.2). In practice, the repulsive energy is represented by such an atom-pairwise
formalism,

Erep ≈
∑

A<B

V (AB)
rep

(
‖RA −RB‖

)

. (2.25)

The corresponding two-body potentials, Vrep, are then chosen in order to reproduce (semi-)local
DFT or other reference methods. So, all in all, the repulsive energy can be seen as an analogue to
the xc functional in DFT in some sense. In addition to its formal contributions given in Eq. (2.24),
it incorporates all the complicated many-body effects not considered otherwise. From a practical
point of view, Erep is given by the difference of some total energy reference (Eref) and the terms
obtained so far,

Erep = Eref −EBS −EC −E3rd . (2.26)

In practice, the nuclear derivative of Erep, the repulsive force (Frep), is determined by interpolating
the difference in forces as obtained by full DFT (or other reference methods) and the force contri-
bution from the electronic DFTB problem for a suitable set of reference systems. Integration of
the resulting force, in the end, yields the repulsive potential, which is then tabulated as a function
of interatomic separation and interpolated at run time.

2.2.5 Limitations of the basic DFTB Formalism and Adaption of post-DFT Methods

While the above introduction is presented for the simpler spin-collinear case, the DFTB method
has equally-well been formulated and applied including account for spin polarization. [77,78]

Due to the approximate character of DFTB, one clearly has to balance a certain trade-off of
accuracy for the sake of the much increased efficiency. The empirically fitted repulsive potential
thereby often complicates a clear-cut disentanglement of the (main) reasons behind individual
failures. One major source of inaccuracy and reduced transferability is the minimal basis set of
confined atomic wave functions chosen in DFTB. As a result of the minimal basis, polarization
effects, which require more diffuse, delocalized basis function, are often poorly described. This is
particularly affecting the description of hydrogen bonds, the hybridization states of nitrogen or
phosphorous, or conduction bands in solids. [47,79,80] While improving general performance and
stability, the employed confinement of atomic wave functions for the LCAO ansatz, can further
impair the description of charge polarization and often leads to a considerable underestimation
of exchange (Pauli) repulsion. [81,82] As a result of the two-center integral approximations and the
minimal, confined basis set, it has been shown that the optimal pairwise repulsive potential for a
given DFTB parametrization can strongly depend on the system or property under consideration.
For example, current parametrizations seldom allow simultaneous accuracy in energetic as well
as vibrational properties. [47,79] First steps towards beyond-pairwise repulsive potentials with
higher accuracy and transferability are discussed in Chapter 6.

Being based on and often parameterized to semi-local density functionals, DFTB also inherits
the shortcomings known for these functionals. In the context of DFT, various strategies have
been developed to address such limitations. Many such post-DFT methods have also been
adapted to the DFTB framework, such as +U corrections [83] and long-range corrected hybrid
functionals [84,85] as well as time-dependent DFTB [86,87] and the description of excited states [88]

and electron transport. [89,90] The most relevant deficiency in the context of this work, is the lack
of (dynamic) long-range electron correlation that DFTB inherits from semi-local DFT. Due to their
complex non-linear scaling with the system size, long-range correlation forces (most prominently
including vdW dispersion) represent an essential extension to the DFTB framework. The following
section reviews the theoretical background of vdW interactions and their description within
electronic-structure theory. Reference to methods adapted to the DFTB framework are given
where applicable.
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2 Theoretical Background

2.3 van der Waals Dispersion Interactions

As mentioned in Sec. 2.1, theoretical and computational modeling of molecules and materials is
largely contingent on mapping the N -electron problem to N effective one-electron problems.
This seminal reformulation already captures, depending on the system, 99 % or more of the
total electronic energy.‡ Unfortunately, the remaining fraction of the total electronic energy can
be crucial for various observables and properties of interest, such as relative energies, [34,91–93]

binding properties, [33,35,94–96] or structural features [34,93,97,98] as well as the mechanical, [99,100]

thermodynamic, [34,101] kinetic [102–104] and electronic [105,106] signatures of a given system. In the
simple case of an Argon dimer for instance, KS-DFT with the hybrid PBE0 functional captures
about 99.95 % of the total energy, but it gives no more than roughly 15 % of the interaction energy.
HF does not even bind an Argon dimer. The major part of the missing electronic energy is due to
the correlated motion of electrons, or correlated quantum-mechanical fluctuations of the average
electron distribution in the DFT picture. It is thus referred to as electron correlation energy.§ In
particular, the long-range correlation energy represents a challenging task in electronic-structure
calculations due to its highly non-local character. The main component of this long-range contri-
bution is what is known as vdW dispersion interaction. As such, vdW interactions are inherently
quantum-mechanical and many-body (“collective”) in nature and, moreover, they are ubiquitous
in molecular systems and materials. The strongly non-linear scaling with size in polarizable
systems [92,110] presents further challenges for modeling such long-range correlation forces.

Describing (long-range) electron correlation has been a central topic in the quantum chemistry
community, which since the early days mainly focused on wave function-based methods typically
starting from the HF mean-field picture. Thanks to extensive methodological developments
a number of asymptotically correct and to some extent practical methods have been devised.
Among those the coupled-cluster technique has established itself as one of the most prevalent
post-HF methods. Coupled-cluster theory starts from a Slater determinant based on the mean-
field HF orbitals and includes (virtual) excitations by the use of the exponential cluster operator.
Such virtual electronic excitations represent the perturbation picture analogue of fluctuations
in the electronic charge distribution. Accounting for up to double excitations together with a
perturbative treatment of triple excitations, labeled as CCSD(T), is usually referred to as the gold

standard and often relied upon as a reference method for more approximate models. However,
CCSD(T) and comparably accurate methods are still limited to small- and medium-sized systems
(typically less than ∼200 atoms) due to the immense computational costs characterized by a scal-
ing of the computation time with the number of electrons to the power of 7. A quite different, yet
similarly accurate, approach is quantum Monte-Carlo (QMC). Here, one solves the many-electron
SE in a stochastic manner. The most relevant flavors of QMC in the context of modeling molecules
and materials are: Variational Monte-Carlo, Green’s function Monte-Carlo and diffusion Monte-
Carlo, which exploits the similarity between the SE and a diffusion equation in imaginary time.
Thanks to its stochastic character one can even estimate the expected deviation from the exact so-
lution. Parallelization of this approach is straightforward and tractable system sizes have reached
a few hundreds of atoms, [111] which has boosted its use as a benchmark method in recent years.
In the end, both CCSD(T) and QMC are typically only used to benchmark (interaction) energies
based on a given structure, as force evaluation can become extremely intricate as a result of
their perturbational or stochastic character. In contrast to accurate quantum-chemical methods,
density-functional approximations (DFAs) require less computational workload and offer access

‡ Although the KS equations in DFT are, in principle, exact the universal xc functional remains so-far unknown and
the (semi-)local approximations to it based on the uniform electron gas give rise to a similar coverage of the energy.

§ Electron correlation is often divided into dynamic and static (or non-dynamic) correlation. [107,108] VdW interactions
are part of the dynamic correlation energy, representing the lack in energy due to a mean-field approximation. [107]

Static correlation becomes particularly relevant near electronic degeneracies and requires so-called multi-reference
methods, see e.g. Ref. 109. In this thesis, “correlation energy” shall refer to dynamic correlation only.
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2.3 van der Waals Dispersion Interactions

to atomic forces. Since the first successful applications of DFT, however, the lack of explicit
electron correlation has proven itself an important issue when modeling molecular systems
and the same applies to all derivative methods including DFTB. In the context of DFT, a vast
number of possible remedies has been proposed, many of which have also been adapted for semi-
empirical methods by now. Thereby, an a posteriori inclusion of long-range correlation forces
is the most widely used approach. Nevertheless, it is worthwhile to point out that long-range
correlation is, in principle, part of the electronic Hamiltonian and can thus also affect the so-
lution of the self-consistent field procedure, [105,106] which leads to dispersion-polarization effects.

The electron correlation energy, Ecorr, is typically defined as the difference between the exact
(non-relativistic) solution of the electronic SE and the effective mean-field description such as
the HF or KS reference. Hence, it depends on the definition of the mean-field description and can
be rigorously formulated in multiple ways. [108] The adiabatic-connection fluctuation-dissipation
(ACFD) theorem provides an exact formulation of the non-relativistic (non-retarded) xc energy of
a system in terms of the Coulomb-coupled density response on top of an independent-particle
framework such as the HF or KS picture. Relativistic effects such as retardation as well as thermal
field fluctuations can play an important role for extended, mesoscopic systems (cf. Casimir
forces), but will not be covered in this thesis. For a deeper discussion and review of this topic, see
Refs. 112 or 113, for instance.

2.3.1 Exact Formulation from Adiabatic-Connection Fluctuation-Dissipation Theorem

The ACFD formula originates from linear response theory‡ and relies on the non-local, time-
dependent density-density response function, χ

(

r,r′, t , t ′
)

, which describes the response of an
electron density at point r and time t to a perturbation at position r′ at time t ′. Under the
assumption of time invariance, which holds for stationary states in quantum mechanics, the time-
dependent density response can be Fourier-transformed to the frequency domain (u) yielding
the non-local, frequency-dependent, and complex-valued density response, χ

(

r,r′,u
)

. Thereby,
the imaginary part describes the contribution due to dissipation. [115] Hence, integrating over the
Coulomb-coupled imaginary part of χ

(

r,r′,u
)

gives the energy due to dissipation of a (scalar)
perturbation.

In quantum mechanics, any charge distribution is subject to instantaneous fluctuations, which
gives rise to intrinsic fluctuations of the electric field within the system (or vice versa). The
electron correlation energy is the dissipation energy of this fluctuating electric field. According
to the ACFD theorem the energy due to dissipation of such internal perturbations is the same
as for external perturbations and can thus be calculated from the imaginary part of χ

(

r,r′,u
)

.
Evaluation of the correlation energy on top of an independent-particle formalism is then carried
out by means of the adiabatic theorem, [116,117] meaning via coupling parameter integration from
the non-correlated system to the fully correlated density response:

Ecorr =− 1

2π

∞∫

0

1∫

0

Ï

R6

[

χλ

(

r,r′, i u
)

−χλ=0
(

r,r′, i u
)]

VCoul
(

r,r′
)

drdr′ dλdu (2.27)

with λ as the coupling constant, where λ= 1 corresponds to the fully correlated system and λ= 0
to the non-correlated system of independent electrons (e.g., the KS (or HF) reference system), for
which χ can be calculated based on the corresponding single-particle states via the Adler-Wiser
formula. [118,119] For the integration of the imaginary part of χ

(

r,r′,u
)

we have used: [115]

∞∫

0

Im
{

χ
(

r,r′,u
)}

du =
∞∫

0

χ
(

r,r′, i u
)

du . (2.28)

‡ While the response can in general be highly non-linear, the electron correlation energy can be fully recovered solely
based on linear response functions, which allows linear response theory and the ACFD theorem to be exact. [114]
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2 Theoretical Background

To further simplify the derivation and explanation of the practical approaches outlined below, we
may also reformulate the ACFD formula (2.27) in terms of the non-local, frequency-dependent
polarizability tensor ααα

(

r,r′, i u
)

, which is connected to χ by χ
(

r,r′, i u
)

=
〈

∇r

∣
∣∇r′ααα

(

r,r′, i u
)〉

. In-
troducing the dipole coupling tensor T

(

r,r′
)

=−∇r ⊗∇r′VCoul
(

r,r′
)

, allows to rewrite the ACFD
correlation energy (2.27) as

Ecorr =
1

2π

∞∫

0

1∫

0

Ï

R6

Tr

{[

αααλ

(

r,r′, i u
)

−αααλ=0
(

r,r′, i u
)]

T
(

r,r′
)
}

drdr′ dλdu , (2.29)

where Tr{·} denotes the trace operator over Cartesian components. [114] The non-local polar-
izability within the independent-particle framework (αααλ=0) can then be used to calculate the
polarizability tensor of the correlated system via the self-consistent Dyson equation,

αααλ

(

r,r′, i u
)

=αααλ=0
(

r,r′, i u
)

−
Ï

R6

αααλ=0
(

r,r′′, i u
)

λTxc,λ
(

r′′,r′′′, i u
)

αααλ

(

r′′′,r′, i u
)

dr′′dr′′′

≡ ααα0 −
〈

λααα0Txc,λαααλ

〉

r′′,r′′′ =
∞∑

n=0

〈

ααα0
(

−λTxc,λααα0
)n

〉

r′′,r′′′
, (2.30)

where we have introduced the shorthand 〈·〉r′′,r′′′ for the integration over spatial coordinates, r′′

and r′′′, and skipped the explicit notion of the variables of ααα and Txc,λ for clarity. The coupling
tensor Txc,λ is defined for each coupling strength λ as, [114]

Txc,λ
(

r′′,r′′′,u
)

= T
(

r′′,r′′′
)

− 1

λ
∇r′′ ⊗∇r′′′ fxc,λ

(

r′′,r′′′,u
)

. (2.31)

In practice, the exact xc kernel, fxc,λ, in Eq. (2.31) is not known. Thus, direct evaluation of the
ACFD formula, both in terms of χ and ααα, is not possible. Practical approaches that directly rely
on the ACFD formulation therefore involve the neglect of the explicit dependence on λ and
additional approximations for the xc kernel. The most prominent method among those relies on
the random phase approximation (RPA).

For the purpose of discussing vdW interactions, i.e. long-range correlation forces, and especially
for comparing the various approaches to describe vdW interactions, it is worthwhile to further
separate the above exact formulation of the electron correlation energy into short- and long-range
contributions as detailed in Refs. 114 and 120. For this, we split the coupling tensors in Eqs. (2.29)
and (2.30) by means of a range-separating function grs

(∥
∥r− r′

∥
∥
)

, which satisfies grs(0) = 0 and
grs

(∥
∥r− r′

∥
∥→∞

)

= 1. This separates the total electron correlation energy into a short- and a
long-range contribution, where the latter can be seen as an analogue to the original definition of
vdW dispersion interactions based on a perturbative picture of intermolecular interactions. [114]

In the Dyson equation (2.30), we may range-separate the full coupling tensor, Txc,λ, into a short-

and a long-range screening tensor (T(sr)
xc,λ and T(lr)

xc,λ, respectively) according to

Txc,λ =
[

1− grs
(∥
∥r− r′

∥
∥
)]

Txc,λ
︸ ︷︷ ︸

+ grs
(∥
∥r− r′

∥
∥
)

Txc,λ
︸ ︷︷ ︸

=

= T(sr)
xc,λ + T(lr)

xc,λ ,
(2.32)

which account for short- and long-range screening of the non-local polarizability, respectively.
Inserting this into Eq. (2.30) and subsequently contracting all short-range screening components
lets us define an effective, non-local polarizability, ααα(sr), which already includes short-range
screening. By the use of this definition, Eq. (2.30) becomes

αααλ =
∞∑

n=0

〈

ααα(sr)
(

−λT(λ)
xc,lrααα

(sr)
)n〉

r′′,r′′′
. (2.33)
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2.3 van der Waals Dispersion Interactions

Finally, combining Eq. (2.33) and the long-range part of the ACFD formula (2.29) gives the long-
range electron correlation energy,

E (lr)
corr =−

∞∑

n=1

1

2π

∞∫

0

1∫

0

〈

Tr
{[〈

ααα(sr)
(

λT(lr)
xc,λααα

(sr)
)n〉

r′′,r′′′

]

Tlr
(

r,r′
)}

〉

r,r′
dλdu , (2.34)

where Tlr is the long-range part of the bare dipole coupling tensor and the n = 0 term cancels out.
Note that we have not introduced any approximations up to this point and the sum of Eq. (2.34)
and its short-range analogue still equals the exact total correlation energy as defined by Eq. (2.29).
Many of the nowadays widely-used vdW models can be traced down to this form of the ACFD
formula, where each flavor involves a given approximation for the effective polarizability after
short-range screening, ααα(sr), the (dipolar) xc kernel in T(lr)

xc,λ or combinations thereof.

2.3.2 Approximate Reduction to Atom-Pairwise Interaction Potentials

As can be seen from the definitions above, the polarizability and the electron correlation energy
have a highly complex, non-local character. As of today, numerous experimental and theoretical
works have clearly shown the many-body nature of dispersion forces. Nonetheless, one of the
most common approaches to model vdW interactions is by the use of pairwise-additive poten-
tials. In this section, we sketch the approximations and basic steps leading to the fundamental
form of pairwise potentials for long-range correlation forces based on the long-range ACFD
formula (2.34). At this point, we would like to note that the functional form derived below can
be, and was obtained, in multiple ways including (many-body) perturbation theory and other
approximations to the ACFD formula.

One of the most successful and common approximations is the so-called random phase approxi-
mation (RPA), which corresponds to the neglect of the contributions from the unknown xc kernel
(∇r ⊗∇r′ fxc,λ = 0). Within the range-separated ACFD formula, we may apply that approximation

only in the long-range part, where fxc,λ indeed barely contributes, such that T(lr)
xc,λ in Eq. (2.34)

no longer explicitly depends on λ and reduces to Tlr. This allows us to analytically carry out the
integration over the coupling strength, which leads to the series

E (lr,RPA)
corr =−

∞∑

n=2

(−1)n

n

1

2π

∞∫

0

〈

Tr
{〈(

ααα(sr) Tlr
)n

〉

r′′,r′′′

}〉

r,r′
du , (2.35)

where the index n is shifted by +1 due to integration over λ. Next, we approximate the non-local
polarizability by a sum of polarizabilities situated at the N atomic positions, {RA}. Inserting this
into the long-range RPA correlation energy gives,

E (lr,RPA)
corr ≈−

∞∑

n=2

(−1)n

n

1

2π

∞∫

0

〈

Tr

{〈(
N∑

A=1
ααα(sr)

A
Tlr

)n〉

r′′,r′′′

}〉

r,r′

du . (2.36)

It can be seen that we get ααα(sr)
A

Tlrααα
(sr)
B

Tlr for n = 2, ααα(sr)
A

Tlrααα
(sr)
B

Tlrααα
(sr)
C

Tlr for n = 3, and so on.

Thus, the expansion series (2.36) is a series of all the nth-order correlation terms. As such, the
order n does not represent a pure n-body (body referring to atom) vdW interaction term, as for
instance defined in the perturbational approach. For example, n = 3 contains non-vanishing
terms with C = A, which correspond to screened two-body interactions. n = 2, on the other
side, only involves non-vanishing terms with two different polarizability centers A and B and
is therefore a pure (yet incomplete) two-body vdW interaction. If we limit ourselves to this
second-order term, E (2)

corr, we can carry out the integration over spatial coordinates to arrive at,

E (2)
corr =−1

2

1

2π

∞∫

0

Tr

{

∑

A 6=B

ααα(sr)
A

T(lr)
AB

ααα(sr)
B

T(lr)
B A

}

du , (2.37)
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where T(lr)
AB

≡ Tlr(RA,RB ). As a final approximation, we assume the polarizabilities to be isotropic,

i.e. ααα(sr)
A

=α(sr)
A

13, with 13 being (3×3) unity. As a result, the polarizabilities and dipole tensors
commute and

E (2)
corr =−1

2

∑

A 6=B

3

π

∞∫

0

α(sr)
A

α(sr)
B

du
1

6
Tr

{

T(lr)
AB

T(lr)
B A

}

. (2.38)

The integral in the above equation is known as the Casimir-Polder integral [121] and corresponds
to the so-called C6-interaction coefficients (Hamaker constant for macroscopic spherical bod-
ies [122]). Noting that T(lr)

AB
= grs(‖RA −RB‖)TAB and Tr

{

TAB TB A

}

= 6/‖RA −RB‖6 leads to

E (2)
corr =−1

2

∑

A 6=B

3

π

∞∫

0

α(sr)
A

α(sr)
B

du

︸ ︷︷ ︸

grs(‖RA −RB‖)2

‖RA −RB‖6 (2.39)

=−1

2

∑

A 6=B

C (eff)
6,AB

fdamp(RAB )

R6
AB

, (2.40)

where we have used RAB = ‖RA −RB‖ and introduced the damping function fdamp(RAB ) =
grs(RAB )2. This is the well-known formula for the vdW dispersion interaction between two
microscopic bodies within the dipole approximation as first derived by London. [123] As of today,
a manifold of pairwise-additive vdW models has been devised and widely used. [48,49,124–130] The
general difference between those models lies in the damping function, fdamp, and how effective,
short-range screened interaction coefficients are obtained. It is worthwhile to point out that the
same functional form can be derived based on a full-range RPA of Eq. (2.29), by invoking the
so-called full potential approximation, i.e. αααλ =ααα1, [131] from a model system of quantum Drude
oscillators [25] or in various ways from (second-order) perturbation theory invoking a multipole
expansion and subsequent dipole approximation for the interaction potential. [25]

2.3.3 Pairwise-Additive van der Waals Models

Augmenting (semi-)local electronic-structure calculations a posteriori with a London-type vdW
term, as first put forward by Wu and Yang [132] and popularized as a general framework by
Grimme, [124] represents an early and efficient approach to correct for the lack of long-range
electron correlation. As detailed in Sec. 2.3.2, the fundamental mathematical form can be de-
rived from a coarse-grained ACFD/RPA formula. Note that from our derivation of (2.40), the
C6-coefficients are defined by the Casimir-Polder integral based on isotropic, static atomic po-
larizabilities, which should already include short-range screening. However, almost none of the
pairwise-additive approaches devised to date explicitly accounts for the electrodynamic screen-
ing. Instead, most methods rely on effective polarizabilities or C6-coefficients, which are meant
to implicitly include such screening effects. The various pairwise models we have today basically
differ in the way those effective vdW parameters are determined. These typically also involve an
atom pair-dependent reference distance, which parametrically defines the switching behavior of
the damping function. Thereby, the actual mathematical form of this damping function has been
shown to have a minor effect on the final vdW energetics. [130]

The Electronic-Structure-Based Atom-Pairwise vdW(TS) Method

One very successful way to model the polarizability of the KS reference system without recourse to
the computationally demanding Adler-Wiser formalism, [118,119] is by incorporating information
on the (ground-state) electronic structure. This represents an approximate, yet reliable and
efficiently method to account for the effect of the (local) chemical environment on polarizabilities
and interaction coefficients. A variety of successful schemes in this spirit has been devised to
date, such as the LRD model, [128] the non-local density functional for interaction coefficients
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2.3 van der Waals Dispersion Interactions

by Tao et al., [133,134] the vdW-WF method [135,136] or the exchange-hole dipole moment (XDM)
model [125,126] and the related density-dependent dispersion correction (dDsC) scheme. [129] This
thesis focuses on the vdW(TS) approach [48] as electronic-structure-based pairwise vdW model. As
it shares a common basis with the many-body dispersion method (vide infra), their comparison
is expected to provide an optimal estimate for beyond-pairwise effects.

The vdW(TS) scheme starts from the leading Padé approximant of the dynamic polarizability [137]

based on an effective static atomic polarizability, α(TS)
A,0 ≡α(TS)

A (i u = 0). This polarizability is then
used to approximate the short-range screened polarizability entering Eq. (2.39):

α(sr)
A (i u) ≈ α(TS)

A (i u) =α(TS)
A,0

[

1+
(

u

ηA

)2]−1

, (2.41)

where ηA corresponds to an effective excitation frequency. [48] Inserting this into the Casimir-
Polder integral in Eq. (2.39) yields the London formula, [138] from which we can define the C6-
interaction coefficients entirely based on effective static atomic polarizabilities according to

C (eff)
6,AB

≈C (TS)
6,AB

=
2C (TS)

6,A A
C (TS)

6,BB

α(TS)
B ,0

α(TS)
A,0

C (TS)
6,A A

+
α(TS)

A,0

α(TS)
B ,0

C (TS)
6,BB

and C (TS)
6,A A

= 3

4
ηA

[

α(TS)
A,0

]2
. (2.42)

Hence, the key quantity is the effective static atomic polarizability. To obtain this polarizability,
one takes advantage of the (near-)linear correlation between the atomic volume, VA, and the
(static) atomic polarizability, i.e., αA(i u = 0) = κA ·VA with κ as proportionality constant. [139] This
allows the definition

α(TS)
A,0 =

κ(A)
eff V (A)

eff

κ(A)
free V (A)

free

α(free)
A,0 =

κ(A)
eff

κ(A)
free

· x(A)
V

·α(free)
A,0 , (2.43)

where α(free)
A,0 is the static polarizability of the corresponding atom in vacuo. [48] The atomic volume

can be determined as the expectation value of the cube of the electron-nucleus distance, r ,
based on the atomic density of the atom in its chemical environment or of the corresponding
isolated atom, respectively. The effective atomic density is conventionally obtained via Hirshfeld
analysis, [140] from which the rescaling factor, xV , is given by

x(A)
V

=
V (A)

eff

V (A)
free

=
∫

r 3 w A(r)ρ(r) dr
∫

r 3ρ(A)
free(r) dr

, w A(r) =
ρ(A)

free(r)
∑

B
ρ(B)

free(r)
, (2.44)

where w A is the Hirshfeld weighting factor and ρ(r) is the total electron density of the molecule
or material. All densities, including the in vacuo atomic density, are evaluated at run time. Finally,
inserting the effective atomic polarizability into the second part of Eq. (2.42), together with an
equivalent consideration of (2.42) for an isolated atom, gives

C (TS)
6,A A

= ηA

η(free)
A

[

κ(A)
eff

κ(A)
free

]2
[

x(A)
V

]2
C (free)

6,A A
≃

[

x(A)
V

]2
·C (free)

6,A A
, (2.45)

where, upon closer inspection, the two prefactors involving η and κ together have been found
to be well approximated by unity. [48] Relying on accurate reference data for the C6-coefficients
of the corresponding isolated atoms, C (free)

6,A A
, this approach has been shown to yield accurate

effective interaction coefficients within 5.5 % from values derived from experimental dipole
oscillator strength distributions. [48] As final ingredient of the energy expression (2.40), a Fermi-
type damping function was proposed,

f (TS)
damp

(

RAB ;R(AB)
vdW

)

=
{

1+exp

[

−d

(

RAB

sR ·R(AB)
vdW

−1

)]}−1

, (2.46)
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where the steepness of the damping, d , has been found to have a negligible effect on binding
energies and is therefore fixed to d = 20. The onset of the range-separation, finally, is determined
by the scaling parameter sR (typical values: 0.94 for PBE, 0.96 for PBE0, 0.84 for B3LYP) and an
effective vdW distance, R(AB)

vdW , given by the sum of the corresponding effective vdW radii of atoms
A and B . Based on the definition of the vdW radius by Pauling and considerations from classical
physics, the vdW radius of an atom is proportional to the cube-root of its volume.‡ This allows to
define an effective vdW radius of an atom in a similar manner from its in vacuo counterpart:

RvdW ∝ 3p
V =⇒ R(A)

vdW = 3
√

x(A)
V

·R(A,free)
vdW . (2.47)

Inserting the definitions in Eqs. (2.44)–(2.47) into the London-type vdW formula (2.40) then fully
defines the vdW dispersion energy in vdW(TS) as given by

E (TS)
vdW =−1

2

∑

A 6=B

f (TS)
damp(RAB )

C (TS)
6,AB

R6
AB

. (2.48)

Effective, electronic-structure-based vdW parameters can also be obtained by an alternative, yet
similarly accurate and reliable, approach, which relies on net atomic populations instead of the
real-space representation of the electron density as used in the Hirshfeld scheme outlined above.
Atomic populations as initially classified by Mulliken, can be calculated in Fock space, i.e., from
the density-matrix in an atom-centered basis set representation. The alternative rescaling factor
xP is defined as, [142]

x(A)
P = hA

ZA
; hA =

∑

a

fa

∑

i∈A

∥
∥ci a

∥
∥2 =

∑

i∈A

Pi i (2.49)

with ZA as nuclear charge (atomic number) of atom A corresponding to hA for an atom in vacuo,
fa as occupation number of the electronic state a and ci a as LCAO coefficient. Note that hA,
being the atom-projected trace of the Mulliken population matrix P, does not involve off-diagonal
(mixed) terms of the density matrix. As such, it does not suffer from the ambiguity of partitioning
the electron population of overlap regions, which represents the main and fundamental pitfall
of Fock-space charge partitioning schemes. This approach yields interaction coefficients en par

with the original scheme [142] and allows for the usage of the vdW(TS) model in conjunction with
electronic-structure methods without real-space representation of the electron density, such as
the semi-empirical DFTB method or other density matrix-based approaches. Optimized damping
parameters for select DFTB parametrizations are given in Appendix A1. Similar in spirit, yet
neglecting some hybridization effects and relying on the not well-defined full Mulliken charge, is
the dDMC vdW model by Petraglia and co-workers. [143]

The vdW(TS) scheme can also be used to investigate the effect of dispersion interactions on
the electronic structure and derived properties. [106] As all parameters entering Eq. (2.48) are
represented as a functional of the electron density or density matrix, the effective potential arising
from long-range correlation forces can be derived. Inclusion of this term in the self-consistency
procedure, termed self-consistent vdW(TS), has been shown to affect the work function of metals,
for instance, [106] and can be expected to play an increasingly important role with increasing
system size and polarizability. The main approximations of the vdW(TS) approach for describing
dispersion forces are the pairwise formulation and the neglect of explicit screening effects, which
appear in higher-order terms of the (coarse-grained) RPA correlation energy (2.36). A consid-
erable limitation beyond these effects in vdW(TS) is the usage of Hirshfeld analysis to capture
effects of the local chemical environment on the polarizability. Ordinary Hirshfeld partitioning
tends to underestimate charge transfer [144,145] and in line with that the volume ratios tend to

‡ In a side project of this doctorate (Ref. 141), we indicate that such classical considerations may be insufficient and
that, in quantum systems, different scaling laws can apply.
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2.3 van der Waals Dispersion Interactions

underestimate the corresponding effect on the atomic polarizability. This can lead to consider-
able deficiencies in the description of the vdW parameters of ionic systems. [146,147] Significant
improvements can be achieved when relying on the computationally more demanding, but much
more accurate, iterative Hirshfeld scheme [145,147] or when using a charge-dependent reference
state for the polarizability. [148] For the simulation of hybrid organic-inorganic interfaces, an
adapted version vdW surf has been devised, [149] which accounts for the metallic screening in the
substrate according to Lifshitz-Zaremba-Kohn theory. [150,151] The vdWsurf model significantly im-
proves upon the original scheme and provides an accurate description of the binding properties
of metal surface-adsorbed organic molecules. [149,152–155]

(Semi-)Empirical Pairwise-Additive Approaches: The D3 Method

The first widely used vdW model in the context of DFT was the DFT-D approach by Grimme, which
followed the form of Eq. (2.40) and featured effective, but fixed C6-interaction coefficients and
a Fermi-type damping function. [124] The applicability was later extended by deducing effective
interaction coefficients from atomic properties (DFT-D2). [127] It is worthwhile to mention that
both approaches did not account for any effects of the (local) chemical environment nor did they
yield the correct asymptotic behavior. [49] These obsolete methods can thus not be recommended
for use in electronic-structure calculations today. After careful numerical investigation of the
effect of the local chemical environment, a new semi-empirical variant, termed D3, was devised.
The scheme is based on atom pair-specific C6 coefficients and includes local information in the
form of geometry-motivated, fractional coordination numbers, [49]

CNA =
∑

B 6=A

{

1+exp

[

−p1 ·
(

p2 ·
R(A)

cov +R(B)
cov

RAB
−1

)]}−1

, (2.50)

where the parameters p1 = 16 and p2 = 4/3 have been chosen based on a set of organic molecules,
RAB is the distance between atoms A and B , and R(A)

cov is the (scaled) covalent radius of atom A.
The final procedure has been shown to yield chemically sensible coordination numbers for a
variety of organic and non-organic systems. [49] The interaction coefficient for atoms A and B is
then calculated for a number of different coordination numbers, which is achieved by considering
the corresponding hydrides, and approximately decomposed to provide reference values for C6,AB.
This collection of coordination number-dependent C6-coefficients then serves as a reference
database and the final effective interaction coefficient, C (D3)

6,AB
, which enters Eq. (2.40), is obtained

from interpolation of the reference coefficients via

C (D3)
6,AB (CNA,CNB ) =

1

L

∑

Aref

∑

Bref

C6,ArefBref L(Aref,Bref) , (2.51)

where L(Aref,Bref) = e
−p3

[(

CNA−CNAref

)2
+

(

CNB−CNBref

)2
]

(2.52)

and L is the sum of all Gaussian distances L(Aref,Bref), The last global ad hoc parameter p3 = 4
to assure smooth behavior at integer coordination numbers. [49] Thus, the effective interaction
coefficients are interpolated from reference values based on their local coordination. The general
procedure for the definition of coordination numbers and the interpolation scheme is thereby, in
principle, completely arbitrary and was motivated by numerical results. [49] The geometry-based
D3 model neglects any electronic-structure and explicit screening effects, but at the same time
allows for a vdW correction for any given total energy method including MM or DFTB. [156] As
showcased by Ehrlich et al. strong electronic-structure effects like far-from-neutral species, can
be incorporated by a suitable choice of reference systems for the interpolation scheme. [157] For
general applications however, such an approach introduces a certain degree of empiricism and
requires a careful choice and testing. Recently, also a more straightforward approach to include
such effects by rescaling of interaction coefficients based on atom-in-a-molecule charges was
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proposed (D4) and shown to significantly improve transferability and general applicability. [158]

The D3 scheme also involves an additional term for pairwise dipole–quadrupole vdW interactions,
which scales as 1/R8 (derived from perturbation theory). The C8-interaction coefficients, i.e.

the equivalent of C6 for dipole–quadrupole vdW interactions, are computed recursively [159–161]

based on the corresponding C6-coefficients. [49] For the damping, the original scheme employed
a formulation proposed by Chai and Head-Gordon. [162] Including the quadrupolar interaction
term, this defines the vdW energy in D3 as

E (D3)
vdW =−1

2

∑

A 6=B

∑

m=6,8

p(m)
4

1+6
(

p(m)
5 ·R(AB)

D3 /RAB

)2nb+m+4

C (D3)
m,AB

Rm
AB

. (2.53)

Above, nb = 2 for two-body interaction and m = 6,8 denotes dipole–dipole and dipole–quadrupole
interaction. p4 is a rescaling factor for quadrupolar interactions (p4 = 1 for m = 6), while p5 is
optimized for a given electronic-structure method and, together with the atom pair-dependent
cutoff radius, RD3, determines the onset of the vdW correction. The cutoff radius RD3 is deter-
mined from the attenuation of the (semi-)local interaction energy below a certain threshold
for the corresponding dimer. [49] Such a choice of cutoff parameters instead of vdW radii in the
damping function can conceptually be justified as the appropriate range-separation is not neces-
sarily a function of vdW radii, but depends on the range of electron correlation captured by the
underlying (semi-)local electronic-structure method. This, however, is highly system-dependent
and a rigorous scheme for arbitrary systems has not been derived so far. As an alternative range-
separation, it was proposed to employ a rational damping as developed for the XDM model also
in D3. [125,126,130] The damping in this widely-used D3-BJ approach thereby relies on a switching
radius defined by the square-root of the ratio of effective C8- and C6-interaction coefficients. [130]

A common extension of the D3 framework is to also include beyond-pairwise terms in the form
of the three-body term according to Axilrod and Teller [163] and Muto (ATM), [164]

E (ATM)
vdW =

∑

A,B ,C

[

cos
(

ϕ
)

cos(ϑ)cos(θ)+1
] C9,ABC

(RAB RBC RC A)3 , (2.54)

where ϕ,ϑ,θ are the angles of the triangle spanned by the positions of atoms A, B , and C . In the
context of D3, the effective three-body C9-interaction coefficients are approximated as minus
the square-root of the product of the corresponding two-body C6-coefficients. In order to use
the ATM three-body energy together with (semi-)local electronic-structure calculations, the ATM
term has to be damped at short distances. Within the D3 framework, this damping is the same as
the first term in Eq. (2.53) using p4 = 4/3, nb = 3 and m = 6. The definition of an effective distance
for the damping thereby introduces an inevitable ambiguity, which lead to the formulation of
various forms. [91,165–167] Together with intricate error cancellations, this ambiguity can give rise
to a sometimes unpredictable performance of adding the ATM three-body term. [29,91,168,169]

2.3.4 Non-Additive Aspects of van der Waals Interactions

Theoretical Considerations

The above derivations introduce the theoretical foundations and select practical formulations
of the approximate, pairwise vdW (interaction) energy. However, no rigorous and seamless way
of obtaining the damping function, the short-range screened polarizabilities, or the resulting
C6-interaction coefficients has been put forward to date. In addition, the expansion (or corre-
sponding perturbation) series is truncated at second order and one has to invoke an additional
approximation for the — at least long-range part of the — coupling potential, Txc, to arrive at
the pairwise formula (2.40). As classified by Dobson, [170] effects beyond this pairwise-additive
expression for vdW interactions can, in general, be understood in terms of three different aspects
of non-additivity.
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2.3 van der Waals Dispersion Interactions

• Type A: The effect of the local chemical environment on the polarizability apart from short-
range screening. One often relies on partitioning the system into its constituent atoms
for the construction of the polarizability of the (sub)system. Type A non-additivity can be
understood by the fact that the polarizability in the KS reference system does not correspond
to a superposition of ααα0 of isolated atoms. This type of non-additivity is accounted for in
almost all modern vdW models.

• Type B: Electron correlation and screening are defined by multi-center integrals. This
enters the ACFD formalism both in form of the electrodynamic screening in the Dyson-like
equation (2.30) as well as in the expansion series of the (long-range) correlation energy to
finite orders of n in Eq. (2.34), i.e., many-body interactions and higher-order correlation
terms. The difference of coupled N -center interactions and a sum of pairwise terms is
illustrated in Fig. 2.1: In the pairwise formula, the energy arises as the sum of the interaction
of ideally oscillating pairs of dipoles. However, all oscillations are coupled simultaneously
(multi-center interaction), which does not necessarily correspond to a sum of ideally corre-
lated dipoles [171] as shown by select collective density fluctuation patterns for the simple
example of an Argon trimer in Fig. 2.1 (right). This type of non-additivity manifests itself
particularly in (sub)systems with strong anisotropy, complex geometrical arrangements,
or reduced symmetry (1D, 2D materials) and can substantially alter the scaling laws of the
vdW interaction. [50,92,110,114,170,172]

• Type C: Assigned to systems with extremely large delocalization lengths, basically corre-
sponding to intrinsic electron hopping between atomic centers. Such phenomena cannot
be fully described within an atom-centered framework of polarizability and electronic
fluctuations. Understandably, type C non-additivity almost exclusively appears in systems
with (near-)zero band (or HOMO-LUMO) gap, which allow for quantum-mechanical fluctu-
ations to cause instantaneous electron hopping. [170]

Fig. 2.1: Illustrative compari-
son of the (assumed) physics
behind pairwise-additive (left)
and many-atom (right) van der
Waals methods in an atomistic pic-
ture and dipole limit for an Argon
trimer. The arrows of a given color
each depict a mode of simultaneous
electronic fluctuations (represented
by instantaneous fluctuations around
atomic centers). Argon atoms shown
in cyan. Reproduced from Ref. 1
with permission from the Royal So-
ciety of Chemistry.

Experimental Indication and Proof of Non-Additivity

Recent years have also brought forth a growing number of experimental observations of the
non-additive nature of vdW dispersion forces. One of the most well-known deviations from
pairwise additivity thereby appears when a single atom or molecule is interacting with a metallic
surface. Since the early theoretical works by Lifshitz [150] and Zaremba and Kohn [151] it is known
that, at larger separations, the interaction energy follows a D−3 power law, where D is the distance
of the atom or molecule to the surface. Atomic force microscopy (AFM) measurements by Wag-
ner et al. [173] confirmed this scaling law and quantified the non-additivity. Also between adsorbed
molecules, several experiments observed strongly non-additive long-range interactions. [174–176]
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In a study on the adsorption of gold nanoparticles on multi-walled carbon nanotubes, Rance et al.

showed that the adsorption affinity scales quadratically with the accessible surface area of the
nanotubes and is highly non-linear for more complex nanostructures. [177] In contrast, pairwise-
additive vdW models, neglecting molecular anisotropy and collective behavior, predict a simple
linear dependence in those cases. Batista et al. emphasize that the non-additivity of interactions,
including dispersion forces, arise particularly at the nanoscale [178] due to complex geometrical
arrangements and the resulting polarizability anisotropy. Such behavior beyond pairwise additiv-
ity, however, can also extend to the meso- and macroscale as shown by the interaction range of
proteins, bacteria, and gecko feet with bulk silicon. By separating the respective adhesive partner
and the silicon substrate with an increasing layer of silicon dioxide, Loskill and co-workers showed
that the interaction extends up to a separation of 10–20 nm, [179,180] while a pairwise formalism
predicts only 1 nm. On the other side, covering dielectric bulk materials with strongly anisotropic
monolayers can also screen the vdW interaction between the surface and an adsorbed molecule.
Using AFM, it has been shown that the D−3-dependence predicted by Lifshitz-Zaremba-Kohn
theory holds for the interaction of the metallic AFM tip with pristine silicon dioxide. When
the surface is covered by a 2D-material, such as graphene or molybdenum disulfide, the tip
seems to only interact with the adsorbed 2D-material. [181] This unexpected behavior could be
explained by in-plane electronic fluctuations within the 2D-material being decoupled from the
bulk and with that screening electronic fluctuations perpendicular to the surface, i.e., those re-
sponsible for the interaction of the AFM tip with the surface through the adsorbed monolayer. [182]

As most of our experience and understanding of vdW interactions is based on rather small
systems, where a pairwise approximation tends to be qualitatively sufficient, many of the phe-
nomena arising at larger length scales are still not entirely understood. This and the growing
interest in nanostructured and low-dimensional materials motivate on-going studies includ-
ing a quantum-mechanical many-body treatment of vdW interactions. The ability to reliably
model and understand the interactions in such systems is of utmost importance for the design of
composite nanostructures [177] and future (nano)technological developments as well as a better
understanding and exploitation of biomolecular processes. This calls for a more advanced de-
scription of vdW dispersion beyond the traditional pairwise picture.

2.3.5 Interatomic Many-Body Method: The Many-Body Dispersion Formalism

A very successful and efficient approach to beyond-pairwise vdW interactions is the many-body
dispersion (MBD) formalism. [50,51] As most practical post-DFT vdW models, it is based on a
dipole approximation or RPA in an interatomic framework. The latter can be interpreted as
coarse-graining the response functions entering the long-range ACFD/RPA formula (2.35), which
we will repeat here for reasons of clarity:

E (lr,RPA)
corr =−

∞∑

n=2

(−1)n

n

1

2π

∞∫

0

〈

Tr
{〈(

ααα(sr) Tlr
)n

〉

r′′,r′′′

}〉

r,r′
du . (2.55)

The coarse-graining is usually chosen such that the spatial integration in Eq. (2.55) can be per-
formed analytically, which significantly reduces the computational cost. In Sec. 2.3.2, we already
introduced such a coarse-grained polarizability in terms of atomic polarizabilities, see Eq. (2.36).
In MBD formalism, the total polarizability is contracted to a sum of effective isotropic atomic
(dipole) polarizabilities.‡ Such atomic/molecular response properties have been shown to be
accurately described by a quantum harmonic oscillator (QHO) model. [50,51,183–186] In fact, the
leading Padé approximant of the dynamic isotropic atomic dipole polarizability [137] follows the

‡ The MBD formalism does not fundamentally exclude anisotropic polarizabilities on the atomic scale. The choice of
isotropic atomic polarizabilities, however, allows for an efficient, analytical evaluation of the dipole coupling.
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same formula as the dynamic dipole polarizability of an isotropic QHO,

α
(QHO)
A (i u) ≡α(TS)

A (i u) =α(TS)
A,0

[

1+
(

u

ηA

)2]−1

, (2.56)

where α(TS)
A,0 ≡ α

(QHO)
A (0) is the effective static QHO polarizability and ηA is the characteristic

excitation frequency of QHO A. Hence, the remaining step is the parametrization of such QHOs
to model atoms in molecules. As in vdW(TS), αA and ηA are obtained from atomic reference data
taking into account the local chemical environment (type A non-additivity) according to

xA ≈
α(TS)
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√
√
√
√
√
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6,A A

C (ref)
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3

C (TS)
6,A A

(

α(TS)
A,0

)2 , (2.57)

where the rescaling factor x is derived from the electronic structure, conventionally as the ratio of
the volumes of the atom in the system and the reference atom as obtained via Hirshfeld analy-
sis [140] (this is further detailed in Sec. 2.3.3 above). Equivalently to the case of vdW(TS), the MBD
formalism can also be parameterized solely based on the system’s density matrix with the use of
Eq. (2.49), which allows for its use in conjunction with, e.g., the DFTB framework. It is worthwhile
to mention, that a QHO has a natural width and thus goes beyond point-like dipoles, [187] while
the short-range dipole coupling tensor between QHOs with overlapping densities can still be
evaluated analytically. [188] This short-range dipole tensor, T(sr)

QHO, is then used to explicitly account
for short-range screening on top of the effects of the local environment according to the inverted
coarse-grained Dyson equation, [187,189]

α(sr)
A (i u) =

1

3
Tr

{

∑

C

BAC

}

; B =
(

A−1
u +T(sr)

QHO

)−1
, (2.58)

where Au = diag
{

α(TS)
A (i u)·13

}

is a diagonal matrix containing three times α(TS)
A (i u) for each atom

A (i.e., the xx, yy, and zz component of the corresponding isotropic atomic polarizability tensor).
The summation over all atoms C corresponds to the integration over the whole space in the Dyson
equation and the factor 1

3 , together with the trace operator, restores an isotropic effective polariz-
ability. Explicit account for short-range screening already significantly improves the description
of the polarizability compared to the superposition of effective atomic polarizabilities [50,147] and
then enters a coarse-grained ACFD/RPA formula for the long-range correlation energy of the
form of Eq. (2.36). For the long-range coupling there is a negligible overlap between the QHOs.
Therefore, the bare dipole potential is applied. So, to a very good approximation, the long-range
ACFD/RPA formula for an N atom system can be evaluated based on a set of N dipole-coupled
QHOs. Such a set of N three-dimensional QHOs can be described in terms of mass-weighted
displacements, ζζζA =p

mA (rA −RA), and the Hamiltonian,
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with VVV
(i , j )
AB

= ηAηB

(

δi j +
√

α(sr)
A,0α

(sr)
B ,0 T

(i , j )
AB ,lr

)

,

where the collective variable ζζζ is the direct sum of all ζζζA and (i , j ) denotes the Cartesian compo-
nents of the AB-sub-blocks of the potential matrixVVV and the long-range dipole coupling tensor
T(lr)

AB
. Similar models to describe (many-body) dispersion interactions within the dipole limit were

already known and used earlier. [183,190–196] These methods, however, were typically based on
simpler model polarizabilities and did not offer general parametrization and applicability for
realistic systems.
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Fig. 2.2: Schematic illustration
of the MBD model with range-
separated self-consistent screening
(rsSCS): Effective atomic polarizabili-
ties are obtained from electrodynamic
screening using the short-range part of
the range-separated dipole tensor for
quantum harmonic oscillators. The in-
teraction between the oscillators is then
evaluated using the long-range part of
dipole coupling tensor. Reproduced
from Ref. 1 with permission from the
Royal Society of Chemistry.

As a mathematically equivalent, yet much more efficient, alternative approach, it has been
shown that the long-range RPA correlation energy of this dipole-coupled set of QHOs equals its
(zero-point) interaction energy. [51,131] Thanks to the bilinear form (2.59), this can be obtained
numerically exact via unitary transformation to a new collective variable, ξξξ = Cζζζ, where the
transformation matrix C diagonalizes the potential matrix:

CVVV C† = diag
{

ω2
i

}

. (2.60)

With the kinetic energy operator, T , being invariant under unitary rotations, C transforms the
MBD Hamiltonian into an uncoupled set of 3N one-dimensional QHOs,

HMBD
(

ξξξ
)

= Tξξξ+
1

2
ζζζ†C† CVVV C† Cζζζ = Tξξξ+

1

2
ξξξ† diag

{

ω2
i

}

ξξξ=
3N∑

i=1
Tξξξi

+
ω2

i

2
‖ξξξi‖2 . (2.61)

This set of QHOs can be solved according to textbook and its total energy is given by half the sum
of its characteristic frequencies ωi . The (zero-point) interaction energy, ultimately corresponding
to the RPA long-range correlation energy within the QHO response model, is given by

E (MBD)
vdW = E

(coupled)
QHO −E

(non-interacting)
QHO = 1

2

3N∑

i=1
ωi −

3

2

N∑

A=1
ηA . (2.62)

Finally, the range-separating function to define Tsr and Tlr, is chosen of Fermi-type,

g (MBD)
rs

(

RAB ;R(AB)
vdW

)

=
{

1+exp

[

−a

(

RAB

β ·R(AB)
vdW

−1

)]}−1

, (2.63)

where a = 6 and the effective vdW distance, R(AB)
vdW = 3

p
xAR(A,ref)

vdW + 3
p

xB R(B ,ref)
vdW , where one relies

on a rescaling of accurate reference data of vdW radii (for further details, see Sec. 2.3.3). The
range-separation parameter, β, is an empirical parameter fitted to provide optimal results for
small molecular dimers. [50] As the range-separation parameter also represents a measure of when
the long-range correlation model has to be included, it gives an estimate of the range of correla-
tion already captured by the underlying (semi-)local electronic-structure method. [197] Optimized
range-separation parameters for select DFTB parametrizations are given in Appendix A1.

Practical Aspects and Related Models

Being formally equivalent to the full long-range RPA correlation energy for a set of QHOs, the
MBD formalism includes many-body interactions up to N atoms and incorporates correlation
effects up to infinite order. The two main differences are the assumption of isotropic polariz-
abilities and that those can be modeled via a single QHO per atom. Relying on the QHO model
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2.3 van der Waals Dispersion Interactions

polarizability, on the other side, fundamentally binds the charge fluctuations to a given atom (no
electron hopping), which limits the validity and applicability of MBD for metallic systems (no
account for type C non-additivity, see Sec. 2.3.4). For a variety of non-metallic systems in different
chemical environments, on the other side, the two approximations have been found to be very
reliable and accurate. In fact, in various cases the MBD formalism yields the same results as the
RPA-approach, while requiring only a fraction of the computational workload: The MBD method
scales as O(N 3) with the number of atoms N for inversion and diagonalization, see Eqs. (2.58)
and (2.60), and has a comparably small prefactor thanks to avoiding integrations at run time and
requiring only a few inversions and a single diagonalization. After its original formulation for
the vdW energetics of finite-gap molecules, the applicability and efficiency of MBD was further
boosted by the derivation of the analytical gradient expression [51,189] and a reciprocal space
formulation, [198] which allows for efficient simulations within periodic boundary conditions and
advanced the applicability of the MBD formalism to molecular crystals and layered materials.

As mentioned above, for a set of QHOs, the MBD formalism is mathematically equivalent to the
full long-range RPA correlation energy. For this to yield accurate energies for realistic systems, the
set of QHOs has to accurately model the response properties of the system. For that, the MBD
model relies on the procedure originally proposed in the vdW(TS) scheme (vide supra), which
is based on the rescaling of accurate reference data according to Hirshfeld volume ratios. As a
result, MBD can also suffer from the common shortcomings of the Hirshfeld partitioning scheme
such as to underestimate charge transfer effects on the atomic polarizability. [144–147] It should be
stressed, however, that this is a shortcoming of the underlying (Hirshfeld) partitioning scheme
and not the MBD framework itself. As for the vdW(TS) model, iterative Hirshfeld partitioning or
using a charge-dependent reference state for atomic polarizabilities can substantially improve
the limitations in the parametrization of the QHO model of electronic response. [145,147,148]

Modeling electronic fluctuations and their interactions within the so-called Drude approxi-

mation (i.e., via negatively charged pseudo-particles harmonically oscillating around atomic
centers) has already been known and used in the context of vdW interactions by London in
the 1930s. [123,199,200] Based on this picture, Whitfield and Martyna [201] proposed a more gen-
eral approach to model (many-body) induction and dispersion: the quantum Drude oscillator
(QDO) model, which also largely motivated the development of the MBD framework. In the
QDO model, the oscillating pseudo-particles interact via the full Coulomb potential, with that
going beyond the typically invoked RPA or dipole approximation. The model is defined by the
(effective) charge and mass of the pseudo-particles and the characteristic frequency of their
oscillation. With an appropriate choice of these three parameters, the QDO model can accurately
describe the response properties, many-body induction and dispersion interactions of a given
system up to infinite order. [185] Direct derivation of effective parameters for realistic systems,
however, represents a challenging task. Also the evaluation of the interaction energy, which is
typically done via imaginary-time path integration [201] or diffusion quantum Monte-Carlo, [202]

limits its applicability in terms of system size. Recently, this model has been used to showcase the
relevance of many-body and multipolar vdW interactions in water and at its surfaces. [186,203]

SCS and MBD as Model for Electronic Response and Polarization Fluctuations

As presented above, introducing the coupled oscillator model allows to coarse-grain and invert
the Dyson-like screening equation. This allows to obtain effective polarizabilities, which include
the effect of the surrounding field of (finite-width) dipoles. [187] Starting from a set of unscreened,
local polarizabilities as represented by Au = diag

{

αA(i u)
}

, the so-called relay matrix,

B =
(

A−1
u +TQHO

)−1
(2.64)

introduces non-local terms through the dipolar coupling between the oscillators. Note that for
a single atom or a set of non-interacting oscillators, B = Au . In the framework of MBD@rsSCS,
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2 Theoretical Background

one only applies the short-range part of TQHO in the above equation, because the RPA formula
and thus the MBD model implicitly include long-range screening effects as shown above or more
explicitly and in further detail in Ref. 51. For obtaining polarizabilities with full-range account of
screening effects, however, one has to use the full dipole–dipole tensor in the above equation. The
individual elements of the relay matrix, finally, describe the non-local intra-system polarizability,

ααα
(

r,r′, i u
)

=
∑

A,C
δ3(r−RA) δ3(r′−RC

)

BAC . (2.65)

This procedure does not provide polarizabilities as accurate as, e.g., time-dependent DFT calcula-
tions, but represents a reliable approximation [114] and thanks to its simplicity allows to study the
electronic response properties in complex systems as considered in this thesis. Summing over
rows or columns of B then provides local (atomic) polarizabilities as used for the definition of the
MBD Hamiltonian above. It should be noted that using a diagonal matrix Au implies that there
are no polarizability anisotropies introduced in the preceding parametrization of the QHOs as
assumed in the ordinary vdW(TS) procedure. Nonetheless, the above formalism and equations
are equally valid with other definitions of Au and thus also allow to introduce anisotropy already
at the level of the local chemical environment or the chosen parametrization procedure. Through
the (anisotropic) dipolar coupling, Eq. (2.64) finally introduces anisotropy into the polarizability
both on an atomic and molecular level. Early on, this has already been shown to considerably
improve the polarizability anisotropy in N2, for example. [50] The SCS formalism can also be used
in conjunction with the vdW(TS) approach. In order to account for electrodynamic screening in
addition to the Hirshfeld-rescaling-procedure, the pairwise C6-interaction coefficients entering
Eq. (2.48) can be calculated from atomic polarizabilities as obtained from the relay matrix, i.e.,

C (TS@SCS)
6,AB

= 3

π

∞∫

0

α(SCS)
A

α(SCS)
B

du with α(SCS)
A

= 1

3
Tr

{

∑

C

BAC

}

. (2.66)

Such an approach can be used to dissect the role of screening and multi-center interactions for
vdW dispersion (further sub-classifying type B non-additivity as described in Sec. 2.3.4).

The MBD formalism then builds upon this QHO model of electronic response. The vdW (in-
teraction) energy in MBD is defined as the difference between the ground-state energy of the
dipole-coupled (DC) state and the uncoupled set of oscillators. The vdW energy can thus be seen
as the (change in the) “zero-point vibrational energy” of the electron density, which resembles
the intrinsic electronic quantum fluctuations the ACFD theorem is based on. In the same spirit,
the solution of the DC set of oscillators resembles “zero-point vibrations” in the electron density
and thus a model for the intrinsic electronic behavior within dipolar coupling. In its transformed
form (2.61), the Hamiltonian for the DC state,

HDC
(

ξξξ
)

≡HMBD
(

ξξξ
)

=
∑

i

Tξi
+ 1

2
ω2

i ‖ξi‖2 , (2.67)

represents a simple uncoupled set of one-dimensional harmonic oscillators. Following the above
remarks, the collective coordinates ξi , provide an eigenmode representation of the intrinsic
electronic behavior and have been used to characterize the vdW bonding of nanostructures
and π–π-stacked or supramolecular complexes. [35,172] Within the coupled oscillator model of
electronic response, the eigenfrequencies obtained from the eigenmode transformation represent
dissipation channels for incident (oscillating) electric fields. As such, there is a strong relation
between the eigenfrequency and the electronic (dipole) polarizability of a QHO as given by

α(u) = q2

m
(

ω2 −u2
) , (2.68)

where q and m represent the effective charge and mass of the oscillator. [36] This also allows
to define mode-specific polarizabilities, αi , providing detailed insights into electrodynamic
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2.3 van der Waals Dispersion Interactions

response properties. For a system of identical oscillators, this further gives rise toαi (0)·ω2
i
= const.

due to charge conservation. [172] With the simple form (2.67), it is also trivial to obtain the wave
function of the DC ground-state according to textbook as the product state of one-dimensional
QHOs along eigenmode coordinates,

ΨDC
(

ξξξ
)

≡ΨMBD
(

ξξξ
)

=
3N∏

i=1

(ωi

π

)1/4

e−
1
2 ωi ξ

2
i . (2.69)

This can be used to obtain general observables, O, for the DC state as the expectation value of the
corresponding operator,

〈

O
〉

DC =
〈

ΨDC
∣
∣Ô

∣
∣ΨDC

〉

. (2.70)

As an example, one can obtain the density of (Drude) pseudo-particles (i.e., the density of elec-
tronic or polarization fluctuations) and its change upon interaction. The latter thereby resembles
charge-polarization due to vdW dispersion and has been used to characterize the interaction
in supramolecular guest-host complexes. [35] In the following chapters, we will use the coupled
oscillator SCS approach and MBD formalism as a model for intrinsic electronic fluctuations as
well as the eigenmode and wave function representation of the DC state to further enhance our
understanding and description of vdW forces and electronic behaviors in complex systems.
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CHAPTER 3
Van der Waals Interactions and

Electronic Behaviors in Solvents

The molecular dynamics simulations, on which parts of the results in this chapter are based on,

were performed by Dr A. Hakami-Zanjani and the group of Prof S. Varma.

A system’s properties strongly depend on its environment — be it the thermodynamic conditions
or the phase in which the system resides. To accurately model and understand realistic systems,
it is imperative to account for these parameters during simulation. A very prevailing example
ubiquitous in chemistry, materials science and especially biology is a liquid or solvated system.
Yet, this setting arguably represents the most intricate case for simulation due to the mostly
ill-defined system boundaries and because of the various types of interaction that need to be
considered. In particular, non-covalent intermolecular interactions play an important role for the
electronic, thermodynamic, structural and response properties of a solute–solvent system and
its dynamics. For this purpose, various explicit and implicit (solvation) models have been put
forward, which usually perform well in describing the electrostatic and polarization, or induction,
effects of the solvent. This, however, usually holds true only for certain conditions (typically
designed for the liquid phase at room temperature and ambient pressure), which shows that the
physical description is incomplete. The role of vdW dispersion interactions with and within a
liquid phase has so far not been fully explored and understood on a fundamental level.

As detailed in Sec. 2.3, vdW interactions arise from long-range electron correlation, which makes
them inherently quantum-mechanical and many-body in nature. This fact strongly limits an
in-depth investigation of dispersion forces in solvation: Due to the solvent such systems involve
several thousands of atoms, but the majority of sophisticated electronic-structure methods, which
would accurately capture (long-range) electron correlation, is limited to a few hundred atoms
due to the associated computational costs. As an additional complication, vdW interactions
show a highly complex scaling with the system size, which renders an extrapolation based on
small- to medium-size systems insufficient. Typically, vdW forces are modeled via atom-pairwise
potentials of the well-known London-type form, which is based on a second-order truncation of
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3.1 van der Waals Energetics of Water and Cavity Formation

the many-body expansion for vdW interactions. In molecular mechanics (MM) force fields, which
as of today represent the prevalent technique for modeling (large-scale) solvated systems, the
vdW component is usually combined with an effective treatment of exchange (Pauli) repulsion
into a phenomenological description in the form of pairwise Lennard-Jones potentials. The
associated parameters, in the end, are usually obtained in a global fit procedure to reproduce a
select variety of observables. As a result there is only very limited direct access or physical rational
behind the parameters defining the effective potentials. The lack of treating the various (inter-
molecular) interactions at their full complexity also poses a major reason behind the typically
strongly limited transferability and validity of MM potentials. Despite the tremendous success of
these simplifications, our current description of vdW dispersion interactions in solvated systems
is far from the quantum-mechanical many-body character of long-range electron correlation
and neglects essential parts of the underlying physics. Thus, it is worthwhile investigating the
vdW physics of molecular solvents such as water on a more fundamental level before considering
(solvated) biomolecular systems.

3.1 van der Waals Energetics of Water and Cavity Formation

As a first step in this regard, one can consider the solvation of biomolecules in water on a
more qualitative level. In protein folding, for instance, a biomolecule transitions from a more
extended, disordered state to a more globular shape. Furthermore, hydrophilic residues get
exposed to the surrounding water, while hydrophobic residues get buried inside the protein core,
which optimizes the (short-range) interaction with the aqueous environment and minimizes
the disruption of the dynamic hydrogen bond network of the surrounding water. [204–206] So,
as a first model system to study vdW interactions during protein folding from the perspective
of the solvent, we consider simple, prismatic or spherical “placeholders” described by fixed,
coarse-grained methyl units. In order to investigate the effect of surface hydrophobicity, a given
portion of methyl units is replaced by methanol units. Classical molecular dynamics (MD)
simulations of the placeholders submerged in water are used to obtain ensembles to analyze the
effects of thermal fluctuations. The solvent’s vdW energy of the MD snapshots is calculated using
the atom-pairwise vdW(TS) approach and using a many-body treatment as given by the MBD
formalism. This allows to investigate beyond-pairwise effects on the vdW energetics of water
for the qualitative model of unfolded versus folded proteins. Effective polarizabilities as used to
parameterize the vdW(TS) and MBD models are obtained from DFTB calculations via Eq. (2.49).

Fig. 3.1: Distribution of
van der Waals energy during
thermal sampling of bulk wa-
ter with prismatic or spheri-
cal cavity and different inter-
face hydrophobicity. Distri-
bution of MBD energies shown
as full lines, vdW(TS) energies
as dotted lines. top: prismatic
cavity with varying interface hy-
droxylation. bottom: spherical
cavity.
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Fig. 3.1 shows the (normalized) distributions of the vdW energy of water per solvent molecule
obtained from the MD simulations of the individual placeholders. As can be seen from the
distributions for the prismatic (Fig. 3.1 top) and spherical placeholder (Fig. 3.1 bottom), nei-
ther the shape of the resulting cavity, nor the degree of surface hydroxylation (OH percentage)
substantially alter the thermal sampling of vdW energies. This holds true for both, the MBD
method (solid lines) as well as for the vdW(TS) approach (dotted lines). It is worth pointing out
that the vdW(TS) model yields consistently lower vdW contributions per water molecule than
the MBD formalism. Fig. 3.2 then shows the distribution of beyond-pairwise vdW energies per
solvent molecules as given by the difference between the many-body and pairwise treatments.
It shows that beyond-pairwise effects lead to an increase in the vdW energy by about 4.25 meV
per H2O (=̂ 0.1 kcal/mol). This difference, however, is consistent among all considered cases.
With the exception of a spherical cavity (Fig. 3.2 bottom) with 0 or 40 % surface hydroxylation,
the distribution of beyond-pairwise contributions shows a narrow spread. The two exceptions
are thereby likely only due to an insufficient thermal sampling and expected to converge to the
narrow distributions of the remaining cases with increased numbers of samples.

Given the close resemblance between our results for spherical and prismatic cavities in the distri-
bution of the vdW energy as well as of beyond-pairwise effects, the formation of differently-shaped
cavities does not affect the total vdW energetics of water. As the similarity in the distributions
applies equally-well throughout different percentages of interfacial hydroxy groups, also the
surface hydrophobicity does not give rise to different solvation states from the perspective of the
total or beyond-pairwise vdW energy. This allows to conclude a considerable robustness of the
intra-water vdW interactions with respect to thermal fluctuations. This can be explained by the
finite width of the polarizability, which renders long-range dispersion forces less sensitive to the
precise atomistic structure and thus thermal fluctuations in such dense systems. In addition,
the thermal sampling was obtained from MD simulations using classical MM force fields. The
systems studied here thus lack long-range structural ordering, which introduces a consistent
stochastic structure at the spatial ranges relevant to long-range vdW dispersion. This lack of
structural long-range order is supported by various nuclear magnetic resonance studies. [206,207]

It is important to note, however, that those experiments as well as the vdW energy merely probe
local structural characteristics and do not preclude dynamical long-range ordering or collective
nuclear dynamics. In this regard, recent terahertz experiments indicate considerable long-range
effects on the dynamics and polarization of water. [208–211] Obviously, this requires a long-range in-
teraction mechanism, which is not present in the traditional view of water being purely governed
by short-range interactions.

Fig. 3.2: Distribution of
beyond-pairwise contribu-
tions to van der Waals
energy of bulk water with
different cavities and inter-
face hydrophobicity. top:

prismatic cavity with varying
interface hydroxylation. bot-

tom: spherical cavity. Mean
values of distribution shown
as dotted lines.
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3.2 Electronic Behaviors in Molecular Liquids

In a next step, we analyze the characteristics of intrinsic electronic behaviors as described within
the MBD framework. For comparison, we extend the study to a mixed-polar (octanol) and a
non-polar solvent (n-hexane). The structures of the pristine liquids have been obtained as snap-
shots from classical MD simulations as above. The first characteristic is the spectrum of effective
frequencies, i.e., the density of states (DOS) of eigenfrequencies, ωi , as obtained within the MBD
formalism. As introduced in Sec. 2.3.5, the individual ωi can be interpreted as the excitation
frequencies of collective “zero-point vibrations” of the electron density. The eigenfrequencies
therefore represent absorption or dissipation channels for incident energy within the QHO model
of electronic response and are closely related to optical and (vacuum) ultraviolet absorption
— comparable to plasmon absorption in metallic systems. However, a clear comparison to ab-
sorption spectra is heavily limited due to superimposed presence of several spectral features of
the solvent in the low-petahertz region, such as the onset of the Rydberg series and individual
electronic excitation and ionization processes. The eigenspectrum further has a close connection
to the polarizability via Eq. (2.68). Note that such insights to electronic response properties are
completely absent in phenomenological, atom-pairwise vdW models.

Fig. 3.3 shows the DOS for bulk water (top), octanol (middle) and n-hexane (bottom). The spectra
of the corresponding monomers are shown in black. It can be seen that the DOS of bulk water
is substantially changed in comparison to the monomer spectrum. This is not only due to the
(restricted) sampling of different molecular conformations, but especially due to screening ef-
fects and the emergence of complex collective electronic fluctuations, which span over several
molecules and are ultimately responsible for intermolecular vdW interactions. One example that
appears very prominently in the spectrum of electronic fluctuations is hydrogen bond formation
as illustrated for water in the top graph of Fig. 3.3: Upon condensation, the high-frequency
peak of the monomer gets renormalized into a bimodal distribution, producing considerable
spectral weight at lower frequencies. In the atomistic framework of MBD, the high-frequency
gas-phase peak can be mapped to the oxygen atom, while the emergent lower-frequency signal

Fig. 3.3: Density of states
(DOS) of collective charge
fluctuations in bulk sol-
vents and corresponding
monomers. top: MBD DOS
for bulk water (blue). Renor-
malization of high-frequency
peak due to hydrogen bond
formation and O–O coupling
upon condensation highlighted
in grey. middle: octanol
(red) and bottom: n-hexane
(green). Respective monomer
DOS shown in black.
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(colored in grey in the top plot of Fig. 3.3) can be assigned to collective fluctuations linking several
oxygen atoms via hydrogen bonds. Comparing this behavior to octanol and n-hexane, we see a
similar but much less pronounced effect upon hydrogen bond formation in the alcohol, while
hydrogen-bond formation and the corresponding feature in the spectrum of eigenfrequencies
is absent in the pure hydrocarbon n-hexane. For octanol and n-hexane, one further observes
the lowest-frequency signal at larger wavelengths than in the case of water as well as more pro-
nounced satellite peaks in the lower-frequency band. This can be attributed to H–C coupling
within the monomer and between molecules in the condensed phase.

Next, we consider the change introduced in the DOS upon embedding different cavities into water,
given by the difference of the DOS of pristine water and the systems studied in Sec. 3.1 above.
Fig. 3.4a shows the range covered by plus and minus one standard deviation of the eigenspectrum
of bulk water in blue. In addition, the difference between the average spectrum of bulk water
and the DOS of water with a prismatic or spherical cavity is shown in red and green, respectively.
In both cases, this difference (ΔDOS) shows a transition from positive to negative values in the
low-frequency band and from negative to positive in the higher-frequency region. This represents
a considerable red-shift at lower frequencies and a blue-shift at higher frequencies. Given that
the MBD eigenfrequencies represent possible absorption channels, the same shifts apply to the
dynamic polarizability, α(u) = q2/m(ω2−u2). This change in the eigenspectrum can be attributed
to the introduction of a sizable vacuum inside the cavity. It should be noted that the observed
shifts are characterized by a high sensitivity to the water density and water model used in the MD
simulations. The shape of the cavity, on the other side, turned out to have a negligible effect on the
eigenspectrum, cf. agreement ofΔDOS for the prismatic and spherical cavity in the bottom right
inset of Fig. 3.4a. The same applies to the interface polarity. As shown in Fig. 3.4b, the differences
between different degrees of hydroxylation and a non-polar interface (0 % OH) are well within the
corresponding standard deviation. All (differential) spectra shown in Figs. 3.3 and 3.4 show the
superposition of 100 snapshots of thermal sampling at room temperature. The almost complete
lack of deviations reflects the robustness of the frequency fingerprints of intrinsic electronic
fluctuations with respect to thermal fluctuations in the atomistic structure.

Fig. 3.4: Change in den-
sity of states (ΔDOS) of
collective electronic fluctu-
ations in bulk water upon
cavity formation. (a) Range
covered by one standard de-
viation of bulk water DOS
(blue) obtained from thermal
sampling and DOS upon for-
mation of prismatic (red) or
spherical (green) cavity. (b)
Range covered by one stan-
dard deviation of water with
a spherical cavity correspond-
ing to non-hydroxylated inter-
face (green) and difference of
DOS for cavities corresponding
to hydroxylated interfaces (ma-
genta: 20 % OH, grey: 40 %
OH, orange: 60 % OH).
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3.3 Polarization Response in Solvents and Solvated Proteins

To further investigate electronic behaviors in liquids and molecular solvents, we study the non-
local (intra-system) polarizability. In Sec. 2.3.5, we have introduced the SCS formalism as an
efficient approach to obtain a reliable approximation to the non-local polarizability via the relay
matrix,

ααα
(

r,r′, i u
)

=
∑

A,C
δ3(r−RA

)

δ3(r′−RC

)

BAC =
∑

A,C
δ3(r−RA

)

δ3(r′−RC

) ((

A−1
u +TQHO

)−1
)

AC
. (3.1)

Ref. 114 presents the static non-local polarizability (i u = 0) for small organic molecules, which
shows an approximately-exponential decay with the distance between r and r′. To study the
scaling behavior of the intermolecular polarizability in the considered solvents, we here first
coarse-grain the relay matrix as obtained from Eq. (3.1) to molecular polarizability centers located
at the centers of mass, R, of molecules I and J according to

α
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r,r′, i u
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=
∑

I,J
δ3(r′−RJ

)

δ3(r−RI

) 1

3
Tr

{

∑

A∈I

∑

B∈J
BAB

}

, (3.2)

where we further simplify to isotropic polarizabilities. Finally, we integrate over frequencies to
account for the dissipation at all frequencies. According to the fluctuation–dissipation theorem,
this is proportional to the correlation between polarization fluctuations. [115,212] Dividing by the
Hartree energy, Eh, restores the units of (non-local) polarizability and allows to interpreted the
result as polarization response. Fig. 3.5 shows the absolute value of the integrated non-local
polarizability for water (a) and hexane (b) as a function of intermolecular distances. In both cases,
there is no unique relation between the polarization response and the distance d = ‖r−r′‖. This
means, the coupling of molecular polarization can vary significantly for a given distance. This
can be explained with the broad sampling of (relative) molecular orientations, local screening
effects and the response through a heterogeneous medium. In the very long-distance limit, the
polarization coupling can be represented by an effectively point-to-point-like response through
an average, approximately homogeneous medium, which causes a transition to a very narrow
spread. Point-to-point-like response through a homogeneous medium is a standard approach to
describe solvents in implicit models. Yet, the present results suggest that such a simplification is
only valid on length scales larger than ∼60 Bohr (30 Å) in water and ∼70 Bohr (37 Å) in hexane.

Fig. 3.5: Non-local polarization response in select molecular liquids as a function of intermolecular
distance. Results shown for bulk water (a) and hexane (b). Upper bound shown as dashed line.
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Despite the absence of a unique relation, there appear clear limits for the maximum polarization
response. As represented by the dashed lines in Fig. 3.5, the upper bound for water decays with
d−3, which corresponds to the well-known trend of (dipolar) pairwise polarization. For n-hexane
a slightly slower decay with ∼d−2.7 is observed. The prefactor of the scaling law also incorporates
the necessary conversion factors and has units of polarizability per length6−γ, where −γ is the
exponent of the scaling law. For a d−3-decay, this yields units of polarizability per volume.

Let us now turn to the response of a solvated biomolecule. To this end, we study the 35-residue
Fip35 Hpin1 WW domain (Fip35-WW). The structure of Fip35-WW in explicit water was taken
from a previous protein folding study by Shaw and co-workers. [14] To understand the different
aspects of electronic polarizability in such a multi-component system, we study the polarization
response within the aqueous environment and the protein as well as between the protein and the
surrounding water molecules individually. In the case of the aqueous environment, we observe
the same behavior as for pristine water. The polarization response among water molecules is not
notably altered by the presence of the protein. The intra-protein response is studied in atomistic
detail and on the level of residues coarse-grained according to Eq. (3.2). When considered on an
atomistic level, as depicted in Fig. 3.6a), the intra-protein polarization response shows a similar
behavior as observed for water above (see Fig. 3.5). In contrast to water, however, the large spread
at intermediate distances is due to the fact that each polarizability center can represent a different
atom and screening effects of the heterogeneous environment. As a result of the former, we also
do not observe a collapse onto a narrow spread at large separations as it was the case for water.
Coarse-graining the intra-protein response to a residue-based model then naturally leads to an
overall increase of the polarization response as the non-local polarizability scales with the size of
the considered moieties. In addition, the decay of the upper bound is slightly more long-range
with a ∼d−2.8-trend similar to the one observed for n-hexane. This phenomenon can be explained
by collective features emerging from combining individual atomic non-local polarizabilities in
the integration over the residue volume. This also explains the decay found for n-hexane, where
the polarizability is integrated over a molecular volume that is similar to the one occupied by the
individual residues.

Fig. 3.6: Polarization
response in the protein
subspace of solvated
Fip35 Hpin1 WW domain.
(a) Response on atomistic
level as a function of inter-
atomic distance (blue).
(b) Non-local polarization
coupling among protein
residues as a function of their
separation (orange). Polariz-
ability given on logarithmic
scale and in atomic units.
Upper limit to polarization
response shown as dashed
line including corresponding
power-law decay.

37



3.3 Polarization Response in Solvents and Solvated Proteins

The above behaviors of the intra-protein response as a function of the distance, thereby, apply
to unfolded as well as folded states. The polarization coupling between individual regions of
the protein, on the other side, does change significantly during the folding process. This can
be explained by the change in conformation and relative orientation of the residues. Fig. 3.7
compares the (integrated) polarizability matrix for an unfolded and folded state of Fip35-WW
on a per-residue-level. Light colors show weak coupling and dark regions a more pronounced
response between the residues. For the disordered state shown on the left of Fig. 3.7, the relay
matrix consists of two fairly-decoupled parts at both termini. This resembles the conformation
of the corresponding structure with two compact moieties as shown in the inset. For the folded
state depicted on the right of Fig. 3.7, a much more structured pattern emerges in the polarization
coupling. During the folding process, the WW domain forms a the triple-β-sheet among the
residue groups Pro6–Arg14, Gly16–Ile24 and Asn26–Arg32. The corresponding submatrices of the
non-local polarization response are marked in blue in Fig. 3.7. As can be seen from this analysis,
the distinct features of increased polarization coupling arise in exactly these areas and can thus be
assigned to the formation of the triple-β-sheet during folding. Interestingly, there is also a sizable
response between the first and third sheet. The last pronounced difference between the relay
matrices of the unfolded and folded state is the considerable coupling between the two termini
(marked in green). This can be explained by their close proximity in the native conformation
compared to the disordered state. So, while the decay of the intra-protein polarization response
does not change notably during folding, the coupling between individual residues/moieties does
change substantially and the emergence of secondary structure elements has a marked effect
on the non-local polarization response. With ordering the polarizability matrix according to
sequence, substructures orthogonal to the diagonal can be assigned to the coupling between
anti-parallel strains like neighboring β-sheets or hairpins, while features parallel to the diagonal
represent coupling between parallel strains (e.g., non-neighboring β-sheets or helices).

Fig. 3.7: Non-local polarization response within the Fip35 Hpin1 WW domain in an unfolded (left)
versus folded conformation (right). During the folding process, a clear pattern of strong polarization coupling
emerges. This can be assigned to the formation of the triple-β-sheet (submatrix of the corresponding residues
marked in blue) and the proximity of the two termini in the folded state (top right corner, marked in green).
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For the polarization coupling between the protein and the surrounding water molecules, finally,
we consider three levels of coarse-graining: atomistic resolution of the protein, coarse-graining
to individual residues and the water molecules’ response to the full protein represented by a
single polarizability center. The aqueous environment is represented by one polarizability center
per water molecule as used for pristine water above. As such, the response is affected by the
different atoms or residues on the protein side, screening effects of the heterogeneous medium
as well as the molecular orientation of the individual water molecules, which leads to a large
spread in the intermediate region. Fig. 3.8 shows the absolute value of the non-local polarization
response for the three approaches as a function of distance. For the protein–water response
within atomistic treatment of the protein, we again observe the conventional decay with the third
power of the distance. As a result of the different polarizability centers on the protein side, the
response does not converge to a point-to-point-like response at large distances. When coarse-
graining the protein to individual residues, we find a slightly slower decay of the upper limit
following d−2.7 (cf. response among residues or n-hexane molecules above). The coarse-graining
procedure furthermore involves a slight alleviation of the differences between the polarizability
centers on the protein side (individual residues are more alike than individual atoms in terms of
their response properties), which leads to a much decreased spread in the large-distance limit.
Turning to the polarization response between the full protein and individual water molecules
shown in Fig. 3.8c), finally, we observe a substantial divergence from the conventional behavior.
When considering the polarization coupling between water and the full protein, the long-range
response is increased more strongly than the short-range regime. This leads to a much slower

Fig. 3.8: Polarization response
between Fip35 Hpin1 WW do-
main and surrounding water
molecules. (a) Polarization re-
sponse of coarse-grained aque-
ous environment to atomically re-
solved protein (blue). (b) Coarse-
grained representation of molecule
on a per-residue-level (orange).
(c) Full contraction of protein
to a single polarizability center
(turquoise). Polarizability given
on logarithmic scale and in atomic
units. Upper limit to polarization
response shown as dashed line in-
cluding corresponding power-law
decay.
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decay of the upper bound following a power law of ∼d−1.7 with a considerable decrease of the
prefactor in order to also incorporate the weaker effect on the shorter-range response. Integrating
over the response to the full protein, finally, also lifts the strong heterogeneity of the protein as
a response partner. As a result, we observe a clear collapse to a narrow spread at a distance of
∼48 Bohr (25 Å) to the protein–water interface. In this regard it should be noted that the distance
of a water molecule to the protein surface is inherently shorter than the one to individual protein
atoms or residues. The above behaviors have thereby been found for folded as well as unfolded
protein states.

3.4 Discussion of vdW Energetics and Response in Solvated Systems

Overall, the vdW energetics and response within solvents appear to be well described by pairwise
models and conventional scaling laws on an atomistic level. This includes the effects introduced
by cavity formation and interface hydrophobicity. For a final conclusion and confirmation, it
should be noted that the results presented in this chapter are based on classical MD simulations
using conventional MM force fields. As such the thermal sampling corresponds to the low-energy
states when using a pairwise model, which can differ from the thermally-accessible states within
many-body treatment of dispersion forces. Recent work in this regard has shown that structural
relaxation of conformations with a more complete treatment can bring out pronounced many-
body effects, when departing from the manifold of equilibrium/low-energy structures predicted
by pairwise vdW schemes. [213] This can be interpreted in terms of a “generalized variational
principle”: Many-body effects can provide additional stabilization to the system and relaxation
on the corresponding energy landscape maximizes these effects in order to achieve a minimum
energy. As a thermal ensemble is governed by Boltzmann population of available states, a similar
interplay of nuclear conformations and the effects of correlated electronic motion can appear for
the thermal sampling considered here.

In contrast to the bare intra-solvent vdW physics, the analysis of the intra-protein response
and protein–water coupling indicates emergent behaviors when considering larger moieties or
the spatial/conformational aspects of biomolecular processes. The much slower decay for the
non-local polarizability between the protein and water is thereby in line with the experimental
finding of long-range polarization response of water [208–211] and can likely be attributed to a
general collectivity in the non-local polarizability. The emergent many-body effects accumu-
late with more rigorous coarse-graining and finally lead to the slow decay when representing
the response of the full protein by a single polarizability center. This much slower decay can
eventually even surpass electrostatic coupling, which is strongly limited by the pronounced
electrostatic screening in water. On the contrary, the polarization response discussed in Sec. 3.3 is
concerned with the correlation of polarization fluctuations, which are subject to electrodynamic

screening as accounted for by Eq. (3.1). This corroborates the open question about the dominant
form of longer-range interaction in aqueous solvation. The considerable changes in the scaling
laws upon coarse-graining also bear an important fact for the construction of coarse-grained
models or our general understanding on the more macroscopic scale: In complex systems and

environments, the conventional characteristics of response (and interaction) appear to still be valid

on an atomistic scale. Yet, on a larger or coarse-grained scale, non-additivity and the emergence

of many-body effects can lead to much different characteristics and complex behaviors. This is
well-known as a major challenge in the construction of coarse-grained descriptions of the free
energy landscape. [214,215] Based on the present results, we can conclude the same for the po-
larization response in condensed systems (and the derivative electrodynamical coupling and
interactions). Note that this not only applies to the much altered long-range power-law decay,
but also to the fundamental validity of simple, effective models. As can be seen from the analysis
of the polarization coupling as a function of distance, large parts of the systems are characterized
by a wide range of possible results without unique relation. From Fig. 3.8c), for example, it
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can be expected that the effect of the full protein on a second solute cannot be described as
point-to-point-like response through a homogeneous medium unless the inter-solute separation
is beyond 25 Å or more depending on the size and polarizability of the second solute. Below these
distances, the response properties and (electrodynamic) interaction strongly depends on the
heterogeneous environment, which renders a simple effective-medium model insufficient. It is
important to point out that the electrodynamic coupling not only plays a central role for vdW
dispersion, but also represents a key factor for spectroscopic response. As such, the emergence of
collective effects and alteration of conventional trends also affects electronic and optical response
properties. This can play an important role for the construction of coarse-grained oscillator
models and (exciton) Hamiltonians for the description of spectroscopic properties. Such models
are frequently used in the context of circular dichroism or electronic absorption in complex
systems, for instance. [216–220]

Apart from the construction of coarse-grained models, the above results can also have important
implications for biomolecular processes. In the majority of cases, biophysics is not concerned
with the interaction or response between individual atoms or small molecules, but rather involves
larger-scale phenomena such as structural transitions and the cumulative response between
larger moieties, which can be substantially affected by the emergent behaviors presented above.
This can be seen from the characteristic effects of structure formation on the intra-protein cou-
pling (Fig. 3.6) as well as the much slower decay of the polarization response of water molecules
to a full protein and, vice versa, the response and coupling of protein residues to the entirety of
the surrounding aqueous environment instead of to individual water molecules. To highlight
the characteristics and emergent effects on intra-solute and solute–solvent vdW physics during
such a larger-scale biomolecular process, the following chapter provides on a more detailed study
of the intra-protein and protein–water vdW interaction during protein folding including spatial
analysis of the collective electronic behaviors.
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CHAPTER 4
The Collectivity of van der Waals

Forces in Biomolecular Systems

Parts of this chapter have been published in this or similar form in

M. Stöhr and A. Tkatchenko, Sci. Adv. 5, eaax0024 (2019), distributed under CC-BY NC.

When considering biomolecules under physiological conditions, it is well-known that water
provides the environment in which the biomolecular machinery can exist and function. By
screening and stabilizing static electronic multipoles, water significantly alters the structure,
stability, and dynamics of biomolecules. [206,221,222] As mentioned in the previous chapter, the
favorable exposure of moieties with static electronic multipoles to water and the corresponding
burying of non-polar residues into a hydrophobic core, is also an important driving force for
protein folding. [204–206] While the importance of this hydrophobic effect and the pivotal role of
water for biomolecular systems is under no dispute, [204,205] the underlying fundamental physics
of solvated (bio)molecular systems is still not fully explored and understood.

In particular, here we focus on the quantum-mechanical nature of solute–solvent interactions. It
has already been shown that polarization effects and the many-body character of bonded interac-
tions and hydrogen bond networks play an important role for solvated systems, [206,223–225] but
also long-range vdW dispersion interactions form an essential component for water and for both
intra-protein and protein–water interactions. This vdW component has not been investigated
in full detail nor on a fundamental level up to now. In this chapter, we thus more specifically
address the protein–water vdW interaction and find that these quantum-mechanical interactions
can account for up to 30 % of the total solvation energy. Together with their essential role for
intra- and inter-protein interactions, this calls for a more complete microscopic understanding
of vdW dispersion forces under physiological conditions, which is imperative to shed light on
the physics of proteins in aqueous solvation. This is further motivated by the fact that conven-
tional classical potentials show limited transferability with respect to the conformational space
and results can vary widely among different force fields, when trying to cover both folded and
unfolded states or intrinsically disordered proteins. [24,226–228] It has already been shown that the
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4 The Collectivity of van der Waals Forces in Biomolecular Systems

quantum-mechanical, non-local vdW interaction is described insufficiently and inconclusively by
conventional approaches. [229,230] As such, they can represent a major origin for the limited trans-
ferability of classical potentials. In this context, previous studies have pointed out that traditional
MM potentials and water models likely provide an unbalanced description of vdW interactions
for proteins in water, [231] which usually results in an over-compaction of unfolded states. [226–228]

Typically, this unbalanced description is approached by adapting the pairwise vdW interaction
coefficients for the intra-protein, water–water, or protein–water interaction. [227,228,231] However,
such adaptions still can be highly system-dependent especially when also considering disordered
proteins. [24]

In this work, we seek to understand the fundamental basis for the failure of the traditional models
in a bottom-up approach. Such understanding is essential to pave the way towards a more
accurate and balanced description of the relevant conformational space of biomolecules, which
in the end plays a key-role for predicting folding mechanisms, barriers and potential misfolds. In
fact, an ab initio description of vdW interactions is the only way to study the role of the solvent,
as force field methods are typically strongly limited in their transferability between gas and liquid
phase due to their high degree of parameterization. In our study, we focus on a comparison
of a pairwise-additive description of vdW interactions and an accurate, quantum-mechanical
many-body treatment. The pairwise vdW models are represented by the vdW(TS) [48] as well as
Grimme’s D2 [127] and D3 [49] approaches. Such an approximate, pairwise formalism represents the
basis for the standard phenomenological description of long-range correlation in biomolecular
simulations via Lennard-Jones potentials. For comparison, we study the vdW interaction within
the MBD formalism, [50,51,131] which accounts for the many-body character of vdW dispersion
interactions to infinite order in perturbation theory within an interatomic framework and has
been proven to provide quantitative improvements and a better qualitative understanding com-
pared to the pairwise-additive approximation in numerous studies. [31,33–35,50,92,93,230] In the case
of polarizable supramolecular complexes and complex molecular crystals, which show similar
bonding features as biomolecular systems, MBD allows to reach a quantitative agreement to
within 1 and 0.5 kcal/mol, respectively, when compared to (near-)exact quantum-mechanical
methods and experiment. [33,35,232] Yet, its computational efficiency together with modern imple-
mentations and the ever-growing availability of computational resources, allows for treatment of
systems consisting of several thousands of atoms as required for studying biomolecular systems
such as solvated proteins.

As introduced in Sec. 2.3.5, the MBD formalism also represents a model for intrinsic electronic
fluctuations [35,172,233] — a molecular analogue to the plasmon pseudo-particle in metallic systems
— which we will use to further characterize the protein–water interaction. Such investigations
can provide essential insights to comprehend and conceptually understand vdW interactions as
recently illustrated for hybrid and nanostructured systems [172,233] or π–π stacked molecules. [35]

Considering the electrodynamical view on vdW dispersion offered by this model, it is important
to note that the dielectric permittivity of water has an expected value around 2.3 [234] at the fre-
quencies of the electronic fluctuations, which are responsible for dispersion interactions, i.e., at a
few petahertz (PHz). In contrast to static electronic multipoles, vdW interactions are therefore not
strongly screened by aqueous environments and, thus, can give rise to long-range interactions
also in solvated systems. As such, long-range correlation forces may play an important role for
the long-range ordering often observed in biological systems or form the quantum-mechanical
basis for the emergence of coherent molecular vibrations. [31,235] Such collective nuclear behav-
ior has been proposed to play an important role in long-distance recognition among biological
macromolecules. [236–239] Within the conventional view of solvated proteins, however, the basis for
long-range recognition under physiological conditions is still controversially discussed. Recent
studies also suggest connections between collective electronic fluctuations — the basis of vdW
dispersion interactions — and enzymatic action on DNA [240] or pharmaceutical activity. [241]
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We exemplify our findings in detail for the Fip35 Hpin1 WW domain (Fip35-WW) and further
showcase their general validity for the de novo Chignolin variant “cln025” and the fast-folding
Nle/Nle double mutant of the villin headpiece (HP35-NleNle). The folding trajectories of the three
proteins have been obtained in atomistic detail and explicit solvent in previous MD simulations
by Shaw et al., [14] Lindorff-Larsen and co-workers, [242] and Ensign et al., [13] respectively. All
vdW(TS) and MBD calculations reported below have been parameterized from DFTB calculations
with recent mio (Fip35-WW, HP35-NleNle) or 3ob parameters (cln025) using the DFTB+ software
package. [47] Consistency of the obtained polarizabilities for the two parameterizations has been
tested and confirmed based on Fip35-WW. MBD calculations have been performed using a self-
written implementation as now available in the libMBD package. [243]

4.1 Intra-Protein van der Waals Interaction

We start out by investigating the Fip35-WW trajectory artificially removing the surrounding
solvent from a MD trajectory in explicit water to focus on intra-protein interactions, where disper-
sion forces represent one of the main sources of interaction within the protein core. Accordingly,
we observe an increased magnitude of the vdW energy while this core is being formed and partic-
ularly during the hydrophobic collapse in all applied dispersion models (see Fig. 4.1). Notably,
in comparison to the results obtained within the pairwise approaches, many-body dispersion
effects consistently decrease the relative stability of the native state for the isolated protein by
6 kcal/mol on average, cf. Fig. 4.1(bottom). The outliers of this general behavior observed around
15 and 26 µs correspond to transient, partially-folded intermediates. The relative destabilization
by beyond-pairwise contributions can be explained by an overestimation of the intra-core vdW
interactions (“over-correlation”) in the pairwise approximation. By reducing the interaction
to pairwise-additive potentials, a two-body formulation assumes ideal correlation between all
pairs of atoms (see Fig. 2.1) and with that, neglects the complex geometrical arrangement within
the protein core. Such geometrical constraints limit the emergence of correlated fluctuating
dipole patterns and thus lower the interaction energy as already observed for a wide variety
of systems. [33,35,92,93,244] For small peptides such effects have been found to be mostly negligi-
ble. [229,245] Our findings show that for larger biomolecules, however, a many-body treatment
of vdW interactions is indeed essential, which is in line with the findings of Schubert et al. for
20-residue peptides. [230]

Fig. 4.1: Intra-protein vdW
interaction energy along
the folding trajectory of
Fip35 Hpin1 WW-domain
in solvated geometry.
top: vdW energetics as ob-
tained with MBD and the pair-
wise approaches vdW(TS) and
vdW(TS)@SCS, i.e., vdW(TS)
with self-consistent screen-
ing. RMSD from native
state shown in grey. bottom:
Beyond-pairwise contributions,
as given by the difference be-
tween many-body and pairwise
treatment. Reproduced from
Ref. 2 (distributed under CC-
BY NC).
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4.2 van der Waals Solvation Energy

In the MBD formalism, we make use of a two-step procedure: We obtain effective, screened
atomic polarizabilities from self-consistent electrodynamic screening to account for the presence
of multiple fluctuating dipoles in the system and then solve a many-body Hamiltonian, which is
defined in terms of these polarizabilities, to capture many-body vdW interactions (see Sec. 2.3.5).
To study the effect of each step, we combined vdW(TS) with the self-consistent screening proce-
dure. In this variant, which we refer to as vdW(TS)@SCS, screened interaction coefficients enter
the pairwise-additive potentials instead of the hybridized chemical analogue used in ordinary
vdW(TS), see Eq. (2.66). In this way, we account for the effects on atomic polarizabilities due to
the field of the surrounding dipoles, but do not include long-range many-body interactions. With
vdW(TS)@SCS we already capture some part of the destabilization of native states amounting
to 3 kcal/mol (cf. Fig. 4.1). Thus, half of the overstabilization in vdW(TS) is from neglecting the
presence of multiple dipoles in the system and half from the many-body character of dispersion
interactions. This also implies that for a proper description of gas-phase proteins, one has to
account for the screening of polarizabilities and the many-body nature of vdW interactions.

4.2 van der Waals Solvation Energy

Fig. 4.2(top) shows the vdW contribution to the solvation energy obtained with MBD and the
vdW(TS) model, as defined by E (sol) = EvdW[ps]−EvdW[p]−EvdW[s] with ps referring to Fip35-WW
in solvation, p to Fip35-WW in gas phase, and s to the pristine solvent. As an artifact of the above-
mentioned over-correlation within the pairwise approach, we find a consistent overestimation
of the dispersion contribution in vdW(TS). In terms of the relative solvation energy, however,
pairwise and many-body treatment show the same general trend, which qualitatively follows the
inverse root-mean-square deviation (RMSD) from the native state with a step coinciding with
the collapse of the protein into the native, more globular shape. This finding can be explained by
the removal of hydrophobic residues from the protein–water interface and thus decreasing their
interaction with the solvent. The average dispersion contribution to the solvation energy drops
by 29 kcal/mol (15 %) at the hydrophobic collapse. The step-like behavior of the vdW solvation
energy along the trajectory is even more pronounced than observed for the intra-protein vdW
interaction in the gas phase and almost resembles a two-state model of folded and unfolded
states. As such, the vdW solvation energy strongly correlates with the protein’s deviation from the
folded conformation. This feature has been found for all dispersion models considered here.

Fig. 4.2: Relative vdW sol-
vation energy, E

(sol)
rel

, during
the folding process of the
Fip35 Hpin1 WW-domain.
top: backbone root-mean-
square deviation from final
conformation illustrating the
hydrophobic collapse around
35 µs (gray). The vdW con-
tribution to the relative solva-
tion energy is shown for the
pairwise vdW(TS) model (red)
and MBD (blue). bottom:
Difference in the relative sta-
bilization by the solvent be-
tween MBD and the pairwise
vdW(TS) and D3 referenced
to the unfolded state. Repro-
duced from Ref. 2 (distributed
under CC BY-NC).
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Comparing many-body and pairwise treatment of dispersion interactions, Fip35-WW does no
longer feature a consistent change in the relative stability of native versus non-native confor-
mations once embedded in an aqueous environment. Thus, beyond-pairwise effects in the
protein–water vdW interaction stabilize folded conformations. Correspondingly, we see a clear
increase in the relative vdW solvation energy for native and native-like states, when comparing
the pairwise models to MBD (5 kcal/mol for vdW(TS), 7 kcal/mol for D3). This shift is due to the
lack of a systematic many-body (de-)stabilization in the total vdW energy of solvated Fip35-WW
and the water box during the whole folding trajectory (as concluded in Chapter 3), combined
with an inversion of the behavior observed for the isolated protein shown in Fig. 4.1. This implies
that the protein–water interaction compensates for the destabilization of native states through
many-body dispersion effects, observed in vacuo. In summary, besides screening permanent
electronic multipoles, water also provides the necessary environment to stabilize native confor-
mations via beyond-pairwise vdW interactions, which counteracts the destabilizing effect that
such many-body terms have on the intra-protein interaction.

4.3 Plasmon-like Solute–Solvent Interactions

As has been shown previously, MBD also provides a model for the intrinsic electronic fluc-
tuations: [35,172,233] In analogy to nuclear quantum effects, the electronic fluctuations, which
ultimately give rise to vdW interactions, can be understood as the zero-point fluctuations in the
instantaneous electronic charge distribution. The MBD formalism gives access to an orthonormal
decomposition of this zero-point fluctuation, which can be interpreted as “eigenmodes” of the
electron density. A detailed analysis of these electronic eigenmodes reveals that the number of
very localized high-frequency fluctuations, formerly mainly located on the solute, significantly
decreases upon coupling to the surrounding water. This implies a delocalization of electronic
fluctuations and an increase of the collectivity of electronic behavior. This plasmon-like character
and the delocalization over protein and solvent form the fundamental reason for the stabilization
of native states through many-body dispersion effects in the protein–water interaction. The
role of the surrounding solvent can be seen as providing weakly structured polarizable matter,
which counteracts the destabilizing many-body effects observed in vacuo for native and partially
folded states. To gain further insight into the characteristics of protein–water vdW interactions,
we additionally obtain the contribution of individual electronic fluctuations to the solvation
energy. As originally proposed in Ref. 35, the vector of mode-projected interaction energies, εint,
is obtained via

εεεint =
1

2
U†[Cps

]{

U
[

Cps
]

ωωωps − ωωωp/s − U
[

1
](

ηηηps −ηηηp/s
)}

, (4.1)

where C is the eigenvector matrix of the MBD potential matrix and ωωω and ηηη represent vectors
of all MBD eigenfrequencies and uncoupled frequencies, respectively. ps denotes the solvated
protein and p/s the system without protein–water interaction. The transformation matrix, U ,
thereby transforms the individual eigenfrequencies to the same eigenspace and is given by

U
[

X
]

=
[(

Cp ⊕Cs
)†

X
]∗

◦
[(

Cp ⊕Cs
)†

X
]

, (4.2)

where ◦ denotes an element-wise product. The above definition yields a doubly-stochastic matrix,
which upon multiplication with a vector preserves the sum of its elements representing the
MBD (interaction) energy. For a more detailed discussion, see Appendix A2. Fig. 4.3 shows the
mode-projected vdW solvation energy for an unfolded, partially-folded and native conformation
of Fip35-WW. Overall, the contributions to the vdW solvation energy arise from the frequency-
regions with a low DOS of MBD eigenfrequencies, which is dominated by the contributions of the
aqueous environment. As shortly discussed in Sec. 3.2, interaction between the individual QHOs
leads to the a broadening of the non-interacting DOS and the emergence of satellite peaks in the
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Fig. 4.3: Mode-projected van der Waals solvation energy (εint) of Fip35 Hpin1 WW domain. Con-
tribution per “electronic eigenmode” as a function of its characteristic frequency for unfolded state (blue),
partially-folded state (red) and native conformation (green). Density of states of eigenfrequencies shown in black.

spectrum. As such, the regions neighboring the main peaks of the DOS contain the emergent
collective electronic eigenmodes responsible for the protein–water interaction, which is perfectly
captured by our mode-projection analysis. The strongest contributions to the vdW solvation
energy can thereby be found for highly collective, wavelike electronic fluctuations around 2.5 PHz
(=̂ 120 nm). The contribution of this low-frequency domain to the protein–water interaction
adds up to 15 % (≈̂ 41 kcal/mol) and about 20 % (≈̂ 6.2 kcal/mol) for relative solvation energies.
The second largest contributions are from the region around 3.6 PHz. Also the high-frequency
end of the spectrum shows a notable interaction energy per mode, but due to the minuscule
DOS in this region, the overall contribution is negligible (e.g., ∼1 kcal/mol for relative solvation
energies). Regarding the magnitudes of the results shown in Fig. 4.3, note that the mode-projected
interaction energies are normalized to yield the total vdW solvation energy by construction.

Fig. 4.4A shows a real-space illustration of one of the low-frequency modes, which commonly
feature large charge displacements along the polarizable protein backbone coupled to electronic
fluctuations throughout the surrounding solvent. While a number of these wavelike fluctuations
remain largely on the protein, many reach from the protein backbone inside the hydrophobic
core far into the aqueous environment. To analyze this spatial extent, we combine the spatial
information of a given eigenmode with the corresponding contribution to the solvation energy.
This allows to define a radial interaction distribution as given by

Gint(R) =
∑

i

εi

∑

A

δR,RA

∑

j∈A

‖C
(i , j )
ps ‖2 , (4.3)

with δ as Kronecker-delta generalized to R. Conceptually, the above defines a radial distribution
of the atomic contributions to an individual eigenmode and then combines the distributions with
εint as weighting factor. Note that integrating Gint(R) yields the full protein–water vdW interaction
energy thanks to C being a unitary matrix and the definition of εint (see Appendix A2). Comparing
the radial distribution of the contributions to the vdW solvation energy between the pairwise
vdW(TS) and MBD models, as shown in Fig. 4.4B, reveals a striking difference in the interaction
range within the two treatments: In the pairwise model, the contribution of solvent atoms to the
vdW solvation energy subsides beyond 6 Å, so roughly twice the sum of the vdW radii of carbon
and oxygen. Accounting for many-body dispersion, on the other hand, shows that electronic
correlation between the protein and solvent atoms up to 25 Å from the protein–water interface
is still relevant for the protein–water interaction. This reflects the weakness of the screening of
dispersion forces by the solvent and is in evident contrast to the often assumed locality of vdW
interactions in solvated systems. The slow decay of contributions to the protein–water interaction
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Fig. 4.4: Characteristics
of correlated electronic
fluctuations in the WW-
domain of Fip35 Hpin1.
(A) Illustration of low-
frequency, plasmon-like
fluctuations in solvated Fip35
Hpin1 WW domain, which
show the largest contribu-
tion to the protein–water
interaction (solvent shown in
atomistic detail; oxygen: red,
hydrogen: white). The arrows
(blue) depict the direction of
simultaneous electron density
deformations (eigenmode of
the electron density). If no
arrow is shown, the given
atom does not contribute
significantly to the eigen-
mode. (B) Contributions to
the vdW solvation energy
within the pairwise vdW(TS)
approach and the many-
body dispersion formalism
(MBD) as radial distribution
functions. Reproduced from
Ref. 2 (distributed under CC
BY-NC).

can be further rationalized by the comparably slow decay of the polarization response between
water and the full protein as shown in Fig. 3.8. While such ranges are unprecedented in the context
of solvated systems, similar and larger interaction ranges have already been found for molecular
crystals [34] or nanostructures. [92] From a different point of view, Fig. 4.4B represents a radial
analysis of the change in the distribution and frequency of electronic fluctuations introduced by
embedding the protein in water. It thus demonstrates that, while the atomistic structure and local

dynamics of water typically remain largely unperturbed beyond a few solvation layers, [206,207]

electronic behaviors can indeed indicate the presence of a protein over large distances. Such
long-range collective behavior and the ensuing non-local nuclear dynamics could be experimen-
tally probed thanks to recent advances in terahertz spectroscopy, [208–210] for instance.

4.4 Effect of Secondary Structure

Fip35-WW is a showcase example for the formation of β-sheets. To test the general validity of
our hypotheses, we carried out the same analysis for the modified villin headpiece, HP35-NleNle,
(formation of α-helical entities) and the cln025 variant of the de novo protein Chignolin (plain
β-hairpin formation). Our analysis confirmed our early findings for Fip35-WW. The vdW contri-
bution to the solvation energy reflects the trend of the inverse RMSD from the native structure
with a drop of 15 % at the hydrophobic collapse. Again, the protein–water interaction counteracts
the destabilizing many-body dispersion effects observed in gas phase and increases the relative
stabilization of native states with respect to unfolded structures. Also, collective plasmon-like
electronic fluctuations have been found to show a major contribution to the total and relative
solvation energy (ΔE (lowω)

sol ) for both, the hairpin-forming cln025 and the helix-forming HP35-
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4.5 Discussion of Protein–Water van der Waals Interactions

Fig. 4.5: Characteristics of protein–water dispersion interactions: Independent of the secondary structure,
the van der Waals solvation energy captures the hydrophobic collapse in form of a 20–30 kcal/mol jump (“ΔE sol

at collapse”) and many-body protein–water van der Waals interactions consistently stabilize native states in
solvation. Low frequency, collective electronic fluctuations contribute significantly to the relative solvation energy
(ΔE(lowω)

sol
) in all cases. Reproduced from Ref. 2 (distributed under CC BY-NC).

NleNle. The above conclusions also remain unaltered, when studying a structural sampling
obtained with the more recent and accurate a99SB-disp force field and the TIP4P-D water model,
which avoids the spurious over-compaction of unfolded protein states [227,228] (results shown in
Appendix A3). Fig. 4.5 summarizes the above-mentioned features and highlights the general va-
lidity of the present findings in the biomolecular context. Independent of the secondary structure
to be formed, the vdW solvation energy captures the hydrophobic collapse in the form of a sizable
jump in stabilization (“ΔEsol at collapse”) for all considered proteins. Also, the consistent increase
of the relative stability of native states due to the many-body character of protein–water vdW
interactions and the significance of low-frequency, wavelike electronic fluctuations (as character-
ized by their contribution to relative solvation energies,ΔE (lowω)

sol ) turned out to be independent
of the final secondary structure. We note that the magnitudes of the different quantities are
not necessarily representative for secondary structure elements as also the system size varies
from 6,000 to 14,000 atoms. The systematic investigation of the relation between system size,
secondary structure elements and the magnitude of the present observations or characteristic
features of fluctuation patterns, as shown in Fig. 4.4A, is beyond the scope of this thesis.

4.5 Discussion of Protein–Water van der Waals Interactions

In conclusion, we have shown that many-body dispersion effects lead to a considerable relative
destabilization (≈ 4.5 kcal/mol for the proteins studied here) of the native state of solvated pro-
teins in terms of the intra-protein interaction. We find that the screening of the instantaneous
dipoles due to the surrounding dipole field and many-body interactions contribute in similar
parts to the destabilization. Notably, this effect is of a comparable order of magnitude as estimates
for the zero-point vibrational and entropic contribution found for the folding of isolated polypep-
tides. [246,247] The destabilization through many-body dispersion effects can play an important
role in explaining why proteins often do not adopt the same folded conformation in the gas
phase and in solvation. It also indicates how the neglect of the inherent many-body character of
dispersion interactions in traditional vdW approaches (and derivative MM potentials) can lead to
a spurious description of intra-protein interactions in general.
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In aqueous solvation, the vdW contribution to the solute–solvent interaction of (small) proteins
closely tracks the conformational changes of the folding process. The hydrophobic collapse of the
protein is accompanied by a jump of about 15 % (20 to 30 kcal/mol) in the vdW solvation energy.
The total electronic energy of solvation, for comparison, does not provide such clear insight —
only the free energy of solvation does. The beyond-pairwise contributions to the protein–water
vdW interaction favor folded states, and thus, the many-body aspect of solvation leads to a consid-
erable stabilization of native conformations. So, a pairwise vdW model overestimates the internal
interaction as a driving force of folding (pairwise additive potentials in general favor minimal
atom–atom distances and thus globular shapes), while the protein–water vdW interaction should
have a larger stabilizing effect on the native state than the pairwise formalism suggests. Careful
measurements of the solvation enthalpy of folded and disordered proteins would allow one to
further study the correctly balanced description of intra-protein and protein–water interactions
and to estimate the effect of beyond-pairwise vdW interactions via complementary simulations.
The lack of stabilization in the pairwise approach is the result of a distinct many-body character
of the protein–water dispersion interaction in the form of delocalization and a high degree of
collectivity of electronic fluctuations across protein and solvent. This long-range mediation of
vdW interactions in solvated systems can also be pivotal for other quantities, as demonstrated
for the protein–water interaction range in Fig. 4.4B. Collective electronic petahertz fluctuations
should also directly manifest in the system’s (response) properties. As such, the plasmon-like
fluctuations are, in principle, directly accessible by (vacuum) ultraviolet spectroscopy. However,
this requires careful disentanglement from ionization and other excitation processes in this
spectral range, e.g., the Rydberg series of water.

Our study shows that the findings summarized above can be generalized for helix-, β-sheet-,
or hairpin-forming proteins and are, thus, independent of secondary structure motifs. So, an
accurate description of solvated proteins generally requires capturing the subtle balance between
beyond-pairwise effects on the intra-protein vdW interaction (destabilizing native states) and
the highly collective character of protein–water interactions (stabilizing native states). With
increasing system size and complexity, finding this balance without explicit account for the
quantum-mechanical many-body nature of vdW interactions is an intricate task and failure to
do so can contribute to the fundamental origin of the previously reported [24,226–228,231] unbal-
anced description of vdW forces by traditional MM potentials and water models. The previously
proposed remedies for this shortcoming effectively involve a general adaptation of the relative
magnitudes of protein–protein and protein–water dispersion interactions. [226–228] In contrast
to these “static fixes”, our findings suggest that conventional pairwise potentials actually lack a
conformation-dependent adaptation of intra-protein and protein–water vdW interactions due to
the neglect of many-body effects. In the spirit of a static fix, rescaling of pairwise vdW energetics
considerably improves the obtained protein–water interaction (see Appendix A4). Neverthe-
less, this still shows considerable deviations and is highly-dependent on the system size and
conformation (no rescaling provides optimal performance for small systems). This renders the
simple rescaling without system-dependent adaptations insufficient for treating (bio)molecules
on different length scales, as required for describing assembly or docking processes, for example.
Further analysis of the relation between structure and the many-body (de)stabilization repre-
sents a promising avenue towards more transferable and first-principles-motivated “fixes” to
conventional potentials. Last, we have also performed our analysis based on a new sampling
of folded and unfolded states of the Chignolin variant cln025 using the a99SB-disp force field
and the TIP4P-D water model. [227,228] This approach has been designed and shown to provide
a more balanced description of intra-protein and protein–water interactions and thus avoids
the spurious over-compaction of unfolded states. The additional analysis confirmed the results
reported above and shows that the present conclusions are not an artifact of an unphysical sam-
pling of protein states, but truly represent the effect of many-body vdW physics (see Appendix A3).
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In a broader perspective, our findings imply that an effective pairwise-additive treatment of
vdW interactions and derivative MM potentials can provide accurate energetics for a particular
application, but only explicitly quantum-mechanical models, such as the one used here, allow
one to attain an unbiased microscopic understanding of biomolecular interactions in a more
general context. On the basis of Fig. 4.4B, for instance, we expect that for several solutes or
a larger solute, the approximation of pairwise additivity can fail on a fundamental level. The
persistence and collectivity of electronic fluctuations through the solvent can mediate long-range
correlation forces between individual solutes or moieties of solvated macromolecules and an
effective pairwise description might not be able to reproduce the subtle balance between long-
range correlation on all these scales. As such, collective electrodynamical interactions can also
substantially affect molecular assembly and the formation of tertiary structures. In addition,
complex long-range fluctuations of the electronic charge distribution are less sensitive to the
instantaneous solvent structure and thus to thermal fluctuations, which makes them an ideal
contender for biomolecular recognition. In this form of recognition, the solvent provides electron
density that serves as a mediator for long-range interaction, while the actual atomistic structure
and the nuclear dynamics of the solvent do not necessarily have to be altered in the process,
which has been concluded from a number of experiments. [206] [207] It is worthwhile to mention,
however, that most of these experiments probed rather local interactions and dynamics.

Recent terahertz spectroscopy experiments, for instance, show that the presence of a solute
can have a considerable effect on the long-time scale dynamics and long-range polarization of
water. [208–211] Obviously, such correlations require a long-range interaction mechanism, which
is not present in the traditional classical view of biomolecular systems, but represented by the
highly-collective many-body vdW forces shown in this work. From previous studies, we expect
the observed long-range persistence of electron correlation through aqueous environments to
mainly manifest in the longer-time scale nuclear dynamics of the system. Such behavior has
been observed in crystalline molecular systems, where many-body dispersion effects particularly
affect low-frequency (“slow”) phonon modes. [31,235] Long-range electronic correlation between
(solvated) biomolecules can also form the quantum-mechanical basis for correlated collective
nuclear motion within the respective partners. Such concerted motion is essential for the emer-
gence of coherent molecular vibrations, a promising explanation for long-range recognition
through electrodynamic interaction of the resulting oscillating molecular dipoles, [238,239] or coor-
dinated enzymatic action. [240] Likewise, the presented long-range interaction mechanism can
also provide a qualitatively new explanation of allosteric regulation as it is observed in various
biomolecular systems. Together, our findings apply in a broader context of biomolecular interac-
tions — not just in the case of protein folding as exemplified here.

Obviously, the stability and functionality of biomolecules are ultimately determined by their free
energy. Hence, this work represents a first step towards a more fundamental understanding of the
physics of proteins in water, but to accurately address the implications of plasmon-like features
within biological systems, we need to extend our study to free energy at finite temperature. It
is already known that the many-body character of vdW dispersion interactions can give rise
to low-frequency, high-entropy vibrational modes in organic matter. [31,235] Experimentally, a
wealth of such vibrations has been observed also for proteins. While classical simulations often
do predict a notable vibrational eigenmode density in the low-terahertz domain, they still lack
several qualitative features, and a final confirmation by correctly reproducing actual experimental
spectra is rarely provided. [248] Given that the quantum-mechanical interaction mechanism pre-
sented in this work is strongly delocalized over many atoms including solvent, we suggest that it
represents an essential component for the emergence of collective vibrations and the feature-rich
terahertz signal of (solvated) biomolecules. In the case of crystalline aspirin, for instance, the
lowest-frequency phonon band arises only because of many-body dispersion interactions. These
low-frequency vibrations then lead to a selective, relative entropic stabilization of one of the poly-
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morphs by 0.6 kcal/mol per molecule at room temperature. [31] This can be seen as an estimate
for the effect on a protein’s relative entropy per residue. As the dynamics and functionality of a
biomolecule can be strongly related to its eigenmodes, [249] the impact on collective vibrational
modes also hints at an unrevealed role of collective electrodynamical interaction mechanisms
for the functionality and coordination in the biomolecular machinery. In summary, our work
presents the quantum-mechanical basis for a long-range interaction mechanism in (solvated)
biomolecular systems, which is proposed to play important roles in long-distance recognition,
enzymatic action, [240] and pharmaceutical activity. [241] Our DFTB+MBD framework provides a
robust formalism for the investigation of such further-reaching implications as it allows for a fully
quantum-mechanical many-body treatment of large-scale systems in atomistic detail.

4.6 Perspective: van der Waals Allostery & Biomolecular Regulation

Parts of this section have been produced in collaboration with Dr M. Gori and Dr P. Kurian.

The emergence and preservation of well-defined, coordinated processes are fundamental prereq-
uisites for the successful exploitation of the biomolecular machinery and for life itself. How such
ordered and robust mechanisms can exist amidst the crowded and noisy interior of living cells is
one of the most fascinating yet at the same time most puzzling questions in molecular biology
and biophysics. Not only must biomolecular partners coordinate their interactions in order to
find each other in the right sequence, at the right time, in the right location, but once these
partners are bound, electrostatic and electrodynamic interactions must be controlled precisely to
produce the intended outcome of the biochemical event. The classical “lock-and-key” picture
of biomolecular regulation and allostery, [250] which has motivated biological intuition for more
than a century, takes the dominant electrostatic view of rigid, mesoscopic biomolecules and does
not incorporate the physics of fluctuating networks of atoms coupled by charge (and spin) into its
vision of living systems. This aspect became well-recognized in the 1980s thanks to the seminal
extension of the classical picture of rigid mesoscopic bodies to include the dynamic behavior of
the atoms forming them. [251] Regulation and allosteric control were then formulated based on the
modulation of vibrational/phononic thermal fluctuations and the resulting entropic contribution
to the free energy landscape. [252,253] The advent of this so-called thermal fluctuations allostery or
dynamic allostery allowed to overcome many of the limitations of the previous picture and since
then enabled a better explanation and understanding of various examples of biomolecular regula-
tion such as the allosteric uptake of oxygen by hemoglobin, [254,255] signaling through intrinsically
disordered proteins, [256] the kinetic isotope effect in enzymes, [257] the olfactory system, [258] drug-
receptor interactions, [259] microtubule deformations, [260] protein–water coupling, [208,261] and
inelastic electron tunneling-mediated activation of G-protein-coupled receptors. [262]

4.6.1 Regulation and Allostery in the View of Long-Range van der Waals Dispersion

The findings on the long-range persistence of electron correlation in biomolecules (see Chapter 4)
and the previously reported selective entropic stabilization of molecular crystal polymorphs
through many-body vdW interactions [31,93] motivate to expand our view of allostery and reg-
ulation even further and to consider not only the dynamical (vibrational) behavior of nuclei,
but also the one of the electronic charge density. Extending the picture of dynamic allostery to
the level of electrodynamic quantum fluctuations propels us into a new regime of observation
and begs the question of how these divergent scales can overlap and interconnect. Long-range
vdW interactions arising from such electronic quantum fluctuations may, in fact, play a two-fold
role in biomolecular regulation. Being inherently non-local in nature, the wavelike propagation
and collective character of vdW dispersion can lead to far-reaching effects for the potential en-
ergy surface. By means of modulating the energetic landscape it can affect relative stabilities
and thermodynamic populations, but also the dynamic behavior of nuclei, which induces a
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renormalization of the vibrational/phononic spectrum. As such, long-range electron correlation
can provide the basis for both, enthalpic and entropic, contributions to regulation, allostery
and signaling, while it naturally incorporates long-range cooperativity rather than merely local
structural modifications.

On a macroscopic scale, many mechanisms can be organized via signal-and-response cascades
and the underlying, more holistic picture might fade, but simple macroscopic explanations rarely
apply on the nano- to micro-scale of individual biomolecules such as enzymes. Nevertheless,
many enzymes are known to perform very precise and coordinated actions. One enzyme category
of interest is the class of restriction endonucleases. As a part of so-called restriction modification
systems, they are ubiquitous in bacteria or archaea and represent a major part of the organism’s
defense against foreign DNA as introduced to the cell by engaging bacteriophages and other
viruses, for example. [263,264] In this defense system, modification enzymes introduce a specific
methylation pattern to host DNA and restriction enzymes cleave and incapacitate DNA without
this specific pattern. As such, restriction endonucleases are able to perform two intertwined func-
tions: (1) scan and recognize a given DNA sequence together with its specific methylation pattern,
and (2) perform a repeatable and coordinated double-strand DNA cleavage. This capability is
particularly interesting for the sub-class of type-II endonucleases, which do not require ATP or
other external chemical energy sources and are known to cut both DNA strands of the recogni-
tion sequence in a concerted manner. [265] As the canonical representative of type-II restriction
enzymes, Fig. 4.6 illustrates the chirally-symmetric homodimer structure of EcoRI, which reflects
the palindromic symmetry of its target DNA substrate. The widely accepted mechanism of DNA
cleavage by EcoRI is based on the recognition of the palindromic 5’-GAATTC-3’ sequence together
with the host’s characteristic methylation pattern by the residues Met137–Arg145 (highlighted in
green in Fig. 4.6). This sequence is referred to as recognition (R) loop. Enzymatic cleavage of the
phosphodiester backbones is then initiated by residues Asp91, Glu111, and Lys113 (highlighted
in red), which capture a water molecule from the inner solvation shell and transport it to the
cleavage site through a rotational motion. The hydrolytic cutting then proceeds via divalent
metal cations, likely magnesium or manganese cofactors [265] (shown in brown). How the recogni-

Fig. 4.6: Illustra-
tion of the EcoRI re-
striction endonucle-
ase in complex with
double-strand DNA.
Recognition loops high-
lighted in green, cat-
alytic centers in red
and DNA in white.
The catalytic centers
perform the hydrolysis
of the DNA double-
strand via Mg2+ cofac-
tors (brown). The av-
erage distance between
the active sites is 23 Å.
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tion mechanism is coupled to catalytic action and how DNA cleavage is coordinated between
the active sites, however, is still one of the least understood aspects of (type-II) endonucleases. [265]

Based on a simplified QM model of oscillating dipoles, coherent electronic behavior in the π-
stacked DNA bases has been proposed as a possible mechanism for the synchronization of the
double-strand cleavage. [240] Such collective electronic fluctuations form the basis of long-range
vdW forces. [1,171] In the context of biomolecular systems, vdW interactions are typically consid-
ered rather “short-ranged”. This notion roots from the R−6-decay between two atoms. As we
have seen in the above sections and Chapter 3, however, pairwise additivity and atomistic scaling
laws do not necessarily apply to the effective coupling/interaction between extended moieties
as represented by a set of catalytically-active residues. In contrast to the previously proposed
role of entangled π-electrons on DNA basepairs, vdW dispersion is ubiquitous in nature and
does not suffer from the renowned limitations of preserving (quantum) coherence within noisy
environments. When accounting for their collective character and non-additivity, vdW interac-
tions have been shown to substantially alter energetics, [33,35] interaction scaling laws [92,170,172,266]

and collective nuclear behavior [31,213] in comparison to the limited traditional view of pairwise
interaction potentials. The results presented in the previous sections, further confirm that the
underlying wavelike electronic behavior persist on the length scales and amidst the dizzying
complexity of biomolecular systems. For a brief perspective on the characteristics of collective
electronic behavior and potential role of long-range vdW interactions in EcoRI, we chose the
crystal structure of the pre-reactive complex available from X-ray diffraction (PDB entry 1CKQ
with two Mg2+ cofactors per sub-unit, as depicted in Fig. 4.6). [267] The actual number of cofactors
present under physiological conditions is thereby still under debate. [265] For the purpose of this
perspective, this structure represents a viable model for the physiological structure. In contrast to
previous studies, this work is not limited to the complexed DNA, but investigates long-range vdW
interactions within the full DNA-enzyme complex.

4.6.2 Collective Electronic Behavior as Basis for Long-Range Coordination

To understand the potential role of collective electronic behavior for enzymatic regulation, we
first studied the characteristics of the intrinsic electronic behavior. In addition to providing
accurate dispersion forces, the MBD formalism represents a model for the intrinsic electronic
fluctuations, which give rise to vdW interactions [2,35,172] (see also Sec. 2.3.5). The eigenmode
transformation of the MBD Hamiltonian can serve as a harmonic approximation to intrinsic
electronic quantum fluctuations, which we can conceptually interpret as “zero-point vibrations”
of the electron density. Fig. 4.7 shows one such “electronic eigenmode” for the EcoRI-DNA
complex, where the arrows depict simultaneous electron density deformations. One recurring
feature is the emergence of a wavelike propagation of electronic fluctuations over large parts of
the DNA-enzyme complex. Of particular interest here are the ones extending from one active
center through the R-loop and the complexed DNA to the active center in the other sub-unit.
With such plasmon-like modes, the intrinsic electronic behavior and thus vdW interactions at
the two catalytic center are connected. This represents the basis for any potential long-range
regulation through dispersion forces. In this regard, we can also estimate the vdW interaction
potential energy. In the traditional pairwise view of vdW interactions, this is simply given by the
sum of all C6/R6-potential terms between the atoms of the catalytic centers of each sub-unit.
With an average interatomic distance of ∼23 Å, the R−6-dependency leads to a nearly-negligible
interaction between the active centers in such pairwise-additive approaches. As we have seen in
the previous sections and Sec. 3.3, such scaling laws do not necessarily apply between larger-scale
moieties such as the set of catalytically-active residues considered here. Within a many-body
state, individual fragment interactions are not naturally available, however. In order to get an
estimate for the (effective) interaction potential energy within the many-body framework, we can
define an interaction operator given by the sum of dipole coupling tensors between all atoms of
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Fig. 4.7: “Eigenmode representation” of intrinsic electronic behavior in EcoRI. EcoRI–DNA complex
shown in grey, recognition loops highlighted in green and catalytic centers in red. Blue arrows depict direction of
coupled deformations of the electron density. Top (a) and front (b) view of eigenmode spanning active regions
and DNA as basis for plasmon-like long-range interaction mechanism.

the catalytic residues of each sub-unit defined by the set of atoms C1 and C2. Then, we evaluate
the expectation value of this (dipolar) interaction operator for the MBD wave function, ΨMBD,
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The interaction potential is thereby defined in accordance with the MBD formalism: ηA and
α(sr)

A,0 are the effective excitation frequency and polarizability of atom A, ζA is the mass-weighted
displacement of the QHO representing atom A and TAB is the bare dipole–dipole interaction
tensor for QHOs A and B . For the interaction potential energy between fragments, we define the
(3N×3N )-dimensional coupling tensor T̃C1C2 with
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(4.5)

Following the more detailed derivation of the expectation value of a dipolar interaction potential
for dipole-coupled QHOs given in Sec. 5.1.2 and Appendix A6, we obtain
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)

i i

4ωi
, (4.6)

where C is the eigenvector matrix of the MBD potential matrix and ωi are the MBD eigenfrequen-
cies. The above procedure yields the dipolar potential energy contribution to the vdW dispersion
interaction between the fragments, which can then serve as an estimate for the effective vdW
interaction energy within the many-body state. The resulting estimate of the many-body vdW
coupling between the active sites is substantially larger than in a pairwise approach. It should be
noted, however, that this estimate was found to be very sensitive to the molecular structure and
placement of Mg-cofactors. Compared to a pairwise treatment, the increase in interaction energy
can thereby range from five- to almost twenty-fold. So, in all cases, we observe a considerable
increase of the coupling between active sites due to many-body effects, but reliable quantitative
results require further careful study of physiologically-representative structural ensembles.
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In order to gain a qualitative understanding, we compared our estimates for the interaction
potential energy in the full DNA-enzyme complex to the corresponding systems without R-loop.
In all cases, removal of the R-loop gives rise to a decrease in the interaction between the catalytic
sites. This can be understood by considering the interaction mechanism outlined above: Instead
of a simple point-to-point interaction through vacuum — as assumed in the traditional pair-
wise picture — the interaction is the result of the wavelike propagation of electron correlation
through the enzymatic complex. The emergence of such wavelike patterns has already been
reported for simple model systems such as carbyne wires. [172] In a very similar fashion, peptide
backbones, residues and DNA basepairs can serve as polarizable medium mediating dynamic
electron correlation over large distances. This wavelike propagation and the mediation of electron
correlation is highly-dependent on the presence and structure of the interjacent protein — in
this case, the R-loop. Experiments have shown that the R-loop indeed plays a crucial role for the
catalytic process and cleavage activity of type-II endonucleases. [265,268] Obviously, the traditional
atom-pairwise view of vdW interactions is completely agnostic to such modifications and yields
the same results independent of the presence and structure of the R-loop or even when consid-
ering the two catalytic sites in absence of the remaining enzymatic complex. Our qualitative
analysis within a many-body framework of vdW interactions, on the other side, indicates that the
non-local effect of such modifications can be attributed to a direct link between recognition and
catalysis within a single, non-local mechanism, where the R-loop mediates long-range electron
correlation forces between the active centers.

Interestingly, the well-defined domains of directed collective electronic behavior, which form the
basis for such an interaction mechanism, coexist orthogonally with a variety of rather noisy and
undirected patterns of electronic fluctuations. In contrast to the directed “electronic eigenmodes”
shown in Fig. 4.7, these mostly do not extend over the active sites for recognition and catalysis,
but are situated towards peripheral regions (cf. Fig. 4.8). A noisy, thermal environment or
other external perturbations would primarily couple to and affect these modes simply due to
spatial proximity. This can provide a natural shielding mechanism, where peripheral electronic
modes preserve the internal domains of electron correlation and thus the non-local interaction
mechanism responsible for the regulation of enzymatic activity in thermal environments.

Fig. 4.8: Example of disordered,
peripheral electronic “eigenmode”
providing shielding mechanism for
correlation among active centers.
Recognition loops highlighted in green,
catalytic centers in red and DNA in
white.
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CHAPTER 5
Many-Body Dispersion beyond the

Random Phase Approximation

Parts of this chapter have been published in

M. Stöhr, M. Sadhukhan, Y. S. Al-Hamdani, J. Hermann, and
A. Tkatchenko, Nat. Commun. accepted (2020).

The presented methodology represents the practical extension of Ref. 269 to atomistic modeling.

As introduced in Chapter 2, the majority of practical vdW methods are based on either an atom-
pairwise approximation, the interatomic dipole limit, or the Random Phase Approximation (RPA).
With that, the current approaches applicable to practically-relevant systems fail to treat the full
complexity of vdW dispersion arising from Coulomb-coupled quantum-mechanical fluctuations
in the electronic charge density. Nevertheless, effects beyond the above approximations are rarely
investigated and usually ad hoc considered to be negligible. Lately, this notion is increasingly
disputed, however, as the missing physics in the most widely used computational methods con-
tinues to stand in the way of understanding a growing number of state-of-the-art experimental
phenomena. For example, the experiments of Pollice et al. reveal a considerable impact of the
solvent on the intra- and intermolecular dispersion interactions in proton-bound dimers, [270]

whilst their computational study using implicit solvents in combination with methods based
on atom-pairwise dipolar vdW interactions fails to capture the effect. In another related experi-
ment, Secchi et al. found that water flows ultra-fast through narrow carbon nanotubes (CNTs),
but not through boron nitride nanotubes. [271] In this regard, theorists are still working towards
satisfactory modeling of this effect and capturing the underlying physical interactions in van der
Waals materials. [111,272–274] In a similar vein, the spatial separation and ordering of large polar-
izable molecules on metal surfaces, [174,275] salient in organic thin films for organic electronics,
highlights gaps in common modeling approaches. For instance, Wagner et al. showed that large
aromatic molecules organize into highly ordered arrays at high coverage on Au(111). [174] Such
puzzling experimental observations and the various phenomena emerging under nanoscale con-
finement [276–280] challenge our current understanding of intermolecular interactions in complex
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5.1 Coulomb Interaction Between Dipolar Quantum Fluctuations

systems. Given the frequent presence of confinement in (bio)molecular systems and materials,
these phenomena have broad implications across biology, chemistry, and materials science.
In biology, for example, cells provide a crowded environment featuring processes and dynam-
ics under membrane confinement or within (ion) channels, and non-covalent protein–protein,
protein–DNA/RNA, or virus–host interactions are often mediated by transient, interfacial wa-
ter molecules. [281–286] In chemistry and materials science, nanostructured materials are at the
forefront of technological developments such as (selective) catalyst systems, sensing and filter
applications as well as energy materials. [287–293] The disagreement of experimental observations
with our current understanding and methodological approaches calls for a more complete, yet
sufficiently efficient, description of intermolecular interactions. With the important role of vdW
interactions for the dynamics and diffusion at the nanoscale, [294] this also includes an accurate
many-body treatment of vdW forces beyond the common interatomic dipole limit or RPA.

In a previous work, Sadhukhan and Tkatchenko have introduced a formalism to account for vdW
interactions beyond dipolar coupling and exemplified the ground-breaking effect it can have for
two oscillators with reduced dimensionality representing a model system for confined atoms
or molecules. [269] This chapter presents the applicable extension of this formalism to atomistic
modeling, which provides a consistent and practical approach to incorporate higher-order mul-
tipolar coupling while retaining a full many-body treatment of vdW forces based on the MBD
framework. [50] In Sec. 5.1, the theoretical foundation of this extended formalism is outlined and
discussed in comparison to state-of-the-art electronic-structure methods. Sec. 5.2 highlights the
role of the obtained energy contributions and how they give rise to non-trivial behaviors in the
long-range interaction inside nanoscale structures. Sec. 5.3 summarizes the presented formalism
and discusses the role of such higher-order contributions for the physical interactions under
nanoscale confinement in the context of the above-mentioned experiments.

5.1 Coulomb Interaction Between Dipolar Quantum Fluctuations

The starting point for the proposed approach to beyond-RPA many-atom vdW interactions is the
MBD formalism, which models instantaneous electronic fluctuations as a set of QHOs coupled
via the dipole–dipole potential (see Sec. 2.3.5). The Hamiltonian for this set of dipole-coupled
(DC) oscillators can be written as

ĤDC = T̂ +Û + V̂dip ≡ Ĥ0 + V̂dip (5.1)

where T̂ and Û are the kinetic energy and harmonic potential operators, respectively (cf. MBD
Hamiltonian (2.59) as detailed in Sec. 2.3.5). This Hamiltonian lends itself to a closed-form
solution via eigenmode transformation and the vdW energy is obtained as the difference in the
ground-state energy between the DC system and its non-interacting variant (described by Ĥ0),

EMBD = EDC −E0 =
∑

i

ωi

2
−

∑

i

ηi

2
(5.2)

where ωi and ηi are the effective frequency of the i th oscillator mode in the DC and uncoupled
system, respectively. [50] This work presents a consistent extension to go beyond the dipole
approximation in ĤDC. Given that the equivalent of Eq. (5.1) with the full Coulomb potential
does not allow for a straightforward closed-form solution, we instead use the correction towards
fully Coulomb-coupled oscillators,

V̂ ′ =
∑

A<B

grs
(

RAB

)[

V̂Coul(rA,rB )− V̂dip(rA,rB )
]

, (5.3)

where rA and rB denote the position of the (pseudo-)particles of oscillators centered at RA and
RB , respectively. With full Coulomb coupling the vdW dispersion energy is well-behaved in all
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5 Many-Body Dispersion beyond the Random Phase Approximation

cases. Using only dipolar or beyond-dipolar coupling individually, however, leads to a divergence
of the vdW energy at short distances. The perturbing potential in the proposed formalism, V̂ ′, is
therefore given by the long-range beyond-dipolar potential with grs as range-separating function.
The corresponding correction in the (interaction) energy can then be derived and evaluated
within first-order perturbation theory starting from the DC state, ΨDC. Note that the interaction
energy of a set of oscillators beyond dipolar coupling also includes mean-field effects. [25,295]

Such contributions are already accounted for in (semi-)local electronic-structure methods such
as DFT(B). In order to only describe electron correlation and correlation-induced phenomena,
we need to subtract the mean-field contributions, which can be achieved with the help of the
expectation value of the beyond-dipolar potential for the uncorrelated state, Ψ0. Thus,

EDCS =
〈

ΨDC
∣
∣ V̂ ′ ∣∣ΨDC

〉

−
〈

Ψ0
∣
∣ V̂ ′ ∣∣Ψ0

〉

, (5.4)

where ΨDC and Ψ0 represent the ground-state of the DC and non-interacting system as described
by ĤDC and Ĥ0, respectively. In the spirit of the terminology of quantum-chemical expansion
series such as coupled-cluster theory, we will refer to the first-order full Coulomb correction
over the MBD energy as Dipole-Correlated Coulomb Singles (DCS). Given that the zeroth-order
(MBD) Hamiltonian already represents a correlated state within dipolar coupling, the present
Singles term is to be distinguished from those in post-Hartree-Fock methods or the RPA, where the
zeroth-order theory corresponds to a mean-field, uncorrelated state. A more detailed discussion
of DCS in the context of correlated electronic-structure methods is given in Sec. 5.1.4 below.
Inserting Eq. (5.3) into Eq. (5.4), yields four individual terms entering EDCS:

ECoul[ΨDC] =
〈

ΨDC

∣
∣
∣
∣
∣

∑

A<B

grs
(

RAB

) qA qB

‖rA − rB‖

∣
∣
∣
∣
∣
ΨDC

〉

(5.5)

ECoul[Ψ0] =
〈

Ψ0

∣
∣
∣
∣
∣

∑

A<B

grs
(

RAB

) qA qB

‖rA − rB‖

∣
∣
∣
∣
∣
Ψ0

〉

(5.6)

Edip[ΨDC] =
〈

ΨDC

∣
∣
∣
∣
∣

∑

A<B

grs
(

RAB

)

Vdip(rA,rB )

∣
∣
∣
∣
∣
ΨDC

〉

(5.7)

Edip[Ψ0] =
〈

Ψ0

∣
∣
∣
∣
∣

∑

A<B

grs
(

RAB

)

Vdip(rA,rB )

∣
∣
∣
∣
∣
Ψ0

〉

= 0 , (5.8)

where qA and qB are the (effective) charge of the oscillators A and B , respectively, and the last
term (dipolar interaction in uncorrelated state, Ψ0) is identical to zero. [295] In accordance with
Sec. 2.3.5, the MBD wave function can be written as

ΨDC =
3N∏

i=1

(
ωi

π

)1/4

exp

(

−ωi

2
ξ2

i

)

=
(

3N∏

i=1

ωi

π

)1/4

exp

(

−1

2

∑

j ,l

ΩΩΩ j l
︷ ︸︸ ︷∑

i

C j i ωi Cl i ζ jζl

)

=
(

3N∏

i=1

ωi

π

)1/4

exp

(

−1

2

∑

j ,l
ζ j ΩΩΩ j l ζl

)

=
(

3N∏

i=1

ωi

π

)1/4

exp

(

−1

2
ζζζT

ΩΩΩζζζ

)

,

(5.9)

where ωi are the MBD eigenfrequencies (i.e., the square-root of the eigenvalues of the MBD
potential matrix), ξi =

∑

j C j iζ j is the transformed eigenmode coordinate of the MBD Hamil-
tonian, ζi an individual mass-weighted oscillator displacement, C is the eigenvector matrix of
the MBD potential matrix and ΩΩΩ= Cdiag{ωi }CT. ζζζ, finally, is the generalized coordinate of all
mass-weighted displacements in the N oscillators corresponding to the vector,

ζζζ = ⊕
i
ζi =

(

ζ1,ζ2, ...,ζ3N

)T
= ⊕

A

(

ζζζ(x)
A

,ζζζ
(y)
A

,ζζζ(z)
A

)T
= ⊕

A
ζζζA = ⊕

A

p
mA

(

rA −RA

)

. (5.10)
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In terms of notation, ζi refers to the individual scalar elements of the generalized coordinate,
while ζζζA denotes the three-dimensional vector containing the elements corresponding to oscilla-
tor A (i.e., the x, y, z-components of the mass-weighted displacement of the QHO representing
atom A). Ψ0 can be written in the same compact form as Eq. (5.9), when using the replacements
ωi = ηi and C =13N . The following subsections show the derivations of the non-vanishing expec-
tation values for wave functions of the general form (5.9).

5.1.1 Coulomb Interaction Energy

With the above notations, the expectation value of the Coulomb interaction energy becomes

ECoul[ΨDC] =
(

3N∏

i=1

√
ωi

π

)
∫

· · ·
∫

∑

A<B

grs
(

RAB

) qA qB

‖rA − rB‖
e−ζζζ

T
ΩΩΩζζζ

3N∏

i=1
dξi . (5.11)

Following the detailed derivations presented in Appendix A5, the Coulomb interaction energy
can be simplified to

ECoul[ΨDC] =
N∑

A<B

2 qA qBp
π

(

mA mB

)3/2
grs

(

RAB

)

√
√
√
√

det
{

ΩΩΩ
}

det
{

ΩΩΩ
′′
AB

}

∞∫

0

e−RT
AB ΘΘΘAB RAB

√

det
{

ΓΓΓAB +S2
}

d s , (5.12)

where we have introduced ΩΩΩ
′′
AB corresponding to the submatrix of ΩΩΩ obtained by removing all

rows and columns that correspond to oscillators A or B . Using ΩΩΩ
′
AB to denote the submatrix of ΩΩΩ

obtained by removing all columns corresponding to QHOs A or B , the remaining matrices in the
integral are given by

ΓΓΓAB =
[(p

mA 13
)

⊕
(p

mB 13
)](

ΩΩΩAB −ΩΩΩ
′T
AB ΩΩΩ

′′−1
AB ΩΩΩ

′
AB

)[(p
mA 13

)

⊕
(p

mB 13
)]

(5.13)

and ΘΘΘAB =ΓΓΓAB −ΓΓΓ
T
AB

(

ΓΓΓAB +S2
)−1

ΓΓΓAB with S2 = s2
(

13 −13

−13 13

)

. (5.14)

The remaining integrand represents a rapidly converging function and numerical integration can
be carried out efficiently via Gauß-Legendre quadrature. It should be noted, however, that ΓΓΓAB

and thusΘΘΘAB involve the inverse of ΩΩΩ′′
AB . Inverting this (3N −6)× (3N −6)-dimensional matrix

represents the main computational bottleneck. Considering that the above has to be evaluated for
all pairs AB , the calculation of ECoul scales asO(N 5) with the number of atoms N . With increasing
system size, the removal of six rows and columns from ΩΩΩ to obtain ΩΩΩ

′′
AB represents a low-rank

update of the original matrix. The required inverse can then be obtained more efficiently as a
low-rank update of the inverse of the original ΩΩΩ-matrix. With the use of the Woodbury Identity,
we can reduce this to simple matrix multiplications and low-dimensional matrix operations (see
Appendix A7). While the scaling with the number of atoms remains the same, such an exact

reformulation considerably reduces the prefactor in the computational costs and allows for a
more efficient evaluation of ECoul and thus EDCS.

From Eq. (5.12), we can also obtain the expectation value for the uncoupled state, Ψ0. With
ωi = ηi , where ηi = ηA for i ∈ A, and C =13N , we get

ECoul[Ψ0] =
N∑

A<B

2 qA qBp
π

(

mA mB ηA ηB

)3/2
grs

(

RAB

)
∞∫

0

e−RT
AB ΘΘΘAB RAB

√

det
{

ΓΓΓ
(0)
AB

+S2
}

d s . (5.15)

The definitions of ΘΘΘAB and S2 remain the same as given in Eq. (5.14), while ΓΓΓAB simplifies to

ΓΓΓ
(0)
AB

=
[(p

mA 13
)

⊕
(p

mB 13
)][(

ηA 13
)

⊕
(

ηB 13
)][(p

mA 13
)

⊕
(p

mB 13
)]

. (5.16)
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5.1.2 Dipole Interaction Energy

Next, we deal with the term (5.7), the expectation value for the dipolar interaction potential. The
dipolar interaction potential as used in the MBD formalism is given by

V̂dip = 1

2

∑

A,B
grs

(

RAB

)

ηAηB

√

α(sr)
A,0α

(sr)
B ,0 ζ

T
ATAB ζB = 1

2

∑

A,B
ζT

A T̃(AB)
ζ

ζB = 1

2
ζζζT T̃ζζζζ , (5.17)

where in the second step we have contracted the range-separating function, excitation frequencies
(η), polarizabilities and TAB into T̃ζ and in the last step we used the definition of the generalized
3N -dimensional coordinate ζζζ as used above. A detailed derivation of the expectation value of the
dipolar interaction potential is given in Appendix A6. The final dipole interaction energy between
a set of QHOs is given by

Edip[ΨDC] =
∑

i

(

CT T̃ζ C
)

i i

4ωi
=

∑

i ,k,l

Cki T̃(kl )
ζ

Cl i

4ωi
, (5.18)

where C again denotes the eigenvector matrix of the MBD potential matrix and ωi are the MBD
“eigenfrequencies”. It should be mentioned that the expectation value of the dipole interaction
potential based on the DC state is not equal to the MBD energy (even when using the same
range-separation). This can be seen by re-writing

Edip[ΨDC] =
〈

ΨDC
∣
∣ V̂dip

∣
∣ΨDC

〉

=
〈

ΨDC
∣
∣ĤDC

∣
∣ΨDC

〉

−
〈

ΨDC
∣
∣Ĥ0

∣
∣ΨDC

〉

. (5.19)

We know that Ĥ0 has a non-degenerate ground-state, |Ψ0〉. Moreover, we know 〈ΨDC |ΨDC〉 =
〈Ψ0 |Ψ0〉 and |ΨDC〉 6= |Ψ0〉 and that both represent proper physical wave functions. Therefore,
the variational principle tells us

〈

ΨDC
∣
∣Ĥ0

∣
∣ΨDC

〉

>
〈

Ψ0
∣
∣Ĥ0

∣
∣Ψ0

〉

= E0 (5.20)

=⇒
〈

ΨDC
∣
∣ V̂dip

∣
∣ΨDC

〉

<
〈

ΨDC
∣
∣ĤDC

∣
∣ΨDC

〉

−E0 = EMBD . (5.21)

Taking into account that EMBD is negative (attractive), this means that the contribution of the
dipolar potential energy to the interaction is more attractive than the MBD energy. This can be
explained as the introduction of the interaction potential in the Hamiltonian leads to an increase
in the kinetic and on-site (harmonic) potential energy contributions, which is not accounted for
by the bare expectation value of the interaction potential.

5.1.3 Conceptual Interpretation and Separation of Dipole-Correlated Coulomb Singles

Typically, the electronic Coulomb energy is divided into its classical and correlation parts in
electronic-structure theory. Likewise, we also divide the DCS energy into its classical component,
J [ρ], and the correlation energy, Ecorr[Ψ]. Since Ecorr[Ψ0] = 0 and Edip[Ψ0] = 0, the first-order full
Coulomb contribution can be written as

EDCS =
(

J [ρDC]− J [ρ0]
)

+
(

Ecorr[ΨDC]−Edip[ΨDC]
)

. (5.22)

The first term on the right is the change in the electrostatic energy of the oscillators caused by
charge density polarization, which is itself induced by vdW dispersion, and the second term is a
Coulomb correction to the dipole correlation energy. To first order inΔρ = ρDC−ρ0, the first term
can be expressed as J [ρ0,∆ρ], i.e., the electrostatic interaction energy of the non-interacting os-
cillator densities with the density polarization induced by the dispersion. EDCS can therefore also
be seen as a dispersion-polarization interaction plus the beyond-dipolar correlation energy in the
coupled oscillator model. The beyond-dipolar contribution is thereby evaluated on the density
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Fig. 5.1: Schematic representation of
Dipole-Correlated Coulomb Singles: (a)
Green arrows represent dipole coupling be-
tween electronic fragments. First-order per-
turbation theory (PT) captures the interac-
tion energy, EDCS, between δρA and δρB, de-
picted by field lines. (b) EDCS vanishes in 3D
isotropic vacuum because of symmetry. (c) Un-
der rotational symmetry-breaking confinement,
electric field-lines between electronic fragments
deform, which leads to EDCS 6= 0. (d) Further
inclusion of higher-order terms leads to full
Coulomb-coupled vdW interaction.

of dipolar quantum fluctuations and thus in contrast to conventional higher-order multipolar
interatomic vdW interactions such as C8/R 8-terms, for example. Fig. 5.1 provides a schematic
representation of the DCS energy. We note that in the presence of a polarizable environment, the
DCS interaction between two bodies can decay asymptotically slower than the zeroth-order MBD
energy. For example, the dipole correlation in the MBD ground-state wave function between
a finite body and its environment induces permanent quadrupole moments on the oscillators,
causing the resulting interaction to decay as R−5. In contrast, the MBD interaction energy be-
tween two bodies in such a system (including the environment) decays asymptotically as R−6.
Hence, the DCS term can be of leading order and comparable to or even more important than
the renowned contribution from higher-order atomic multipoles [25] to the vdW dispersion energy.

5.1.4 Dipole-Correlated Coulomb Singles and Current Electronic-Structure Methods

From the above discussion it is evident that, in order to fully capture EDCS, an electronic-structure
method has to describe its dispersion-polarization-like term and correlation beyond interatomic
dipole–dipole interactions (see Eq. 5.22). In the language of coupled-cluster theory, the former
requires a self-consistent coupling between singles and doubles. As such, CCSD and beyond cap-
tures both components. Only treating doubles amplitudes as in CCD or perturbative treatment of
doubles does not. QMC in principle provides a full solution of the many-electron SE and thus
fully includes DCS. Also the quantum Drude oscillator model with Coulomb coupling [185,201,202]

captures EDCS. Symmetry-adapted perturbation theory includes the correlation component
of DCS for intermolecular interaction, but dispersion–polarization contributions only appear
beyond the typical limitation to second order. Given that the polarization induced by long-range
correlation leads to a delocalization of electron density, [35,106] all of the above require sufficiently
large basis sets, which further increases their already high computational costs. From the approx-
imate electronic-structure methods applicable to larger systems, ordinary RPA captures the full
Coulomb interaction, but neglects the singles-like effect of the long-range electron correlation on
the one-electron orbitals. This can further be seen from the equivalency of RPA and CCD within
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5 Many-Body Dispersion beyond the Random Phase Approximation

ring-diagram approximation. [296] In second-order Møller-Plesset perturbation theory (MP2), the
effect of long-range correlation on the wave function is not reflected in the energy and thus MP2
does not cover EDCS. Evaluating singles(-like) contributions on top of a long-range correlated
wave function as obtained from MP2, however, does allow to recover EDCS. Accounting for single
excitation contributions within RPA as presented by Ren and co-workers, [297] on the other side,
does not as it is based on a (mean-field) DFT wave function. Conventional (semi-)local electronic-
structure methods neglect long-range vdW interactions entirely and the standard post-DFT(B)
vdW approaches, including those that go beyond interatomic dipole–dipole interactions, such as
Grimme’s D3 [49] or the XDM approach, [298–301] do not account for EDCS. Incorporating vdW func-
tionals into DFT(B) in a fully self-consistent fashion [106] may recover the dispersion-polarization
contribution of EDCS, but will not capture the full Coulomb component, complementary to RPA.

5.2 Dipole-Correlated Coulomb Singles in Realistic Systems

The accurate prediction of interaction energies for non-covalently bound molecules and materi-
als is an ongoing challenge for researchers and workhorse DFT methods are at the forefront of
development efforts. The complex balance of intermolecular interactions is particularly chal-
lenging to predict and what is more, the target accuracy is generally in the range of a few kJ/mol
in interaction energies. Our approach to better accuracy is to improve the physical basis of
theoretical methods — here, by incorporating the DCS contributions. First, we combine DCS
with MBD to compute interaction energies of small molecular dimers. Following this, MBD+DCS
is used to compute the binding energies of supramolecular host–guest complexes and confined
Xe dimers in CNTs. These more complex systems reveal the impact and importance of DCS, as
well as the length scale and character of the emergent changes to long-range interactions.

5.2.1 Computational Details

In accordance with Eq. (5.4), the DCS contribution to the vdW energy can be calculated from
the “beyond-dipolar potential” and the wave functions of DC and uncoupled quantum (Drude)
oscillators, respectively. These wave functions can be obtained directly from solving the MBD
Hamiltonian (5.1), see above and Sec. 2.3.5. The range-separating function for EDCS has been
chosen to follow the same Fermi-like functional form as in MBD, see Eq. (2.63), where the param-
eters a and β have been set to 10.12 and 1.4, respectively. The ratio of the chosen parameters is
thereby the same as for the parameters used for MBD. Keeping this ratio constant assures the
same switching behavior and avoids skewing of the range-separating function, see Fig. 5.2. This
choice of the parameters provided robust results for all systems studied in this work. Optimal
tuning of the range-separation, however, requires an increased availability of reference data,
which accurately includes the effects covered by DCS. Calculation of EDCS was carried out within
the libMBD software package. [243]
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Fig. 5.2: Shift of original MBD range-
separating function (red) by keeping a
fixed ratio of range-separating parameters.
For Dipole-Correlated Coulomb Singles a shift
to larger distances using a = 10.12 and β =
1.4 was used.
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All DFT calculations have been carried out within the FHI-aims package using a basis set of
numerical atomic orbitals. [302] For the calculations employing the PBE0 hybrid functional, highly-
converged results at the “really tight” level of settings (meV-level of convergence in energies, see
Ref. 302) have been extrapolated based on PBE0 with “tight” settings and PBE results with “tight”
and “really tight” settings. While significantly reducing computational costs, this scheme has
been proven to provide an excellent estimate for PBE0 at the “really tight” level. [232] The same
extrapolation scheme was used to correct the atomic Hirshfeld volumes, which form the basis for
all MBD and DCS calculations. The results reported for Xe inside CNTs were obtained using the
PBE functional with the “tight” level of settings.

5.2.2 Dipole-Correlated Coulomb Singles in small Molecular Dimers

We begin by applying the first-order perturbation term (5.4) to the S66 data set [303] of small,
unconfined molecular dimers. For such systems, semi-local or hybrid density-functional approx-
imations in conjunction with the MBD formalism provide excellent agreement with accurate
reference results from coupled-cluster calculations with single, double, and perturbative triple
excitations (CCSD(T)). [50] The S66 set contains non-covalently interacting dimers in 3D isotropic
vacuum and in accordance with Fig. 5.1 we expect minuscule first-order Coulomb corrections in
this case. Indeed, we find that the DCS contributions for all systems in S66 are very small and
they can have both positive as well as negative values (see Fig. 5.3). As a result, the accuracy of
vdW-inclusive DFT remains equally good upon account for DCS contributions to the interaction
energies of small molecular dimers as contained in the S66 database.

Fig. 5.3: Binding energies of
S66 dimers and Dipole-Correlated

Coulomb Singles contributions.
PBE0+MBD+DCS results (green)
and bare Dipole-Correlated Coulomb

Singles contribution (blue) for all
dimers contained in the S66 dataset.

5.2.3 Coulomb Corrections for Host–Guest Complexes

Host–guest molecular systems are significantly more complex than the S66 dimers, but are still
tractable with accurate benchmark methods such as diffusion quantum Monte-Carlo (DQMC).
Here, we first ascertain the impact of DCS on the binding energies of host–guest complexes
and demonstrate the accuracy achieved by including DCS contributions into the PBE0+MBD
approach in comparison to DQMC reference interaction energies from previous works.

Fig. 5.4 shows two examples of host–guest complexes. For both systems, the guest molecule is
a C70-fullerene (buckyball) while the host is either [6]-cycloparaphenyleneacetylene (6-CPPA,
Fig. 5.4 left) or the “catcher” molecule (Fig. 5.4 right). [304] In the framework of Fig. 5.1, the host
molecule serves as both confinement and the interaction partner. The 6-CPPA and catcher
molecules provide a different confining environment for the buckyball by virtue of their geometry.
We therefore focus on these systems to showcase the contribution of EDCS. Within the dipole
approximation, it has already been shown that many-body effects play an important role for
the description of binding energies in such host–guest complexes. [33,35] Here, we show that also
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Fig. 5.4: Binding energies
of C70 in 6-CPPA (left) and
in the “buckyball-catcher”
(right): PBE0+MBD results (or-
ange), DQMC reference (blue
line, error bars shown as boxes),
PBE0+MBD including Dipole-

Correlated Coulomb Singles con-
tribution (black line). DQMC
reference data were taken from
Ref. 35. The depiction of the
complexes includes isosurfaces at
±0.003 (a.u.) of the change in
the density of electronic fluctua-
tions with respect to the isolated
monomers (red: decrease, blue:
increase).

beyond-dipole interactions, in the form of DCS, have a significant effect, and that inclusion of
DCS to PBE0+MBD yields excellent agreement with the reference results from DQMC. The DCS
contribution for C70 in 6-CPPA and in the buckyball-catcher is 6.4 kJ/mol and 4.9 kJ/mol, respec-
tively. Considering our findings for the S66 data set above, this clearly highlights the importance
of DCS corrections once the 3D isotropy of vacuum is substantially perturbed.

The relative contribution of DCS to the total binding energy for C70 in 6-CPPA and in the buckyball-
catcher is 6.2% and 3.9%, respectively. As can be seen from Fig. 5.4 (and more clearly from Fig. 5.5),
the DCS contribution does not correlate with the system size nor the vdW interaction within the
dipolar approximation. However, the different EDCS contributions can be interpreted in terms of
the physics described in the DC state, which represents the starting point (unperturbed state) for
the calculation of the DCS contribution by means of perturbation theory. One important factor is
how the dipolar coupling changes the density of electronic fluctuations (i.e., δρ shown in Fig. 5.1),
which can be obtained as the expectation value of the charge density operator acting on the MBD
wave function, ΨDC, of the DC and uncoupled set of QHOs. Analysis of the difference of δρ in the
host–guest interaction with respect to the isolated monomers gives us a measure of how much the
density deforms upon the host–guest interaction and, therefore, forms a connection between con-
finement and electronic fluctuations and polarizability. The density difference shown in Fig. 5.4
shows that, upon dipole coupling, the density of electronic fluctuations for C70 in 6-CPPA is more
strongly deformed into the plane of 6-CPPA. Furthermore, we find that the overall displaced
charge, i.e., the integral over the absolute value of the density difference, can serve as a qualitative
descriptor for the DCS contribution to the interaction energy: With increasing displaced charge,
we observe an increased DCS contribution to the interaction energy. We point out that this also
applies to the systems considered below. Hence, the electronic properties obtained for the DC
state can serve as a qualitative rule-of-thumb to estimate relative magnitudes of EDCS.

5.2.4 Relation to Asymmetry and Steric Effects

To explore the connection between EDCS and confinement, we analyze a set of geometrically
similar ring–C70 complexes depicted in Fig. 5.5: The four complexes are C70 hosted by four
different conformations of 8-CPPA. In a previous work, PBE0+MBD has been shown to provide
reasonably accurate binding energies with respect to DQMC. [35] As can be seen from Fig. 5.5A,
the addition of the DCS contribution to PBE0+MBD further improves the binding energies of
all four complexes. However, the individual DCS contributions vary significantly across these
conformations (see relative EDCS shown as fe in Fig. 5.5B).
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Fig. 5.5: Dipole-Correlated Coulomb Singles contributions to binding energies of ring–C70 complexes
and correlation to structural features. (A) Binding energies for ring–C70 host–guest complexes (R1–R4):
PBE0+MBD (orange), DQMC reference (blue line, error bars shown as boxes), PBE0+MBD with Dipole-

Correlated Coulomb Singles contribution (black). DQMC reference data taken from Ref. 35. The hosts for
R1–R4 are 8-CPPA rings. (B) Measure of axial-radial asymmetry ( fa) and proximity ( fd ), and Dipole-Correlated

Coulomb Singles contribution ( fe) to binding energy (all values normalized to the results for R4). Definition of
“axial” and “radial” phenyl units of 8-CPPA by the Pv plane shown in (C).

In order to understand the potential relation between EDCS and asymmetry or steric effects, we
define two geometrical measures: One for proximity ( fd ), which is given by the sum of inverse
distances between the atoms of the fullerene guest molecule and the CPPA-host, and one for the
asymmetry of the system ( fa). For the latter, we define a plane along the elongated axis of C70 that
is perpendicular to the CPPA ring (labeled Pv plane in Fig. 5.5C). The four phenyl units closest to
this plane are considered “axial” and the remaining four “radial”. Based on this classification, we
define “axial vicinity” (A∥) and “radial vicinity” (A⊥) by summing the inverse distances between
all fullerene atoms and atoms of the “axial” and “radial” phenyl rings, respectively. Our measure
of (axial-radial) asymmetry is then given by fa = (A∥− A⊥)/(A∥+ A⊥). Fig. 5.5B summarizes the
results for the proximity and asymmetry measures and the ratio of EDCS of each system and that
of R4 ( fe = EDCS(Ri )/EDCS(R4), i = {1,2,3,4}). It is clear that, in principle, proximity plays a role in
electronic confinement (cf. proximity and DCS contributions for C70 in 6-CPPA and R1). As can
be seen from the detailed analysis in Fig. 5.5B, however, purely geometric considerations do not
correspond directly to the trends in EDCS. First, the proximity measure, fd , is insensitive to the
different confining environments and remains almost constant among all four conformations,
whereas the DCS contribution varies significantly. Furthermore, the asymmetry measure, fa , has
no correlation with EDCS (see R2 versus R3 and R4 in Fig. 5.5B). Thus, also a pairwise description
of asymmetry between atomic positions is insufficient to predict the qualitative trend of the
contribution of DCS.

The failure to capture the behavior of EDCS in terms of simple geometric characteristics stems
from the fact that the DCS contribution is a quantum-mechanical effect arising from long-range
electron correlation, which shows a non-trivial dependence on the geometrical features of a sys-
tem. A considerable part of EDCS represents charge polarization effects due to long-range electron
correlation, cf. Eq. (5.22). As discussed for the previous complexes, the displaced charge within
MBD (as depicted in Fig. 5.4) can provide a measure for the dispersion-polarization-like term and
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indeed tracks the qualitative trend in the relative DCS interaction energies for all supramolecular
complexes treated here. The best geometry-based metric found here is a sum of inverse distances
to the power of five, which resembles an interaction of quadrupoles induced by long-range corre-
lation (vide supra). Further information on qualitative descriptors can be found in Appendix A9.

5.2.5 Impact of Dipole-Correlated Coulomb Singles on vdW Interaction inside CNTs

Having established the importance of EDCS for confined host–guest systems, we now employ
the developed methodology to investigate the effects of confinement for a Xe dimer inside
CNTs. In particular, we answer the question how the presence and strength of confinement
changes the relative importance of the DCS correction to dipolar vdW interactions. Xe does not
possess permanent multipoles and has a substantial polarizability. As a result, the long-range
Xe–Xe interaction has pure vdW character. CNTs can be generally classified according to their
chiral indices (n1,n2), where armchair CNTs with n1 = n2 are metallic in nature. Since the DCS
contribution becomes especially important in the presence of metallic screening, [269] we analyze
the Xe–Xe interaction inside two armchair, hydrogen-capped CNTs with n1 = n2 = 5 and n1 = n2 = 6.
The diameters of the (5,5)- and (6,6)-CNTs are 6.78 Å and 8.13 Å, respectively. The length of each
nanotube was chosen to be 30 Å, which is sufficient to avoid any significant edge effects. The
binding energies of the Xe dimer inside the nanotubes are calculated as

Eint = EXe2@NT +ECNT −EXeA@NT −EXeB@NT , (5.23)

where EXe2@NT, EXeA/B@NT, and ECNT are the energies of Xe2 inside the CNT, the two single Xe
atoms hosted by the nanotube and the bare CNT, respectively. Fig. 5.6 summarizes the effect of
the confining potential of capped CNTs on the Xe dimer binding energy. We focus on the variation
of the DC MBD and the corresponding DCS contributions as a function of the inter-Xe distance,
R. In Fig. 5.6A, we show the effect of confinement on the individual contributions by comparing
a Xe dimer inside the (6,6)-CNT and in gas phase. One clearly sees that both EMBD as well as
EDCS become less attractive due to confinement. In the case of the MBD interaction energy this
can be attributed to (i) decreased Xe polarizabilities due to the screening by the CNT and (ii)
the restriction of electronic fluctuations on the Xe atoms due to correlation with fluctuations in
the CNT. This reduction of the vdW interaction as a result of many-body correlation has been
observed and detailed in a number of previous works. [2,33,35,50,305] It is notable that the bare pres-
ence of the confinement affects EMBD more strongly than the DCS interaction energy. Fig. 5.6B
then shows the MBD and DCS components for the two CNTs with different radii. In contrast to
the bare presence of confinement, the type and strength of the confinement, as represented by
the different nanotubes, has a larger effect on the DCS interaction than on the MBD contribution.
We also note that the effect of the different environment on the MBD interaction is negligible
after 6 Å and the binding curves follow the same behavior, while the effect is more long-ranged
for EDCS. DCS are more sensitive to the characteristics of the confinement compared to EMBD. As
expected, the destabilization of the Xe dimer due to screening and many-body correlation effects
is less pronounced inside the (6,6)-CNT.

Fig. 5.6C shows the cumulative vdW binding energy, EMBD + EDCS. In total, confinement in
a metallic CNT leads to a substantial decrease of the Xe–Xe vdW interaction. Mostly due to
the DCS contribution, this destabilization is strongly dependent on the confining environment.
This shows that the total long-range vdW interaction can be in fact substantially altered by
(nano-)confinement, whereas the bare MBD treatment would predict the environment to have no
effect beyond interatomic distances of 6 Å. For Xe2 inside a (5,5)-CNT, the interplay of the repulsive
DCS contribution and the attractive MBD interaction interestingly leads to a near-linear behavior
for separations of 6 Å to ∼8 Å. To explore the balance between the repulsive EDCS and the attractive
EMBD more clearly, we show the absolute value of their ratio as a function of R in the inset of
Fig. 5.6C. In all cases, the ratio, i.e., the relative importance of the DCS contribution, increases
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Fig. 5.6: MBD and Dipole-Correlated Coulomb Singles interaction inside carbon nanotubes. (A) MBD
and DCS contributions inside a (6,6)-CNT and in gas phase as a function of the Xe–Xe separation. (B) Effect of
the different confinements of a (5,5)- and (6,6)-CNT on EMBD and EDCS. (C) Two Xe atoms encapsulated in a
CNT. Total van der Waals interaction energy given by the sum of EMBD and EDCS with results for increasing
the Xe polarizability by 50 % (black). Inset: Absolute value of the ratio between EDCS and EMBD.

with larger inter-Xe distances and reaches a maximum around ∼5.8 Å before converging to zero.
The interatomic distance at which one observes the maximum is surprisingly independent of
the presence and strength of the confinement. The ratio of EDCS and EMBD and its maximum
value, on the other side, strongly depend on the environment of the interacting particles. In order
to highlight the critical role played by the response properties of the objects interacting under
confinement, we have performed the analysis for Xe2 inside a (5,5)-CNT while increasing the Xe
polarizability by 50% (black dashed curve). The results indicate a pivotal role of the polarizability
in the total vdW interaction in confined systems: At shorter interatomic distances, the overall
interaction is increased as the attractive MBD contribution is affected more strongly. In the
very long-range limit the interaction converges to the same behavior as for “normal” Xe2. In
the intermediate region, however, the repulsive contribution from DCS increases more strongly
than its attractive MBD counterpart, which leads to a substantial destabilization and eventually
repulsive interaction energy. The interplay between EDCS and EMBD in this intermediate region
gives rise to a maximum followed by a very shallow minimum in the binding curve creating a
small barrier of ∼0.1 kJ/mol in the binding curve. All this can be explained by a much higher
sensitivity of EDCS to the Xe polarizability compared to the MBD interaction energy. Accordingly,
changing the polarizability has a strong effect on the ratio of EDCS and EMBD and its maximum
(see Fig. 5.6C). The ratio surpasses one, meaning that EDCS supersedes the MBD contribution
in magnitude and introduces a region of repulsive interaction around 7 Å. The position of the
maximum is thereby increased by almost 1 Å. Altogether, we can conclude that with increasing
polarizability, the relative importance of the DCS contribution increases, becomes more long-
ranged and can lead to non-trivial qualitative changes in the overall vdW interaction.
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Fig. 5.7: Total Xe–Xe interac-
tion energies in carbon nanotubes.
(A) bare PBE-DFT interaction ener-
gies, (B) PBE+MBD energetics, (C)
PBE+MBD with account for Dipole-
Correlated Coulomb Singles.

For the considered system of Xe2 inside CNTs, the vdW interaction thereby fully governs the
total long-range interaction. The corresponding PBE-DFT interaction energies are of negligible
magnitude at inter-Xe distances beyond ∼6 Å and only introduce the well-known repulsive con-
tributions at shorter separations. As a result, the qualitative changes due to DCS reported above
remain unaltered by inclusion of contributions captured in semi-local DFT. One particularly
interesting aspect of the total PBE+MBD+DCS interaction is that PBE contributions together
with DCS cancel out the meta-stable state of Xe 2 in the (5,5)-CNT. On the level of PBE+MBD,
one observes a local minimum around 5.5 Å, while PBE+MBD+DCS predicts only repulsive or
negligible interaction at all distances. The corresponding PBE-DFT and total interaction energies
are summarized in Fig. 5.7.

5.3 Conclusion of Many-Body Dispersion beyond the RPA

This chapter introduces Dipole-Correlated Coulomb Singles (DCS) as a distinct component of
the interaction energy whose description is missing in state-of-the-art vdW-inclusive DFT(B). An
explicit model based on the MBD framework is developed to account for DCS and the resulting
(interaction) energy contributions are demonstrated to have a significant effect on vdW interac-
tions in supramolecular systems and under nano-confinement. There are three main reasons
why EDCS has not been addressed before. First, the resolution and accuracy of experimental
setups have not been sufficient to reveal the unusual behavior arising from EDCS at the nano-
to microscale. For example, the nano-fluidic techniques and manufacturing of nanotubes with
desired properties, which helped reveal the phenomenon of accelerated water flow through
carbon nanotubes, have become available only recently. Second, the prevalent conception about
the universality of conventional long-range attraction between polarizable moieties has subdued
explanations of the observed experimental phenomena that would accommodate long-range
repulsive vdW contributions. Third, while ab initio electronic-structure methods such as coupled-
cluster theory or QMC inherently describe DCS, the prohibitively high computational cost of such
methods for larger systems did not allow for the fine analysis as enabled by the here-presented
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efficient approach. The computational costs of the presented DCS formalism without approxima-
tions scale with the fifth power of the number of atoms. However, this is accompanied by a very
small prefactor and as a result the computation of DCS produces negligible additional costs to
semi-local or hybrid DFT calculations for systems of up to several hundred atoms. The present
formalism further solely relies on the MBD wave function, which in turn is based on the definition
of atomic polarizabilities within a molecule or material. So, the DCS formalism could equally-well
be included in force field calculations as presented previously for the MBD model. [306] While the
remaining computational costs limit its application in molecular dynamics simulations, DCS can
be used to improve the description of structural ensembles via energy reweighting. In addition to
such a posteriori corrections, the DCS formalism enables the determination of improved effective
interatomic potentials for complex systems.

In summary, while a continuous treatment of DC oscillators at every point in space can essentially
describe any response allowed by quantum field theory, a coarse-grained formalism of atomic
response (like the MBD approach) has to account for beyond-dipolar couplings. The DCS formal-
ism represents a consistent, unified methodology to incorporate this previously neglected part
of the coupling between instantaneous electronic fluctuations within a quantum-mechanical
many-body treatment of vdW interactions. It is shown that the inclusion of this contribution
becomes significant for relatively larger molecular systems and can even change the qualitative
nature of (long-range) intermolecular interactions. The negligible computational cost of the
present methodology compared to benchmark electronic-structure methods allows to explore
the emergent role of beyond-RPA, beyond-pairwise vdW interactions in large-scale systems. The
surprising results for the interaction of a Xe2 under the confinement of CNTs (Figs. 5.6 and 5.7)
suggest a possible explanation for the high flow rate of water through nanotubes, by way of
reducing the long-range vdW interaction and hence decreasing the density and microscopic
“viscosity” inside nanostructured environments. Careful study of the mutual interplay of such
effects as well as further accurate and well-defined reference data from methods that incorporate
DCS may be necessary to fully explain such puzzling effects under nanoscale confinement, but
the present work is a promising, first step in this direction.
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CHAPTER 6
Machine-Assisted

Density-Functional Tight-Binding

Parts of Sec. 6.1 and 6.2 have been reproduced with permission from

M. Stöhr, L. Medrano Sandonas, and A. Tkatchenko, J. Phys. Chem. Lett. 11, 6835 (2020).
The data and figures in 6.2 have been produced in collaboration with Dr L. Medrano Sandonas.

The previous chapters highlight the potential role of collective long-range vdW forces and the
wavelike behaviors of electrons in biomolecular and other nanoscale systems beyond the incom-
plete state-of-the-art treatment via phenomenological pair-potentials. As pointed out in the
discussions of the previous chapters, the dynamics and ultimate importance of the above inter-
actions is given by the free energy landscape of the system, which in turn also strongly depends
on the vibrational/phononic properties (in form of zero-point energy and vibrational entropy
contributions). From previous studies [31,213] it can be expected that the role of many-body vdW
forces gets even more emphasized when considering vibrational/phononic contributions and
nuclear relaxation. This can be explained by the inherently non-local and collective character
of many-body dispersion, which mostly affects more collective, lower-frequency (or “slower”)
nuclear coordinates rather than local structural changes.

In order to describe vibrational/phononic properties and the free energy landscape, we need to
go beyond the bare study of vdW forces and require an accurate and robust total energy method,
which can account for the abovementioned phenomena. The main workhorse method in that re-
gard is DFT. To gain the desired microscopic understanding of biomolecular and other nanoscale
systems, current DFT approaches are facing considerable limitations, however. Despite the ever-
growing availability of computational resources and high-performance implementations, they
are still limited in terms of tractable system sizes due to the associated computational workload.
Here, an intermediate level of theory as represented by semi-empirical QM methods can offer a
promising alternative. Semi-empirical methods include an explicit QM treatment of electrons
and can be combined with accurate (many-body) vdW models [142] while requiring only a fraction
of the computational cost of DFT.
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6.1 Hybrid QM/ML as Next-Generation Semi-Empirical Methods

Semi-empirical methods usually involve the formulation of an approximate, first-principles-
based QM Hamiltonian together with an empirical “repulsive energy”. [70,307] The definition of this
repulsive energy can vary from method to method, but in all cases it is (considered to be) a more
local contribution to the total energy, while the QM Hamiltonian to a certain degree accounts
for non-locality and QM phenomena such as long-range electrostatics or charge transfer. As
an example we will here treat the DFTB formalism [41–43] as used to parameterize ab initio vdW
models in Chapters 3 & 4. As detailed in Sec. 2.2, DFTB is based on DFT using a superposition
of (confined) atomic densities, ρ0 =

∑
ρA, extended to allow for the redistribution of electrons

by expanding the density functional around the reference density ρ0 in terms of changes in the
electron distribution. [42–44] The resulting energy functional can then be written as a sum of an
electronic energy, E (el)

DFTB, and the repulsive energy, Erep. The electronic part of the total DFTB
energy is evaluated from a tight-binding Hamiltonian parameterized through reference DFT
calculations of (confined) atoms and diatomic molecules, which limits the amount of parameters
for the electronic DFTB energy to a minimum. [44] The repulsive energy, on the other side, is
usually obtained in a much less straightforward manner. As given in Sec. 2.2.4, it is formally
defined as,

Erep
[

ρ0
]

= Exc
[

ρ0
]

−
∫

Vxc
[

ρ0
]

ρ0 dr− 1

2

∫

VH
[

ρ′
0

]

ρ0 dr+Enuc , (6.1)

with ρ ≡ ρ(r) and ρ′ ≡ ρ(r′) as in Sec. 2.2 and Exc being the xc energy, Vxc the corresponding
potential, Enuc the (effective) nuclear repulsion energy, and VH the Hartree potential. [44,47] As it
only depends on the reference density, ρ0, and atomic positions, Erep can further be considered a
more local property (see also Fig. 6.1). In lieu of the above formal definition, Erep is in practice
represented by (short-ranged) atom-pairwise potentials fitted to DFT reference calculations. So,

Erep = EDFT −E (el)
DFTB and Frep = FDFT −F(el)

DFTB . (6.2)

The parameterization of repulsive potentials thus represents a complex multidimensional fitting
problem of atomic pair-potentials to DFT reference data, which renders it the most intricate step
in the development of DFTB parameterizations. Various (semi-)automated approaches have
been proposed to tackle this task, [44,308–314] but in practice many cases still do require inevitably
subjective manual adjustments. An optimal DFTB parameterization should finally provide ac-
cess to accurate electronic as well as energetic and structural properties. Optimization of the
parameters governing the electronic DFTB Hamiltonian is thereby often done separately based
on electronic properties as obtained with DFT or other reference methods. The final performance
for energetic and structural properties then largely depends on the repulsive energy.

To test the hypothesis of locality for the repulsive potential, we performed a vast sampling of
the conformational space of two select hydrocarbons. The sampling was obtained from high-
temperature MD simulations, where a region with varying radius around the central atom was
fixed. Following the procedure suggested in Ref. 315, we then obtain the spread of the repulsive
force on the central atom according to Eq. (6.2) as a function of the radius of the fixed region. This
spread serves as locality measure for the repulsive force. Fig. 6.1 shows the locality measure for a
2 nm-sized graphene flake and a complex, flexible alkane (see insets). In both cases, the sampling
of changes outside a fixed region of ∼4.7 Å have a negligible effect of less than 1 kcal·mol−1·Å−1 on
the repulsive force on the central atom. The slower decay in the case of the alkane can be explained
by the much increased flexibility and the resulting increased sampling of the conformational
space compared to the graphene flake. From the above analysis, we can conclude that all effects
relevant for the repulsive potential are included within a range of 5 Å, which confirms the rather
local character of the repulsive energy and force. The local environment within 5 Å thereby
includes the first three nearest neighbors of the central atom. The internal coordinates within
this local environment are what we will refer to as local degrees of freedom in the following.
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Fig. 6.1: Locality test of the re-
pulsive force in a graphene flake
and a complex, flexible alkane:
The graphs show the spread in the
repulsive force on the central atom
as given by the difference of PBE0-
DFT and electronic DFTB contribu-
tions obtained in constrained, high-
temperature molecular dynamics sim-
ulations with a fixed region of varying
radius around the central atom.

Fitting repulsive potentials according to Eq. (6.2) allows DFTB to often provide results at the DFT
level of accuracy, but inevitably introduces empirical contributions to the repulsive potential to
correct for the approximations in the remaining formalism. These contributions also introduce
a beyond-pairwise character to Erep. Consequently, the inherent limitations of the traditional
pairwise formulation have proven a major pitfall for accuracy and general validity. For example,
phonon band structures have been shown to be often poorly described by traditional DFTB and
highly dependent on the employed repulsive potentials. [79,316,317] Independent of the formalism
to treat van der Waals interactions, unit cell volumes of molecular crystals can be considerably
underestimated. [317,318] Traditional repulsive potentials without empirical fixes have also failed
to correctly describe the stability of Zundel ions and associated proton transfer barriers. [319] As
observed for the different phases of ZnO, [320] optimal repulsive potentials can depend strongly
on the chemical environment — a final confirmation of the breakdown of the pairwise-additive
approximation.

Fig. 6.2 exemplifies this breakdown for the repulsive force between the two carbon atoms in
acetylene, ethylene and ethane. The absolute value of Frep as defined in Eq. (6.2) can vary by
more than 100 kcal·mol−1·Å−1 around the equilibrium distance. All hydrogen atoms have thereby
been allowed to relax, which leaves only the bare C–C repulsion. When going to larger-scale
systems, approximating the C–C repulsion by an environment-independent pair-potential can
then lead to an arbitrary accumulation of such errors per C–C bond. Tailoring parameterizations
for a specific purpose can alleviate the shortcomings for individual properties or structural
motives. [316,319–321] A multitude of applications requires simultaneous accuracy in a variety of
properties and structural features, however. For example, we can conclude from Fig. 6.2 that even
simple hydrocarbons containing both saturated and unsaturated regions (single and double/triple
C–C bonds) cannot be accurately described by environment-independent pair-potentials. Using a
specific repulsive potential for single, double and triple C–C bonds, on the other side, requires an
a priori definition of bond types, which renders the description of transitions between bond types
impossible and essentially leads to an expensive polarizable force field. Dynamical definition
of bond types as proposed in Ref. 322, finally, can suffer from sudden transitions between bond
orders and inevitably introduces further empiricism in form of switching functions. So, we
require a more advanced description beyond the pairwise picture with a straightforward access
to optimization in the corresponding high-dimensional functional space.
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Fig. 6.2: Environment-dependent
repulsive contributions to atomic
forces in acetylene, ethylene and
ethane. Depending on the local
chemical environment, the repulsive
force as given by the difference
between PBE0-DFT and electronic
DFTB contributions can vary by more
than 100 kcal·mol−1·Å−1 around the
equilibrium distance.

A very successful tool for exploring the space of high-dimensional functions and mappings are
Machine Learning (ML) approaches. Since early applications of “learning machines”, such ML-
based methods have recently gained tremendous interest in the context of modeling molecular
systems and materials. Given sufficient reference data, modern ML techniques aided by chemical
and physical knowledge have been proven to show great success in predicting physico-chemical
properties of molecules and materials. [323–327] In many cases the data-driven predictions reach
virtually the same level of accuracy as the provided reference data. Nowadays, several methods
ranging from Neural Network (NN) potentials to Kernel Ridge Regression approaches using di-
verse molecular descriptors have been put forward, substantially accelerating high-accuracy
atomistic modeling and advancing our understanding of chemical compound space. [328–334] Al-
beit aided by chemical intuition, these approaches are still mostly based on data-driven inference
instead of physical laws and typically rest on an assumption of locality. Molecular properties
including interatomic interactions, however, are governed by quantum mechanics and involve a
variety of non-local characteristics and phenomena. As a result, the applicability of ML models
is strongly limited due to the lack of decisive effects like long-range electrostatics‡ or van der
Waals dispersion interactions. Approximate QM approaches like (electronic) DFTB together with
augmenting models, on the other side, are able to capture such effects. [42,142,156,307,318]

Besides the limitations due to the locality of current ML models, data-driven prediction of global
properties additionally suffers from the sheer depth and complexity of the global chemical space.
The number of samples needed to infer a model for global properties of a given set of molecules
scales with the number of compositional, configurational, and conformational degrees of free-
dom. Local (chemical) environments as required for the prediction of local properties, on the
other side, span a drastically reduced and most importantly bound space. For the dataset and ap-
plications considered in this work, for example, we can estimate the number of training instances
for local interactions to be three orders of magnitude smaller than to cover the global chemical
space (see Appendix A11). A hybrid QM/ML formalism of ML potentials for (more) localized in-
teractions, such as the repulsive energy, and approximate QM methods for non-local effects, thus,
represents a very promising approach to obtain an accurate and transferable methodology for
studying realistic and practically-relevant systems. For the case of DFTB, such combinations have
been proposed and studied recently, providing a more straightforward access to atom-pairwise

‡ Based on physical models, very recent developments are able to provide substantial improvements in this re-
gard. [335] Their general accuracy and validity remains to be fully assessed, however.
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Fig. 6.3: Schematic
representation of the
DFTB-NNrep framework.
DFTB repulsive energies
and forces are obtained via

a (deep tensor) neural net-
work model based on PBE0
reference data, while elec-
tronic energies and proper-
ties are calculated within
the density-functional tight-
binding formalism. Repro-
duced in altered form with
permission from Ref. 4.
© 2020 American Chemical
Society.

repulsive potentials from Gaussian process regression [307] or introducing partial non-additivity
via bond-type-dependent pair-potentials. [322] In this work, we propose to further extend the
latter idea to fully many-body ML potentials in order to account for beyond-pairwise repulsive
contributions. This is to some extent similar in spirit to theΔ-ML approach, where it is proposed
to use ML models to correct the final energy of semi-empirical methods. [336,337] As the final DFTB
energy is already fitted to reproduce DFT, such corrections can involve a rather unspecific and
noisy objective quantity, however. Targeting the full repulsive potential is expected to provide a
well-behaved and smooth quantity with a more distinct mapping to molecular features.

6.2 Many-Body DTNN Potentials for Repulsive Energies in DFTB

As an example of such hybrid QM/ML approaches, we here use (electronic) DFTB in conjunction
with a global deep tensor NN (DTNN) model. Hence, forming the DFTB-NNrep framework as
described in Fig. 6.3. In particular, we used the deep learning toolbox SchNetPack. [325,333,338]

The DTNN thereby infers the representation directly from the data instead of relying on fixed
descriptors and metrics. With the limited knowledge about (geometrical) descriptors and physical
constraints for Erep this motivates the use of DTNN potentials. It is worthwhile to point out, how-
ever, that the presented methodology can be applied to various semi-empirical methods involving
repulsive potentials and other ML approaches. The latter is briefly outlined in Appendix A10.

6.2.1 Computational Details

Repulsive energies and forces as given by Eq. (6.2) have been obtained for a large and diverse set
of organic molecules. The basis for this dataset is the QM7-X database, [339,340] which contains
molecular structures and QM properties of small organic molecules at the level of PBE0-DFT. For
the purpose of this work, we have selected molecules containing the elements {C, N, O, H}, but
the presented methodology is easily extended to other molecular compositions. In addition to
equilibrium structures, QM7-X also features 100 non-equilibrium conformations per molecule.
In this work, the QM7-X database has been further extended to cover less well-represented
regions of configurational space, such as select pairwise O–O and H–H distances. The final
set, which we shall use as the basis for all presented models contains ∼4.1 million molecules.
Repulsive contributions to energies and forces show a standard deviation of 94 kcal/mol and
46 kcal·mol−1·Å−1, respectively, and their distributions are shown in Fig. 6.3.
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The employed NN architecture is based on atom-wise representations of molecular properties
directly inferred from atomistic structures. In the layers of the DTNN, atoms are represented by
a tuple of features x(l )

i
∈R

D , where D is the dimension of the feature space and l denotes the
layer. Interactions between atoms are modeled by a series of in total T -times refined pairwise
interactions between all x(l )

i
within a certain cutoff, which gradually introduces information

about the chemical environment (i.e., complex many-body terms). This procedure is carried out
by using continuous-filter convolution layers with filter-generating networks. The final prediction
is obtained after atom-wise updates of the feature representation and pooling of the resulting
atom-wise property. Besides generating reliable NN-models for energy prediction, SchNetPack
has been proven to also provide energy-conserving force models by differentiating the energy
model with respect to the atomic positions. [333] Hence, we create a global DTNN-model for
predicting repulsive energies and forces based on the QM7-X set. We used T = 3 interaction
refinements, a cutoff of 5 Å and a 128-dimensional feature space. For all reported results, the
DTNN was continuously trained with a descending learning rate from 10−4 to 10−6 and a decay
factor of 0.5. The training has been performed using four Tesla P100 GPUs. SchNetPack and
DFTB+ calculations as well as structural and vibrational analysis have been carried out within the
Atomic Simulation Environment. [341] Calculation of repulsive and electronic contributions has
thereby been combined into a single calculator instance via a locally modified QM/MM calculator.
For the remainder of this work, we use DFTB-pwrep to refer to conventional DFTB3 with pairwise
repulsive potentials. DFTB-NNrep refers to DFTB3 with the same electronic parameterization
while using repulsive energies/forces from the DTNN-model. For comparisons of pwrep and
NNrep, it should be noted that unlike NNrep the 3ob set was not designed to reproduce PBE0.

6.2.2 Overview and DTNN Training

First, we studied the influence of the training set selection on the learning process of repulsive
energies. This is important for optimizing the training set size, accuracy and learning progress. To
this end, we considered three cases: random selection from the whole dataset, farthest point sam-
pling (FPS) with the relative repulsive energy as distance metric and a training set consisting of
equilibrium structures together with a given number (X) of non-equilibrium structures. In the lat-
ter case, which we will refer to as eq+X in the following, non-equilibrium structures were selected
at random from domains with low, middle or high values of Erep. The corresponding learning
curves are shown in Fig. A.7 of Appendix A10. On a log-log scale one expects a (near-)linear
trend in the learning progress, which we can attribute conclusively only to the randomly selected
training set. For eq+X, we find linear behavior only beyond ∼200k training instances. When
considering only equilibrium structures in the training set (=̂ ∼41k), for instance, the MAE is
19.5 kcal/mol and strongly deviates from a linear trend. With an increasing portion of non-
equilibrium structures, eq+X approaches linear behavior and the results obtained with random
selection. The minimum MAE achieved with FPS and eq+X are 0.59 kcal/mol and 0.55 kcal/mol,
respectively. The lowest MAE of 0.47 kcal/mol is obtained for random selection of 800k training
points. The rather unexpected finding that the more refined approaches starting from equilib-
rium structures do not improve over a random selection of the training set demonstrates the
importance of non-equilibrium conformations and that their properties can seldom be inferred
from the information on equilibrium structures. Regarding the required training set sizes, we
would like to note that a purely data-driven, global model can be expected to require about 5 ·106

training points to cover the compositional, configurational and conformational space of QM7-X
(see Appendix A11). The considerable reduction observed for NNrep can be attributed to the partly
included physics in the NN-model, the shared information among individual molecular degrees
of freedom and the repulsive potential covering more local interactions. The latter also manifests
itself in an improved performance of kernel ridge regression when using atomic descriptors (see
Appendix A10) and a slower increase in MAEs towards higher-energy conformations.
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6 Machine-Assisted Density-Functional Tight-Binding

As mentioned above, SchNetPack also allows to train NN-models on atomic forces. We employed
the same protocol as above to develop a DTNN for the contribution of the repulsive potential
to atomic forces, which also allows to predict energies since the force model is obtained by dif-
ferentiating the energy model with respect to atomic positions. [333] The corresponding learning
curves are shown in Fig. 6.4. At 500k randomly sampled training instances, the NNrep model
learned on forces produces a MAE of 0.51 kcal/mol and 0.70 kcal·mol−1·Å−1 for energies and
forces, respectively. So, while being only trained on forces, it also provides energies at an accuracy
comparable to the model trained on energies, yet requires a smaller training set. This can be
attributed to the increased information content in the gradient domain and the improved per-
formance of resulting models thanks to the inherent incorporation of energy conservation. [331]

Representing the best and most versatile model, all results reported for (DFTB-)NNrep below
were obtained with the DTNN-model trained on repulsive forces with randomly selected training
instances. We found that for 89 % of the molecules in QM7-X the MAE in forces is lower than the
threshold of 1 kcal·mol−1·Å−1. This indicates that our NNrep model yields reliable energies and
forces for the manifold molecules and conformations considered in QM7-X. The present model
hence extends beyond previous works as reported by Zhu et al. [337] for instance, in which DFTB
forces of a single molecule (glycine) have been corrected viaΔ-learning using a NN. Finally, we
would like to remark that better performances for repulsive energies and forces can be reached by
further increasing the training set size as it was shown in previous ML studies. Given the overall
very low MAEs with respect to PBE0-DFT, this is beyond the scope of the current work.

In a next step, we have compared the results of DFTB-NNrep to a DTNN-model trained on the full
PBE0 atomization energies of our QM7-X set, which we will refer to as NN-PBE0. The learning
curve of the NN-PBE0 model is plotted in Fig. 6.4. NN-PBE0 follows a (near-)linear learning
progress in log-scale, but shows a substantially larger MAE than NNrep and cannot overcome
the threshold of 1 kcal/mol within the considered training set sizes. The minimum MAE at 800k
training instances amounts to 1.52 kcal/mol. The learning progress of NN-PBE0, as characterized
by the slope of the corresponding learning curve, is comparable to the one of NNrep, but thanks
to the large QM prior in form of the electronic DFTB energy, NNrep is able to reach a MAE below
1 kcal/mol at much smaller training set sizes. Finally, we have constructed a DTNNΔ-learning
model for correcting the energy predicted by traditional DFTB-pwrep. The standard deviation of
the difference between PBE0 and DFTB-pwrep is only 28 kcal/mol and hence much lower than for
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Fig. 6.4: Mean absolute er-
ror (MAE) as a function of
training set size for the dif-
ferent neural network mod-
els. MAEs in target energies
are plotted for a DTNN-model
for PBE0 atomization energies
(NN-PBE0) and a Δ-learning
model (NN-ΔDFTB). For our
NNrep model trained on repul-
sive forces, the MAEs in pre-
dicting energies (E[NNrep]) as
well as forces (F[NNrep], right
y-axis) is shown. Reproduced
with permission from Ref. 4.
© 2020 American Chemical So-
ciety.
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6.2 Many-Body DTNN Potentials for Repulsive Energies in DFTB

Erep (94 kcal/mol). However, the DTNN trained on this difference (NN-ΔDFTB) does not provide
a lower MAE (cf. Fig. 6.4). So, learning the traditional pair-repulsion in addition to theΔ-term
(as done in NNrep) does not pose an issue for the DTNN and does not affect the learning success.
This allows to avoid the cumbersome construction of pair-potentials and to directly learn the full
repulsive contribution without loss of accuracy, which strengthens the motivation for our NNrep

approach.

To further analyze the performance of DFTB-NNrep, we have split the QM7-X set into four different
subgroups depending on their composition: molecules containing only the element combina-
tions {C,H}, {C,N,H}, {C,O,H}, or {C,N,O,H} and as a function of the number of non-hydrogen atoms
(see Fig. 6.5). We then computed the atomization energy (Eat) for each equilibrium molecule
and its respective non-equilibrium conformations using DFTB-NNrep. As a rule of thumb, the
atomization energies for molecules with fewer non-hydrogen atoms and correspondingly smaller
size are predicted with higher accuracy. This can mainly be attributed to the higher number
of degrees of freedom in larger molecules, which increases the complexity for describing their
conformational space especially in regard to strongly distorted molecules. Overall, the MAE is
0.5 kcal/mol and 88 % of the molecules are predicted within an error 1 kcal/mol. The mean abso-
lute relative error (MARE) in Eat for the whole set is 0.03 %. As such, the MAE and MARE are three
times smaller than for NN-PBE0. This confirms the very good performance of DFTB-NNrep. In
particular, almost all hydrocarbons show very low errors thanks to the extensive sampling of C–C
and C–H in the training set. Consequently, the least represented molecules, which at the same
time show the highest configurational and conformational complexity (e.g., formed by {C,N,O,H})
also show the largest errors due to the limited sampling. A more balanced sampling of the QM7-X
reference can therefore further limit the obtained MAEs and is subject to ongoing investigations.
In addition to the QM7-X database, we analyzed the performance of our DFTB-NNrep model
based on 2244 {C,N,O,H}-molecules as contained in the QM9 dataset. In comparison to hybrid
DFT, the MAE in predicting Eat is 0.90 kcal/mol for molecules with up to seven heavy atoms and
1.6 kcal/mol for molecules with eight or nine heavy atoms. The relative error stays around 0.08 %.
For DFTB with ML-based generalized pair-potentials, Kranz and co-workers have obtained a
MAE of ∼2.6 kcal/mol. [322] As a final test for atomization energies, we considered a set of linear
and cyclic hydrocarbons as contained in the NIST Standard Reference Database Number 69. [342]

Fig. 6.5: Analysis of the
mean absolute error (MAE)
of DFTB-NNrep in predict-
ing atomization energies.
Left: The MAE in atomization
energies per molecule is shown
as a function of the number
of non-hydrogen atoms con-
tained. The MAE is further
separated into molecules con-
taining only {C,H} (black cir-
cles), {C,N,H} (blue triangles
up), {C,O,H} (red triangles
down), and {C,N,O,H} (green
squares). Right: Distribution
of MAE color-coded accord-
ing to contained non-hydrogen
atoms. Reproduced with per-
mission from Ref. 4. © 2020
American Chemical Society.
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DFTB-NNrep reproduces PBE0 atomization energies as tabulated in the HC160 set [343] within
0.60 kcal/mol for hydrocarbons with seven heavy atoms or less. When considering molecules
with eight or nine carbon atoms, the MAE is 0.90 kcal/mol. This excellent performance confirms
the transferability of DFTB-NNrep for small organic molecules outside the training set.

Besides the (mean) absolute error for each conformation, the relative stabilities of each con-
former represent an important and interesting performance measure. For instance, predicting
the correct energetic ordering of different structures is of utmost importance in computational
crystal structure prediction. To analyze the performance in predicting energy rankings, we have
first determined the energetic ordering of all conformers for each molecule as given by PBE0.
Based on this ordering, we can assign a rank to every structure. Fig. 6.6a shows a correlation plot
of the energy ranks obtained with DFTB-NNrep (red squares) and DFTB-pwrep (green triangles) in
comparison to PBE0, which clearly proofs the much superior performance of DFTB-NNrep. In
this regard, it has been shown previously that including relative energies in the fitting process
of conventional DFTB-pwrep can provide improvements. [344] For further analysis, we calculated
the MAE in the rank predicted by the two DFTB formalisms with respect to PBE0. In Fig. 6.6b,
this ranking MAE is subdivided into individual windows composed of five energy levels. It shows
the much higher accuracy of DFTB-NNrep holds true throughout the energy spectrum. The
general behavior observed in the ranking MAEs with increased deviations in the lower third of
the energy ranking can thereby be explained by the energy level density per kcal/mol for each
window. The more densely the conformers populate the energy spectrum, the easier can already
small errors in the energy prediction cause a reordering of energetic ranks, whereas the ordering
of well-separated energy levels is typically well preserved.

Fig. 6.6: Performance in pre-
dicting relative energy rank-
ings of all 100 conformers
of each molecule in QM7-X.
(a) correlation plot of energy
ranks predicted by DFTB-pwrep

(green triangles) and DFTB-
NNrep (red squares) in compar-
ison to PBE0-DFT. (b) Mean
absolute error (MAE) of the pre-
dicted rank in windows of 5 non-
equilibrium conformations. Re-
produced with permission from
Ref. 4. © 2020 American Chem-
ical Society.
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6.2.3 Transferability and Validity Outside the Scope of the Training Set

We have further studied isomerizations of diverse neutral molecules containing the elements
C, N, O and H. The so-called ISO34 dataset [345–347] and the considered isomers are detailed in
Ref. 347. The experimental (and selectively computationally refined [347]) reference values of the
corresponding isomerization energies have been widely used for benchmarking semi-empirical
methods including DFTB. [348] We have tested the performance of PBE0-DFT and our DFTB-
NNrep model as well as for NN-PBE0, NN-ΔDFTB and conventional DFTB-pwrep in predicting the
isomerization energies as summarized in Tab. 6.1. One can see that the accuracy of DFTB-NNrep

is much better than for NN-PBE0 and DFTB-pwrep and is in fact close to the one obtained at
the level of PBE0. As for the learning success and MAEs within the reference set, theΔ-learning
model does not provide improvements over NNrep.

Tab. 6.1: Performance of PBE0-DFT, NN-
PBE0, NN-ΔDFTB, DFTB-NNrep and DFTB-
pwrep in predicting isomerization energies (in
kcal/mol) in comparison to experimental and
CCSD(T) reference data as considered in
ISO34 dataset: [345–347] mean signed error
(MSE), mean absolute error (MAE) and root-
mean-square deviation (RMSD).

Method MSE MAE RMSD

PBE0-DFT −0.19 1.82 2.48

NN-PBE0 2.21 5.85 11.51

NN-ΔDFTB 0.76 2.48 3.49

DFTB-NNrep −0.71 2.21 3.30

DFTB-pwrep 1.33 3.57 5.05

In addition to the isomerization energies, we have investigated the performance of our DFTB-
NNrep model in predicting the equilibrium structures and vibrational mode frequencies of the
isomers in ISO34. Tab. 6.2 compares the root-mean-square deviation of the optimized structures
(RMSDs) as well as the mean and maximum absolute error in vibrational frequencies (MAEν

and MAXν, respectively) in reference to PBE0-DFT results for DFTB-pwrep and DFTB-NNrep. For
optimized structures, both approaches perform similar and well on average. However, DFTB-
NNrep displays a better performance for a wider range of substrates and products. The only cases
in which DFTB-pwrep provides better results correspond to more complex structures composed
of eight non-hydrogen atoms or unseen functional groups. In the case of vibrational frequencies,
DFTB-NNrep provides a much superior description for all isomers without exception. NNrep

reduces the MAEs by about 85 % and the maximum deviations by 60–90 % providing very good
agreement with PBE0-DFT. It is worth mentioning that the vibrational calculations using DFTB-
NNrep took ∼1.5 hours (on one GPU), while the PBE0-DFT calculations required ∼8260 CPU
hours. Previous studies have already shown that conventional DFTB parameterizations seldom
allow for an accurate prediction of energetic, structural, and vibrational properties at the same
time. As a result, special-purpose parameterizations have been devised for vibrational analysis,
for instance. [47,79,321] The here developed DFTB-NNrep framework, on the other side, indeed does
enable accurate predictions of energetic as well as structural and vibrational properties. This is
essential for, e.g., consistent and seamless calculations of vibrational spectra, free energies and
many other thermodynamic or transport properties.

Tab. 6.2: Structural root-
mean-square deviation of equi-
librium geometries (RMSDs)
and mean/maximum absolute
error of vibrational frequencies
(MAEν/MAXν) as predicted by
DFTB-pwrep and DFTB-NNrep.
All errors obtained in reference
to PBE0 results.

contained
elements

RMSDs [Å] MAEν [cm−1] MAXν [cm−1]

pwrep NNrep pwrep NNrep pwrep NNrep

H,C 0.03 0.02 49.9 7.41 308 93
H,C,N 0.05 0.02 49.8 8.38 316 119
H,C,O 0.06 0.02 50.2 6.72 228 96
H,C,N,O 0.24 0.23 51.9 6.68 333 42

Overall 0.05 0.03 50.0 7.47 333 119
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To finally highlight the advantages of our DFTB-NNrep formalism and its good transferability
among small organic molecules, we have also studied the prediction of potential energy pro-
files upon dihedral rotation. As test cases, we chose N-methylacetamide — as a simple model
for peptide bonds — and glycine. The corresponding torsional profiles are shown in Fig. 6.7.
In the case of the peptide bond, DFTB-pwrep (green triangles) underestimates torsional barri-
ers by 5.4 kcal/mol and overestimates the relative stability of the meta-stable intermediate by
2.8 kcal/mol in comparison to PBE0 (dashed black). DFTB-NNrep (red squares) considerably
improves the performance only underestimating the barriers by 2.9 kcal/mol. As previously
shown by Zhu et al., the traditional 3ob DFTB parameterization shows considerable shortcom-
ings in describing the N–C–O–H dihedral rotation profile of glycine; underestimating torsional
barriers by almost 8 kcal/mol. [337] In their study, the authors achieved substantial improvements
and good agreement with DFT by supplementing DFTB within aΔ-learning framework. Our
DFTB-NNrep model as well provides considerable improvements, yet no full agreement with
hybrid DFT (see Fig. 6.7f). In this regard, it is important to note that theΔ-learning model by Zhu
and co-workers was specifically designed for the glycine molecule, while our DFTB-NNrep model
did not include glycine in its training set. For the N–C–C–O dihedral of glycine, finally, we investi-
gated two pathways of dihedral rotation: full relaxation at fixed dihedral angle (6.7b) and rigid
rotation of the N–C–C–O backbone (6.7c). In the case of the minimum-energy path in Fig. 6.7b,
DFTB-pwrep again underestimates torsional barriers and overestimates the relative stability of the
intermediate state at 180◦, while DFTB-NNrep provides close agreement with PBE0-DFT. When
considering the constrained pathway in Fig. 6.7c, DFTB-pwrep even lacks qualitative features of
the rotational profile: Higher-level reference calculations (PBE0- and B3LYP-DFT as well as MP2)
predict two low-energy barriers at 90 and 270◦ and a main barrier of ∼3 kcal/mol at a dihedral of
180◦. DFTB in conjunction with the traditional pairwise repulsion completely misses this most

Fig. 6.7: Potential energy profiles upon dihedral rotation as predicted by PBE0-DFT, NN-PBE0,
DFTB-NNrep and DFTB. (a) O–C–N–C dihedral of a peptide bond, (b) minimum-energy and (c) higher-energy
pathway for N–C–C–O dihedral rotation in glycine, (d) ethylene, (e) O–C–O–H and (f) N–C–O–H dihedral of
glycine. Reproduced with permission in altered form from Ref. 4. © 2020 American Chemical Society.
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relevant torsional barrier and instead predicts a shallow minimum. Based on this, we can con-
clude that with the traditional atom-pairwise repulsion DFTB is unable to correctly describe the
potential energy landscape around the transition state, which would be essential for calculating
reaction rates. Our DFTB-NNrep model is able to correct for this shortcoming and provides very
good agreement with the reference results. Among all considered models, DFTB-NNrep represents
the only one that is able to give qualitatively and quantitatively good results for both pathways.
These findings are particularly encouraging considering that neither the glycine molecule nor any
rotational profiles were part of the training set. Further dihedral rotational profiles confirming
the above observations for ethylene and the glycine O–C–O–H dihedral are shown in Figs. 6.7d
and e. For comparison, we also computed dihedral energy profiles as predicted by NN-PBE0
(blue circles). As evident from Fig. 6.7, the DTNN trained on PBE0 is unable to predict meaningful
rotational profiles. Together with the poor performance for the ISO34 set, we can conclude that
the transferability of NN-PBE0 is very limited outside the immediate scope of its training set.
The much increased transferability of our DFTB-NNrep approach can be attributed to the more
local character of Erep and further motivates exploring the synergy between (approximate) QM
Hamiltonians and ML-potentials for localized many-body interactions.

6.3 Perspective: Tailor-made ML Model for Repulsive Potentials

The two main limitations of the DFTB-NNrep approach as presented above are the wealth of
reference data needed to construct the model and a limited scalability. Both of these aspects can
be (partially) attributed to the DTNN not fully exploiting the more local character of the target
repulsive energies and forces. In this regard, it is important to note that while a cutoff of 5 Å
has been employed for the definition of the atomic embeddings, the interaction refinements
subsequently combine information from the individual embeddings and can thus considerably
increase the range of effects included in the model. As one potential remedy, ongoing work is
therefore devoted to identifying an optimal combination of cutoff and the number of interaction
refinements. Ultimately, however, the original DTNN architecture is intended as a global model
to describe total energies and forces. As for the broad majority of ML approaches the architecture
and general approach is designed for such global properties. Given the much reduced part of
the total energy covered by Erep, it can be beneficial to employ a design that is more geared to
repulsive potentials. One such idea is discussed in Sec. 6.3.2. Before going to tailor-made ML
potentials for repulsive energies and forces, however, it is worthwhile to re-consider the selection
of training instances. In the previous sections, we have seen that random training set selection
outperforms algorithms based on energetic aspects (eq+X and FPS with energy metric). Consider-
ing the locality of the target quantity, a training set selection based on local characteristics such
as the local degrees of freedom introduced in Sec. 6.1 and discussed in Appendix A11 can be a
viable, more effective alternative. Fig. 6.1 gives a strong indication that local descriptors including
up to three nearest neighbors (bond distances, angles and dihedral angles) suffice to capture
the effects governing the repulsive potential. So, a balanced sampling of these local degrees of
freedom holds the potential to substantially reduce the training set size and to enable models
with broader validity.

6.3.1 Training Sets with Balanced Sampling of Local Chemical Environments

For the mathematical treatment of a balanced training set, we first define a sampling distribution.
To this end, we may simply choose the histogram of the (local) degrees of freedom (currently)
occurring in the training set, S(n). At each step of the training set selection, we then obtain the
k most and least sampled points in the sampling space, Xmax and Xmin. At the nth step of the
selection algorithm, we define the respective maximum sampling distribution, S(n)

max(x), and
minimum sampling distribution, S(n)

min(x), where S(n)
max(x) and S(n)

min(x) are defined on the k most
and least sampled points of the sampling space (i.e., the k lowest and highest values of the total
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sampling distribution), respectively:

S(n)
max(x) = S(n)(xi ) | xi ∈ Xmax and S(n)

min(x) = S(n)(xi ) | xi ∈ Xmin . (6.3)

A balanced, uniform sampling is characterized by the two distributions being the same. So, at
each step of the training set generation, we want to select a new molecule that minimizes the
differences between the two distributions. One way to quantify how different Smax is from Smin

(or the divergence from Smin to Smax), is the Kullback-Leibler divergence [349] as given by

D
(

S(n)
max

∥
∥S(n)

min

)

=
k∑

i=1
S(n)

max(xi ) log

(

S(n)
max(xi )

S(n)
min(xi )

)

. (6.4)

The training set selection then proceeds as a consecutive, numerical minimization of D. So, in
the (n+1)th step we add the molecule that provides the maximum decrease in D. The change in
D is thereby given by its (discrete) derivative with respect to n,
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=
∑

i

[

log
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max(xi )

S(n)
min(xi )

)

+1

]

∆Smax(xi ) − S(n)
max(xi )

S(n)
min(xi )

·∆Smin(xi ) , (6.6)

where ∆S(xi ) = S(n+1)(xi )−S(n)(xi ). It should be noted that for all xi , ∆S(xi ) ≥ 0 and Smax(xi ) >
Smin(xi ). So, the prefactors of both ∆S are strictly positive. To minimize the differences between
the distributions of the most and least sampled regions, we thus require a minimal increase in
Smax and a maximal increase in Smin. Also, with Xmax in descending and Xmin in ascending order,
the absolute minimum and maximum of the current sampling have the strongest impact on the
selection criterion (6.6). In order to assure optimal sampling, we perform the minimization of
Eq. (6.6) under the constraint that the new molecule has to provide an increase of the sampling at
the current global minimum. The overall algorithm is outlined in Fig. 6.8.

Fig. 6.8: Selection algorithm for
training sets with balanced sampling.
At each step one obtains the current sam-
pling of the considered (local) chemical
space, S(X). Then, the position of the
global minimum (XMIN) and the k least
(Xmin) and most sampled (Xmax) points
are identified. Among all molecules
that increase the sampling at XMIN, the
molecule that minimizes the differences
between the most and least sampled re-
gions is added to the training set.
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It is worth noting that the above procedure is not limited to local degrees of freedom. The pro-
posed selection algorithm can be equally-well employed to obtain training sets, that provide a
balanced sampling of an arbitrary choice of descriptors such as delocalized internal coordinates
or molecular properties. Establishing a proper and reasonable sampling space and obtaining the
corresponding sampling distributions can pose challenges in high-dimensional spaces, however.

6.3.2 DTNN Architecture with Two-Center Repulsion-Based Filter Generation

An optimized training set selection can allow to substantially reduce the amount of reference data
needed or in other words allows to treat a broader set of elements/systems with the same number
of training instances without loss of accuracy. Optimally balanced training sets also enable the
construction of more general and robust models, which aids transferability and scalability. In
order to achieve good accuracy at the desired length and time scales of biomolecular or nanoscale
systems, however, a ML model which is more geared to exploiting the physical knowledge about
repulsive potentials seems required. First tests of the NNrep model as presented above on molec-
ular dimers showed considerable deviations and thus the limited scalability, for example. In the
current approach, the repulsive energy is obtained from atom-wise contributions, where each
contribution depends on a respective atomic embedding. This embedding is represented via

Gaussian expansion of the distance matrix, i.e., by the tensor [338]

τABk = e−κ(‖RA−RB‖−µk )2
, (6.7)

where κ represents a tuning parameter and µk resolves the distance matrix in consecutive neigh-
bor shells. Taking the maximum value along k shows that, in principle, all atoms within the cutoff
can contribute to equal amounts to the construction of the embedding and the information in-
cluded from neighboring atoms is largest if their distance is near the average µk . From a physical
perspective the atomic embeddings represent the interaction with neighboring atoms. So, τ
resembles a basis set expansion of pairwise interactions within which the final non-linear model
is constructed. In this regard we already know that all atoms within the cutoff will not contribute
to equal amounts. Also, the most relevant information will probably not come from neighbors at
intermediate distances. In the standard NNrep approach, these two points have to be inferred
during the learning process. Including our prior knowledge of the physical basis for our target
quantity can thus considerably improve the learning progress and robustness of the final model.
To this end, we can obtain an approximate pairwise representation of the repulsive potential,
which we propose to incorporate into the definition of τ. The following paragraphs present
such an approximate basis set for pairwise interaction using a Gaussian basis set expansion and
two-center approximation of the formal definition of Erep.

Formal DFTB Repulsion in Two-Center Approximation

As given in Sec. 2.2, the repulsive energy is formally defined as

Erep =− 1

2

∫

VH
[

ρ′
0

]

︷ ︸︸ ︷
∫

ρ′
0

‖r− r′‖
dr′ρ0 dr

︸ ︷︷ ︸

E (H)
rep

+ Exc
[

ρ0
]

−
∫

δExc
[

ρ0
]

δρ

∣
∣
∣
∣
ρ0

ρ0 dr

︸ ︷︷ ︸

E (xc)
rep

+ Ẽnuc , (6.8)

which we here subdivide into a Hartree(-like) term, E (H)
rep , an xc contribution, E (xc)

rep , and the
(effective) nuclear–nuclear repulsion, Ẽnuc. In order to obtain a pairwise-additive form of Erep, we
start by dividing the total volume into a sum of atomic volumes, VA, such that

∫

dr =∑

A

∫

VA
dr.
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With this, the first term in Eq. (6.8), E (H)
rep , can be written as

E (H)
rep = 1

2

∑

A 6=B

∫

VA

∫

VB

ρ0ρ
′
0

‖r− r′‖
drdr′+ 1

2

∑

A

Ï

VA

ρ0ρ
′
0

‖r− r′‖
drdr′ = 1

2
E (val)

H , (6.9)

where we have divided the double sum into contributions of A 6= B and A = B . Here, we would
like to note that in DFTB one only treats valence electrons and hence that ρ0 represents the
superposition of atomic valence densities. As a result, the above expression also corresponds to
(half) the Hartree energy of the valence shells. Within the tight-binding approximation natural to
DFTB, we may now assume that only the density of atom A, ρA , contributes significantly to ρ0 for
integration over the corresponding volume VA. This gives the two-center approximation to the
repulsive energy components,

E (H)
tcr = 1

2

∑

A 6=B

∫

VA

∫

VB

ρA ρ
′
B

‖r− r′‖
drdr′+ 1

2

∑

A

Ï

VA

ρA ρ
′
A

‖r− r′‖
drdr′ . (6.10)

For the xc contribution, E (xc)
rep , one can note that the second terms represents minus a first-order

(i.e., local) approximation to the first term. So, within the assumption of (semi-)local xc, we get

Exc
[

ρ0
]

≈
∫

δExc
[

ρ
]

δρ

∣
∣
∣
∣
ρ0

·ρ0 dr and thus E (xc)
rep ≈ 0 . (6.11)

Ultimately, we are left with Ẽnuc from Eq. (6.8). Typically, this is thought of the simple nuclear
repulsion term, but given that in DFTB one only treats valence electrons, Ẽnuc in fact represents
the effective (interaction) energy of nuclei plus core shells. This can be approached by using
pseudo-potentials or by explicitly accounting for the individual contributions, which is what we
shall do in this case. Ẽnuc can be split into the nucleus–nucleus repulsion (Enuc), the interaction of
nuclei with core electrons (ENC) and the interaction among core electrons (ECC). It is noteworthy,
that the last two terms are absent for hydrogen (and helium for that matter). Besides the potential
contribution from p-type orbitals in the band structure and charge transfer terms, this can explain
why repulsive potentials for H–X interactions are often qualitatively different (featuring a saddle
or inversion point, for example). The nuclear Coulomb repulsion is given by

Enuc =
∑

A<B

ZA ZB

RAB
. (6.12)

Within the two-center approximation, we can write the interaction of nuclei with core electrons
and the interaction among core electron densities as

ENC =−
∑

A 6=B

∫
ZA ̺B

‖r−RA‖
dr−

∑

A

∫
ZA ̺A

‖r−RA‖
dr (6.13)

and ECC =
∑

A<B

Ï
̺A ̺

′
B

‖r− r′‖
drdr′+

∑

A

EH
[

̺A

]

, (6.14)

where ̺A is the core electron density of atom A. Collecting all the above terms, the total repulsive
energy in tight-binding approximation can be written as

Etcr =− 1

2

∑

A 6=B

Ï
ρA ρ

′
B

‖r− r′‖
drdr′+

∑

A<B

ZA ZB

RAB

−
∑
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‖r−RA‖
dr+
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Ï
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′
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drdr′ (6.15)
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−
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∣
∣
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·ρ0 dr

︸ ︷︷ ︸

≈0

.
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This can be seen as a justification of the traditional atom-pairwise representation of the repulsive
potential. Keeping in mind that this result was only obtained by invoking a two-center approxima-
tion, it is also clear that it is unlikely to be able to correct for the shortcomings of the two-center
approximation in the tight-binding Hamiltonian. The first two lines of the above expression
involve pairs of atoms (“off-site” terms), while the last line only involves single atomic densities
(geometry-independent “on-site” terms) and the approximately negligible xc term. Hence, this
last line does not depend on the atomic positions and therefore does not affect relative energies,
forces, or higher-order derivatives. Being part of the repulsive energy, it also does not affect
electronic properties. The interaction between valence and core electron shells is implicitly
accounted for by the orthogonalization procedure to obtain the effective single particle basis
functions in DFTB. [45,46] In what is to follow, we will thus only consider the first two lines for the
repulsive energy.

Two-Center Repulsion-based Filter Generation

In order to obtain an analytical expression and an estimate for the functional form of approximately-
pairwise repulsive potentials, we introduce an ansatz for the atomic valence and core densities.
To ease analytical derivations, we choose the simple, Gaussian-type representations

̺A(r) = nA ·e
− 1

ςA
‖r−RA‖2

and ρA(r) = NA ·
(

e
− 1

σA
‖r−RA‖2

−e
− 1

xA σA
‖r−RA‖2)

(6.16)

for core and valence densities, respectively. Thereby, nA and NA serve as normalization factors
representing the number of electrons and ςA, σA and 0 ≤ xA ≤ 1 determine the width and shape
of the basis functions. Expanding Eq. (6.15) in the above basis set, we can express the two-center-
approximated repulsive energy in generalized form (see Appendix A12) as

V AB
tcr (RAB ) =

ZA ZB

RAB
+

∑

i

pi ·
erf

(

qi ·RAB

)

RAB
. (6.17)

We may further extend the above expression by an additional exponentially-decaying repulsive
term accounting for overlap-dependent, short-ranged exchange repulsion.‡ While such contribu-
tions should be accounted for by the electronic DFTB energy, it is usually described insufficiently.
This can be attributed to the use of a minimal, confined basis set, [47,81,82] the neglect of xc effects
in the second-order terms (see Sec. 2.2.2) and the parametrization through (semi-)local DFAs
within the generalized gradient approximation, which are known to underestimate short-range
exchange interactions. [82] The extended functional form then reads

V AB
tcr (RAB ) =

ZA ZB

RAB
+

∑

i

pi ·
erf

(

qi ·RAB

)

RAB
+

∑

j

v j ·e−w j ·RAB , (6.18)

with the free fitting parameters pi and qi , v j , w j ≥ 0. The above functional form now gives an
estimate for the relative importance of neighboring atoms to atomic repulsive energies, which
we can use for the construction of a (DT)NN-model for repulsive potentials. The approximate
two-center potentials can thereby be used in several ways, for example:

(1) Two-center repulsion as weighting factor: The approximate pairwise repulsion can be
used as a weighting factor in the Gaussian expansion, i.e.,

τABk =V AB
tcr (RAB ) ·e−κ(RAB−µk )2

or τABk =V AB
tcr

(

µk

)

·e−κ(RAB−µk )2
. (6.19)

The parameters entering Vtcr can thereby be used as hyperparameters, where the optimal
choice is inferred during the learning process. This way, the DTNN preserves a neighbor
shell structure, while the interactions are weighted by an effective repulsive pair-potential.

‡ The more complex longer-ranged contributions can be captured explicitly by a range-separated formalism. [84,85]
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(2) Atomic embeddings in the basis of two-center repulsives: One can alternatively use the
obtained information on the (approximate) relevance of neighboring atoms in the basis set
representation of the atomic embeddings. Instead of a Gaussian basis, we can use Eq. (6.18)
to expand the distance matrix into the atomic embedding tensor,

τABk =
Z (k)

A
Z (k)

B

RAB
+

∑

i

p(k)
i

·
erf

(

q (k)
i

·RAB

)

RAB
+

∑

j

v (k)
j

·e
−w (k)

j
·RAB , (6.20)

where each kth slice of τ represents a potential matrix of the above two-center approxima-
tion of the repulsive potential with a different set of parameters. As a first-order example,
the DTNN can then adaptively create and mix potential matrices for different environments
such as saturated and unsaturated C–C bonds. Subsequent interaction refinements then
still introduce complex many-body terms, yet the relative importance of neighboring atoms
for the individual embeddings is based on the physically-motivated pair-potential (6.18).

The above modifications to the NN architecture assure an inherently more local character, while
aiding the model construction with (approximate) physical knowledge on the target quantity.
This can improve the overall learning success as well as the robustness and transferability of the
obtained NN potentials. The physically-motivated increase of locality can then substantially
advance the scalability by avoiding artifacts from unknown global structure motifs. Together
with the training set selection optimized to provide a balanced sampling of local degrees of
freedom, this may pave the way to extend the accuracy of DFTB-NNrep towards larger length and
time scales and eventually enable the simulation of biomolecular and nanoscale systems at a
hybrid-DFT level of accuracy.
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CHAPTER 7
Summary & Outlook

7.1 Synopsis

This section provides a brief and general summary of the results and insights gained in the course
of this doctorate. More detailed and specific summaries and conclusions are given in each indi-
vidual chapter above.

The electronic behaviors and polarization response in solvents are studied by means of a coupled
QHO model. Condensation of molecular solvents is analyzed on the basis of emergent spectral
characteristics of intrinsic electronic fluctuations. This is particularly pronounced for hydrogen-
bond formation, which can be clearly seen from a considerable red shift of spectral weight. The
polarization response in simple solvents is found to be characterized by an upper bound decaying
with the third power of the distance, which resembles conventional polarization effects. The same
behavior is observed for a multicomponent system of a solvated protein when treated in atomistic
detail. Within more coarse-grained descriptions of the protein, however, emergent many-body
phenomena can lead to substantially-different behaviors and much more long-ranged effects.

Thorough investigation of the (many-body) vdW energetics of protein folding in explicit water
highlights the role of beyond-pairwise dispersion forces leading to a conformation-dependent
decrease in the intra-protein interaction and increase in the protein–water vdW interaction. This
increase arises from a remarkable persistence of long-range electron correlation through the
aqueous environment, which can play an important role for structure formation and assembly of
protein and the coordination of biomolecular processes such as enzymatic action.

A practical method for the description of beyond-pairwise, beyond-RPA dispersion forces is
presented. The corresponding Dipole-Correlated Coulomb Singles allow to capture multipolar
many-body vdW interactions as well as dispersion-polarization effects. Investigation of the bind-
ing in supramolecular complexes and under nanoscale confinement highlights the role of such
contributions in the context of vdW-bound molecules and materials.

Finally, this thesis develops a hybrid approach of semi-empirical DFTB and localized many-
body repulsive potentials from a DTNN-model. The resulting DFTB-NNrep approach is shown
to provide substantial improvements over conventional DFTB and bare ML potentials. Most
prominently, DFTB-NNrep enables the so-far unattainable accuracy in simultaneously describing
energetic, structural and vibrational properties of small organic molecules.
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7.2 Perspective and Future Work

In addition to the outlook given in the individual chapters above, this section summarizes pro-
jected future steps, challenges and implications in a broader context. This is done individually for
the two main topics of this thesis, before concluding with the synergy of both as a reliable, yet
efficient approach for the accurate simulation of complex (bio)molecules and materials.

van der Waals Forces in Dynamic (Bio)Molecular Systems

The biomolecular machinery is rich in large-scale structural changes that do not involve breaking
covalent bonds. For such processes, vdW interactions represent a major source of interatomic
forces and thus play an important role for the dynamics of the system. A well-known example is
the folding process of peptides and proteins — especially when considered in the gas phase. In
the absence of solvent effects, non-covalent interactions between the residues are responsible for
the adaption of a secondary structure. Hence, (accurate) inclusion of vdW interactions is pivotal
as even small errors can be propagated to qualitatively wrong results during the long-timescale
dynamics. Inclusion of long-range correlation forces has thereby been shown to substantially con-
tribute to the formation of helical entities in polypeptides, [229,230,246,350,351] for example. Another
example is liquid water, where vdW forces considerably affect the obtained equilibrium radial
distribution and diffusion coefficients. [352–356] Accurate treatment of dispersion interactions is
also important for the dynamics of liquid water on 2D-materials, where minimal changes in mi-
croscopic geometrical features give rise to significant differences in macroscopic properties. [357]

Given the importance of an accurate treatment of vdW forces for the dynamical behavior of both,
gas-phase proteins and water, it is evident that the same applies to proteins in water. The impor-
tance of beyond-pairwise vdW dispersion for the relative energetics of single protein structures
presented in Chapter 4 further corroborate this conclusion. Locally, long-range interactions likely
modify the potential energy landscape only slightly, but they do so on a larger-scale. The plethora
of smallish local changes can then combine into substantial effects in the longer-timescale limit
of slow processes such as protein folding or enzymatic function. In a similar vein, previous
studies indicate that long-range vdW dispersion can have a considerable effect on the collective
low-frequency vibrational/phononic behaviors of non-covalently bound systems as these are
particularly sensitive to small, but large-scale changes to the curvature of the potential energy
surface. [31] These low-frequency, high-entropy vibrational modes play a paramount role for the
free energy landscape on which biomolecular processes ultimately occur.

Apart from free energies, the vibrational/phononic spectrum also governs various other phenom-
ena. For instance, the heat capacity or thermal conductivity strongly depend on the phononic
spectrum, cf. Debye model [358] and e.g. (phonon) Boltzmann transport equation. A decisive
point for the correct description of such phenomena in condensed systems is thereby the cou-
pling/interaction between moving entities (i.e. atoms or molecules). The basic idea is that
collective vibrations/phonons as quanta of atomic motion are responsible for the storage and
transport of energy supplied to the system in the form of heat. Given that the interaction among
(sub)molecular moieties in systems such as layered materials, molecular crystals or biomolecules
is largely due to vdW forces, their accurate (many-body) treatment is of utmost importance for the
description of such phenomena. From a materials perspective, thermal stability and conductivity
represent crucial parameters for technological applications. An interesting example case in the
context of dispersion interactions is thereby heat transport in layered materials. In the context of
biomolecules, the role of vdW dispersion for heat transport and storage is further strengthened
by the fact that non-equilibrium conditions of constant flow and thermalization of energy are
inherent in living systems. Obviously, the phononic DOS also governs infrared and vibrational
Raman/circular dichroism spectra, where for the latter two also the polarizability and polarization
response play an important role. The effect on such spectra is particularly interesting for THz
modes, which represent more collective, large-scale motion (see discussion in Sec. 4.5).
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The foremost step in future works is hence an extension of the above work on static systems to
dynamic systems. This naturally includes zero-point vibrational and finite temperature contri-
butions to the free energy. This also involves the longer-timescale dynamics and phenomena
emerging from the effects reported in this thesis ranging from the collective, long-range character
of intrinsic electronic fluctuations and vdW interactions as shown in Chapters 3 & 4 to the effect of
beyond-dipolar many-body dispersion forces and dispersion-polarization presented in Chapter 5.
A maximally-efficient methodology would thereby ideally depart from the atomistic framework
used here towards an implicit or coarse-grained description. Such simplified descriptions, how-
ever, are vastly restricted and complicated by the inherently emerging collective effects. While
the fundamental laws for the interaction and dipolar response between atoms can be fairly-well
derived, the characteristics of electronic response and interaction between coarse-grained quanti-
ties is far from trivial (see Chapters 3 & 4) and highly dependent on the system and coarse-graining
procedure. Obtaining effective interaction laws for coarse-grained moieties from atomistic sim-
ulation similar to the procedure introduced in Sec. 4.6 can thereby provide vital guidelines for
the construction of effective interaction potentials. Another promising route is combining many-
body interatomic approaches with a quantum field theoretical continuum treatment in the form
of Casimir forces. First steps towards such a unified framework have been presented in Ref. 359,
for instance. This can be of particular interest as the finite speed of light and thus retardation
effects on the Coulomb coupling of electronic fluctuations become increasingly relevant when
further extending the length scales beyond the systems considered in this thesis. One aspect
neglected so far is the effect of charges on the vdW interaction. Solvated and complexed ions
are omnipresent under physiological conditions or when describing DNA, enzymes with ionic
cofactors or charge-signaling cascades. The field of electronic charges can thereby enhance or
inhibit vdW dispersion interactions. [360] Together with the effects of Dipole-Correlated Coulomb
Singles introduced in Chapter 5 and the interaction of ions with dispersion-polarized charge
densities, this represents an important subject for further investigations and should be included
for the accurate and realistic treatment of biomolecular systems.

Advancing Density-Functional Tight-Binding with Machine Learning

Realistic simulations and investigations of the above phenomena ultimately require a total energy
method, which in this thesis is proposed to be provided by an efficient, vdW-inclusive electronic-
structure method such as DFTB+MBD. In this regard, Chapter 6 shows how many-body repulsive
ML potentials can offer a much increased accuracy and reliability of the energetic, structural
and vibrational properties obtained from the tight-binding formalism. As already discussed in
Sec. 6.3, the main limitations of the developed hybrid QM/ML approach are the large amount of
reference data and the so-far limited scalability. Based on the analysis of the locality of repulsive
forces (see Fig. 6.1), it can be expected that training sets designed to sample local degrees of
freedom as introduced above allow to considerably reduce the amount of reference data needed.
This also facilitates the inclusion of further elements and bonding motifs. For a more detailed
perspective on this matter, see Sec. 6.3. The main concern of future developments is thus the
improvement of scalability; in particular with respect to non-covalent interactions. While the
dispersion component can be well captured by the vdW model, contributions from electrostatics,
polarization and exchange interactions in the context of large-scale systems remain to be thor-
oughly addressed and possibly improved. The above analysis showed that the intra-molecular
repulsive force is rather local and short-ranged. Any insufficiencies in the description of (non-
dispersive) non-covalent interactions, however, can be considerably non-local and potentially
longer-ranged. Recent work has shown, for example, that conventional DFTB lacks an accurate
treatment of long-range electrostatics. [361] In a similar vein, other deficiencies such as the lack
of a multipolar description of electrostatics and an accurate description of hydrogen-bonding
represent potential pitfalls towards larger-scale systems and important aspects for future work.
The implications of such shortcomings for the total energy and interatomic forces can and will be
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included in the repulsive potential when constructed to reproduce higher-level reference data.
This, however, can substantially reduce the applicability of the parametrization and does not
account for the effects on electronic or optical properties. Besides the limitations of the DFTB
formalism, the same applies to shortcomings of the underlying DFT description such as the
treatment of systems with pronounced multi-reference character (cf. static correlation). Such
qualitative deficiencies of the electronic DFTB Hamiltonian should not be accounted for by the
repulsive potential, but should rather be addressed by the use of (augmenting) physical models
as, for example, presented in this thesis for the inclusion of vdW forces. So, in addition to accurate
many-body repulsive potentials, a reliable QM treatment of large-scale systems via DFTB requires
the complementary advancement of the physical description of the electronic structure.

Combining van der Waals Models and Machine-Assisted DFTB

By means of the population matrix-based formalism of Eq. (2.49), DFTB can be directly com-
bined with electronic-structure-based (many-body) vdW models such as MBD. Together with the
methodological developments presented in Chapters 5 & 6, this enables the efficient and accu-
rate fully quantum-mechanical treatment of complex systems and the investigation of emergent
(quantum) phenomena at increased length and time scales. As in the case of (semi-)local DFT, this
combination (maybe inevitably) introduces a certain degree of empiricism and system-specificity.
Introducing a range-separation of the coupling tensor as shown in Sec. 2.3.1 provides a solid
and, in principle, exact framework for the typically ad hoc employed damping function in vdW
approaches. For practical applications then, short-range correlation forces are considered to be
captured by the DFTB formalism, while the dispersion model is limited to the long-range regime.
So, in order to obtain a seamless description of the total system, the range-separating function
would need to describe the range of correlation that is captured by the DFTB parameterization
and correspondingly switch on the vdW method beyond that. In the case of (semi-)local DFAs,
this range is generally not known a priori and can vary strongly. [197] The approximations and
parameterization in DFTB then blur any clear-cut separation even further. By fitting a combined
DFTB+vdW method to total interaction energies, finally, the range-separation function is pushed
to (unphysically) also correct for several non-vdW effects including contributions from electro-
statics, exchange, induction, and different higher-order correlation terms.

In this regard, the combination of DFTB and ML potentials can offer a practical improvement. A
given electronic parameterization can be combined with a reliable vdW method using a range-
separating function of fixed form. This can be analogous to the so-called universal damping
functions derived for interatomic and intermolecular vdW potentials by Tang and Toennies. [160]

The construction of the ML potential for repulsive energies and forces can then be performed
on top of the vdW-inclusive DFTB framework to reproduce high-level, correlated reference
methods. This allows to include system-dependent corrections to the description of short- and
intermediate-range terms without spuriously affecting the range-separation or damping function
of the vdW model. As an alternative, one can also employ an adaptive, machine-predicted range-
separation for combining DFT(B) with a method for dispersion interactions. Both approaches
require the availability of a wealth of well-defined high-quality reference data for sufficiently
diverse and large systems.

The open problems outlined above represent the major remaining steps in the more compre-
hensive effort towards a reliable, bottom-up understanding of complex (bio)molecular systems
including a fundamental description of the underlying interaction mechanisms on a quantum-
mechanical level. The theoretical insights and methodological advances provided by this thesis
thus help to widen our view of the atomistic and molecular mechanisms behind the complex be-
haviors at increased length and time scales. This may ultimately allow to further exploit emergent
nanoscale phenomena in biomolecular and materials science in a more efficient and reliable
manner.
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Appendices

Parts of Sec. A1, A3&A4, A9 and A10&A11 have been reproduced

from the Supporting Materials of Refs. 47, 2, 3 and 4, respectively.

A1 MBD and vdW(TS) Range-Separation Parameters for DFTB

The recommended β (MBD) and sR (vdW(TS)) values for the mio and 3ob parameter sets are
listed in Table A.1. Figures A.1 and A.2 show a summary of the mean absolute errors and mean
absolute relative errors in interaction energies and predicted equilibrium distances plus the cost
function for DFTB in conjunction with the vdW(TS) and MBD dispersion models as a function of
the sR- and β-parameter, respectively.
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Fig. A.1: Performance of DFTB2[mio] and DFTB3[3ob] in conjunction with the vdW(TS) dispersion
model as a function of the damping parameter sR. top left: equilibrium binding distances for the S66x8 [303]

set. top right: DFTB2[mio]+vdW(TS) interaction energies for S66, [362] S66x8, and SMC13. [1,33,35] bottom
left: cost function combining energetic and geometric aspects of S66x8. bottom right: DFTB3[3ob]+vdW(TS)
interaction energies for the S66, S66x8, and SMC13.
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A1 MBD and vdW(TS) Range-Separation Parameters for DFTB

Tab. A.1: Recommended MBD and vdW(TS) range-
separation parameters for the mio and 3ob parametrizations
of DFTB as obtained by minimizing the sum of absolute rel-
ative errors in interaction energies and predicted equilibrium
distances for the S66x8 set [303] of small molecular dimers.

MBD (β) vdW(TS) (sR)

3ob 0.89 1.03
mio 0.95 1.06

Optimal damping and range-separation parameters have been obtained by minimizing the
combined cost function

F (prs) = MAREint(prs)+MAREgeom(prs) (A.1)

for the S66x8 database [303], where MAREint(prs) is the mean absolute relative error in interaction
energies at a range-separation (or damping) parameter prs, i.e., β for MBD and sR for vdW(TS), and
MAREgeom(prs) is the corresponding mean absolute relative error in equilibrium distances. The
equilibrium distance for each dimer has thereby been estimated by the minimum of the spline-
interpolated dissociation curve. In contrast to a previously reported optimization scheme, [318]

which inspired the current procedure, a more balanced and straightforward combination of
energetic and geometric aspects based on relative errors has been used here.
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Fig. A.2: Performance of DFTB2[mio] and DFTB3[3ob] in conjunction with the MBD dispersion
model as a function of the range-separation parameter β. top left: equilibrium binding distances for the
S66x8 [303] set. top right: DFTB2[mio]+MBD interaction energies for S66, [362] S66x8, and SMC13. [1,33,35]

bottom left: cost function combining energetic and geometric aspects of S66x8. bottom right: DFTB3[3ob]+MBD
interaction energies for the S66, S66x8, and SMC13.
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A2 Mode-Projected van der Waals Interaction Energies

The below formulations represent a generalization of the procedure proposed in Ref. 35.

For the contribution of each mode to the interaction of individual subsystems/fragments (f)
within a fully coupled (c) state, let us start with the expression for the total interaction energy:

E (int)
MBD = E

(system)
MBD −

∑

I

E
(subsystem I )
MBD = E (c)

MBD −E (f)
MBD (A.2)

= 1

2

{(

∑

i

ω(c)
i

−
∑

i

η(c)
i

)

−
(

∑

i

ω(f)
i
−

∑

i

η(f)
i

)}
∣
∣
∣
∣
∣
∣

ωωω=⊕
i
ωi

ηηη=⊕
i
ηi

(A.3)

= 1

2

{
〈1 |ωωωc〉−

〈

1
∣
∣ηηηc

〉

−〈1 |ωωωf〉+
〈

1
∣
∣ηηηf

〉}

(A.4)

= 1

2

{
〈1 |ωωωc〉−〈1 |ωωωf〉−

(〈

1
∣
∣ηηηc

〉

−
〈

1
∣
∣ηηηf

〉)}

, (A.5)

where 1 is a 3N -dimensional vector with all ones andωωω and ηηη collect all ωi and ηi , respectively.
Note that, before entering the MBD model, the polarizabilities and effective frequencies are sub-
ject to electrostatic screening based on the dipole–dipole interaction tensor for the fully coupled
system (ωωωc) and for the uncoupled fragments (ωωωf), respectively. Hence, ωωωc 6=ωωωf.

Considering the above procedure of solving the MBD model the sets of eigenfrequencies ωωω

correspond to different collective coordinates (different eigenspaces) obtained from simple
displacements via the transformation matrices Cc (→ωωωc), Cf =⊕I CI (→ωωωf), and 1 (→ηηη), with CI

corresponding to subsystem I and 1 being the unit matrix. To combine the energies we project
all vectors of eigenfrequencies to the same collective coordinates (basis) and for that we choose
the fluctuation modes of the isolated subsystems. For the projection of energies corresponding
to modes obtained from the transformation matrix X to the basis obtained via Cf we choose the
element-wise product of the matrix-product C†

f X and its complex conjugate:

U
[

X
]

=
(

C†
f X

)∗
◦

(

C†
f X

)

(A.6)

For unitary X, the matrix product C†
f X yields a transformation to Cf, which is orthonormal/unitary,

the element-wise product with its complex conjugate gives a corresponding doubly-stochastic
transformation matrix, that upon multiplication with a vector preserves its L1-norm and the
sum of its elements. Hence, 〈1 |v〉 =

〈

1
∣
∣U

[

X
]

v
〉

and the transformation preserves the total energy.
Inserting this into the previous expression (and transforming the result back to the eigenspace of
the coupled system) gives

E (int)
MBD = 1

2

{
〈1 |ωωωc〉−〈1 |ωωωf〉−

〈

1
∣
∣
(

ηηηc −ηηηf
)〉}

(A.7)

= 1

2

{〈

1
∣
∣U

[

Cc
]

ωωωc
〉

−〈1 |ωωωf〉−
〈

1
∣
∣U

[

1
](

ηηηc −ηηηf
)〉}

(A.8)

=
〈

1

∣
∣
∣
∣

1

2

{

U
[

Cc
]

ωωωc − ωωωf − U
[

1
](

ηηηc −ηηηf
)}

〉

(A.9)

=
〈

1

∣
∣
∣
∣

1

2
U†[Cc

]{

U
[

Cc
]

ωωωc −ωωωf −U
[

1
](

ηηηc −ηηηf
)}

〉

(A.10)

= 〈1 |εεεint〉 =
∑

i

ε(i )
int (A.11)

With this we get the contribution ε(i )
(int) of the i th collective electronic “eigenmode” to the interac-

tion of the subsystems — in the present case the solute–solvent interaction.
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A3 vdW Interaction for Improved Sampling of Disordered States

As detailed in Chapter 4, conventional MM force fields in conjunction with traditional water
models such as the standard TIP3P, predict unfolded protein states that are too compact. This
has largely been assigned to an unbalanced description of intra-protein and protein–water vdW
interactions. Our present findings thereby provide a fundamental, quantum-mechanical explana-
tion for this argument: Due to many-atom effects beyond the traditional pairwise formulation
of vdW energetics, we observe a system- and conformation-dependent change in the relative
magnitude of the individual vdW contributions. In the main part of Chapter 4, these conclusions
have been based on structures obtained employing the above mentioned unbalanced description
and thus featured unfolded states, which are too compact. As an ultimate confirmation of our
results, we have performed our analysis based on a new sampling of the proteins’ conformational
space using the recent a99SB-disp force field together with the TIP4P-D water model as developed
by Robustelli and coworkers. This setup has been designed and shown to provide an improved
description of unfolded and disordered protein states avoiding spurious over-compaction. [228]

To study potential effects of this over-compaction, we performed new molecular dynamics simu-
lations of the Chignolin variant “cln025” in explicit water starting from an unfolded and folded
state, respectively. Subsequently, we evaluate the vdW energetics in the same manner as before,
where the only difference is the usage of a more correct and representative sampling of unfolded
states as obtained from the new molecular dynamics simulations.

Fig. A.3: Intra-protein van der Waals energetics of Chignolin variant “cln025” as obtained from
improved sampling of disordered states Top: relative intra-protein van der Waals interaction as obtained
from pairwise description (vdW(TS)) and many-body formalism (MBD). Backbone RMSD (grey) taken with
respect to native state. Bottom: many-body contributions as defined by the difference between MBD and
vdW(TS).
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Fig. A.3 shows the intra-protein vdW interaction energy based on this new sampling (left: unfolded
state sampling, right: folded state sampling) in the top graph. The RMSD of both samplings is
taken with respect to the native conformation. The bottom graph again depicts the difference
between the pairwise description in vdW(TS) and the many-body energetics obtained from MBD.
All in all, Fig. A.3 confirms our previous findings of the pairwise formalism overestimating the
internal stabilization in the pairwise description. As can be seen from Fig. A.4, the improved
sampling of unfolded conformations neither affects our conclusions for the vdW solvation energy:
It still tracks with the (inverse) geometrical RMSD (top graph), and many-body effects increase
the relative protein–water vdW interaction in the native state (bottom graph). In conclusion, the
results obtained for the previous trajectories can clearly be assigned to a failure of the pairwise
approximation and do not simply represent an artifact of the incorrect sampling of unfolded
states.

Fig. A.4: van der Waals solvation energy for Chignolin variant “cln025” as obtained from improved
sampling of disordered states. Top: relative van der Waals solvation energy as obtained from pairwise
description (vdW(TS)) and many-body formalism (MBD). Backbone RMSD (grey) taken with respect to native
state. Bottom: beyond-pairwise contributions as defined by the difference between MBD and vdW(TS).
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A4 Rescaling of Pairwise-Additive van der Waals Solvation Energies

As can be seen from Fig. 4.1 and Chapter 4, the overestimation of vdW energies increases with the
absolute vdW interaction energy. Correspondingly, a simple rescaling of the pairwise approaches
considerably improves the agreement with the many-body treatment. Fig. A.5 shows the correla-
tion between such optimally rescaled vdW solvation energies and MBD. The obtained rescaling
factors show that relying on electronic-structure-based C6 interaction coefficients as done within
vdW(TS) provides the best estimate for vdW solvation energies. This can mainly be attributed
to the description of the pure solvent as the geometry-based D2 and D3 methods outperform
vdW(TS) for gas-phase energetics (vide supra). Despite the overall improvement, the deviation
between the optimally-rescaled pairwise approaches and MBD still regularly exceeds 4 kcal/mol.
Furthermore, the optimal rescaling factors are highly system- and method-dependent and can
only be obtained as an a posteriori correction.

Fig. A.5: Correlation of
rescaled relative van der
Waals solvation energies as
obtained from pairwise mod-
els in comparison to the re-
sults obtained from many-
body treatment.
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A5 Coulomb Interaction Energy for Dipole-Coupled Oscillators

The derivations presented in this section have been carried out

in similar form by Dr J. Hermann, see Ref. 363.

The expectation value of the Coulomb interaction energy for a set of dipole-coupled (DC) quan-
tum harmonic oscillators (QHOs) is given by

ECoul[ΨDC] =
(

3N∏

i=1

√
ωi

π

)
∫

· · ·
∫

∑

A<B

grs
(

RAB

) qA qB

‖rA − rB‖
e−ζζζ

T
ΩΩΩζζζ

3N∏

i=1
dξi . (A.12)

We then separate the exponent into terms according to their dependency on the coordinates of
the pseudo-particles of A and B (i.e., on ζζζAB =ζζζA ⊕ζζζB ):

ζζζT
ΩΩΩζζζ=

∑

j ,l
ΩΩΩ j lζ jζl =

∑

j∉A,B
l∉A,B

ΩΩΩ j lζ jζl + 2
∑

m∈A,B
n∉A,B

ΩΩΩmnζmζn +
∑

p∈A,B
q∈A,B

ΩΩΩpqζpζq (A.13)

= ζζζ′TAB ΩΩΩ
′′
AB ζζζ

′
AB + 2 ζζζ′TAB ΩΩΩ

′
AB ζζζAB + ζζζAB ΩΩΩAB ζζζAB . (A.14)

By completing the square, in its generalized form for symmetric, invertible matrices M,

xTM x+xTv+d =
(

x+ 1/2 M−1v
)T

M
(

x+ 1/2 M−1v
)

+d − 1/4 vTM−1v , (A.15)

we complete the square with respect to ζζζAB :

ζζζT
ΩΩΩζζζ=

xT

︷︸︸︷

ζζζ′TAB

M
︷︸︸︷

ΩΩΩ
′′
AB

x
︷︸︸︷

ζζζ′AB +

xT

︷︸︸︷

ζζζ′TA

v
︷ ︸︸ ︷

2ΩΩΩ′
AB ζζζAB +

d
︷ ︸︸ ︷

ζζζAB ΩΩΩAB ζζζAB

=
(

ζζζ′AB +ΩΩΩ
′′−1
AB ΩΩΩ

′
AB ζζζAB

)T
ΩΩΩ

′′
AB

(

ζζζ′AB +ΩΩΩ
′′−1
AB ΩΩΩ

′
AB ζζζAB

)

+ ζζζT
AB ΩΩΩAB ζζζAB −ζζζT

AB ΩΩΩ
′T
AB ΩΩΩ

′′−1
AB ΩΩΩ

′
ABζζζAB

=χχχT
AB ΩΩΩ

′′
AB χχχAB + ζζζT

AB ΥΥΥAB ζζζAB , (A.16)

where ΥΥΥAB =ΩΩΩAB −ΩΩΩ
′T
AB Ω

ΩΩ
′′−1
AB ΩΩΩ

′
AB . Using the above notation, we re-order Eq. (A.12) such that

ECoul[ΨDC] =
(

3N∏

i=1

√
ωi

π

)

∑

A<B

Ï

grs
(

RAB

) qA qB

‖rA − rB‖
e−ζζζ

T
AB ΥΥΥAB ζζζAB

×
(∫

e−χχχ
T
AB ΩΩΩ

′′
AB χχχAB dζζζ′AB

)

dζζζAB ,

(A.17)

Note that ξξξ→ζζζ is a unitary transformation and hence we can substitute
∏

dξi with dζζζ′AB dζζζAB .
For the integral in parenthesis, we change the variable of integration from ζζζ′AB to χχχAB with
dζζζ′AB = dχχχAB and then substitute γγγAB = UTχχχAB , where UT

ΩΩΩ
′′
AB U = diag{λAB , j }. Given that the

Jacobian of this transformation is simply UT, which is a unitary matrix, and that the (absolute
of the) determinant of unitary matrices is 1, the integral in parentheses above can be simplified
according to:

∫

e−χχχ
T
AB ΩΩΩ

′′
AB χχχAB dζζζ′AB =

∫

e−χχχ
T
AB ΩΩΩ

′′
AB χχχAB dχχχAB =

∫

e−γγγ
T
AB UT

ΩΩΩ
′′
AB UγγγAB dγγγAB

=
3N−6∏

j=1

∫

e
−λAB , j γ

2
A, j dγA, j =

3N−6∏

j=1

√

π

λAB , j
= π−3

√

det
{

ΩΩΩ
′′
AB

}

3N∏

j=1

p
π ,

(A.18)
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where in the last step we have used the fact that the product of eigenvalues corresponds to the
determinant. Using the same for the product of ωi in the prefactor (i.e.,

∏
ωi = det

{

ΩΩΩ
}

) and
combining the occurrences of π, we can now write the Coulomb interaction energy as

ECoul[ΨDC] =π−3
∑

A<B

√
√
√
√

det
{

ΩΩΩ
}

det
{

ΩΩΩ
′′
AB

}

Ï

grs
(

RAB

) qA qB

‖rA − rB‖
e−ζζζ

T
AB ΥΥΥAB ζζζAB dζζζAB

︸ ︷︷ ︸

Iζζζ

. (A.19)

Let us now focus on the last (double) integral, Iζζζ. First, we re-write the Coulomb potential,

1

‖rA − rB‖
= 2

p
π

∞∫

0

e−‖rA−rB‖2 s2
d s = 2

p
π

∞∫

0

e−rT
AB S2 rAB d s , (A.20)

where

rAB = rA ⊕ rB and S2 = s2












1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1
−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1












= s2
(

13 −13

−13 13

)

. (A.21)

We then insert ζζζAB = p
mA(rA −RA)⊕p

mB (rB −RB ) and dζζζAB = (mA mB )3/2 drAB and sort the
exponents to arrive at

Iζζζ =
2 qA qBp

π

(

mA mB

)3/2
grs

(

RAB

)
∞∫

0

Ï

e
−

[

rT
AB

(

ΓΓΓAB +S2

)

rAB − 2rT
AB ΓΓΓAB RAB

]

drAB

︸ ︷︷ ︸

Ir

d s , (A.22)

where ΓΓΓAB = DmΥΥΥAB Dm with Dm = diag
{

mA,mA,mA,mB ,mB ,mB

}1/2 =
(p

mA 13
)

⊕
(p

mB 13
)

.
For the integral Ir, completing the square in the exponential according to Eq. (A.15) with respect
to rAB gives

Ir =
Ï

exp
{

−ϑϑϑT
AB

(

ΓΓΓAB + S2
)

ϑϑϑAB −RT
AB

[

ΓΓΓAB −ΓΓΓ
T
AB

(

ΓΓΓAB + S2
)−1

ΓΓΓAB

]

RAB

}

drAB

= exp
(

−RT
AB ΘΘΘAB RAB

) Ï

exp
(

−ϑϑϑT
AB

(

ΓΓΓAB +S2
)

ϑϑϑAB

)

drAB ,

(A.23)

where we have introducedΘΘΘAB =ΓΓΓAB−ΓΓΓT
AB

(

ΓΓΓAB+S2
)−1

ΓΓΓAB andϑϑϑAB = rAB−
(

ΓΓΓAB+S2
)−1

ΓΓΓAB RAB .
The double integral in the above expression can be solved easily by diagonalization similar to
Eq. (A.18). Taking into account that ϑϑϑAB is six-dimensional, we obtain

Ï

exp
(

−ϑϑϑT
AB

(

ΓΓΓAB + S2
)

ϑϑϑAB

)

drAB = π3

√

det
{

ΓΓΓAB +S2
}

(A.24)

Combining the above with Eqs. (A.19), (A.22) and (A.23) finally yields

ECoul[ΨDC] =
N∑

A<B

2 qA qBp
π

(

mA mB

)3/2
grs

(

RAB

)

√
√
√
√

det
{

ΩΩΩ
}

det
{

ΩΩΩ
′′
AB

}

∞∫

0

e−RT
AB ΘΘΘAB RAB

√

det
{

ΓΓΓAB +S2
}

d s . (A.25)
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A6 Dipole Interaction Energy for Dipole-Coupled Oscillators

The dipolar interaction potential as used in the MBD formalism is given by

V̂dip = 1

2

∑

A,B
grs

(

RAB

)

ηAηB

√

α(sr)
A,0α

(sr)
B ,0 ζ

T
AT̃AB ζB = 1

2

∑

A,B
ζT

A T̃(AB)
ζ

ζB = 1

2
ζζζT T̃ζζζζ , (A.26)

where in the second step we have introduced T̃ζ = grs
(

RAB

)

ηAηB

√

α(sr)
A,0α

(sr)
B ,0 TAB and in the last

step we used the definition of the generalized 3N -dimensional coordinate ζζζ as used above. Using
the definition ξξξ= CTζζζ and C CT =13N , we can write

V̂dip = 1

2
ξξξT CT T̃ζ Cξξξ= 1

2
ξξξT T̃ξ ξξξ=

1

2

∑

i , j

ξi ξ j T̃
(i j )
ξ

(

= 1

2

∑

i , j

ξi ξ j

∑

k,l
Cki Cl j T̃(kl )

ζ

)

, (A.27)

which transforms the dipolar interaction potential to the collective variable ξξξ. With this we can
write the expectation value of the dipolar interaction potential as

Edip[ΨDC] =
∫

· · ·
∫

ΨMBD
︷ ︸︸ ︷[

∏

k

4

√
ωk

π
e−

ωk
2 ξ2
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1
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(i j )
ξ

)

ΨMBD
︷ ︸︸ ︷[

∏

l

4

√
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2 ξ2
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∏
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dξn
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2
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∫
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∏
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2 ξ2
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∏
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∏
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∫
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√
ωi

π
e
−

ω j
2 ξ2

j
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∏
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√
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π
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2
k
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∏

n

dξn , (A.28)

where the 3N -dimensional integral can be factorized and simplified to give

Edip[ΨDC] =
1

2
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i , j
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ξ

Ï

ξi ξ j
4

√
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√
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j dξi dξ j . (A.29)

We now divide the sum into terms i = j and i 6= j :

Edip[ΨDC] =
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√
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∫
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i

√
ωi

π
e−ωi ξ

2
i dξi +

1

2

∑

i 6= j

T̃
(i j )
ξ

∫

ξi
4

√
ωi

π
e−

ωi
2 ξ2

i dξi

︸ ︷︷ ︸

=0

∫

ξ j
4

√
ωi

π
e
−

ω j
2 ξ2

j dξ j

︸ ︷︷ ︸

=0

= 1

2

∑

i

T̃(i i )
ξ

√
ωi

π

∫

ξ2
i e−ωi ξ

2
i dξi (A.30)

where the last two integrals in the second line are zero by symmetry (odd functions). Solving the
last integral, we get

Edip[ΨDC] =
1

2

∑

i

T̃(i i )
ξ

√
ωi

π

p
π

2ω3/2
i

=
∑

i

T̃(i i )
ξ

4ωi
. (A.31)

So, the final expression of the expectation value of the dipolar interaction potential is simply,

Edip[ΨDC] =
∑

i

T̃(i i )
ξ

4ωi
=

∑

i

(

CT T̃ζ C
)

i i

4ωi
=

∑

i ,k,l

Cki T̃(kl )
ζ

Cl i

4ωi
. (A.32)
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A7 Rank-Update Inversion via Woodbury Identity

A7.1 Submatrix Inversion as Inversion of Rank-Updated Matrix

For reformulating matrix operations on submatrices, let us first view the full matrix ΩΩΩ as an
assembly of (3×3)-dimensional submatrices ΩΩΩAB . For dealing with submatrices, that are ob-
tained by “removing” the rows and columns corresponding to atoms A and B , we consider the
corresponding full matrix, where the rows and columns (except the diagonal block) are replaced
by zeros instead of removed. So, a matrix, where the (3×3) sub-block I J is (1−δI AδJB )ΩΩΩI J . This
matrix can be obtained by a rank-update of the original matrix:
























ΩΩΩ11 · · · ΩΩΩ1(A−1) 0 ΩΩΩ1(A+1) · · · ΩΩΩ1(B−1) 0 ΩΩΩ1(B+1) · · · ΩΩΩ1N
...

. . .
...

...
...

. . .
...

...
...

. . .
...

ΩΩΩ(A−1)1 · · · ΩΩΩ(A−1)(A−1) 0 ΩΩΩ(A−1)(A+1) · · · ΩΩΩ(A−1)(B−1) 0 ΩΩΩ(A−1)(B+1) · · · ΩΩΩ(A−1)N

0 · · · 0 ΩΩΩA A 0 · · · 0 ΩΩΩAB 0 · · · 0

ΩΩΩ(A+1)1 · · · ΩΩΩ(A+1)(A−1) 0 ΩΩΩ(A+1)(A+1) · · · ΩΩΩ(A+1)(B−1) 0 ΩΩΩ(A+1)(B+1) · · · ΩΩΩ(A+1)N
...

. . .
...

...
...

. . .
...

...
...

. . .
...

ΩΩΩ(B−1)1 · · · ΩΩΩ(B−1)(A−1) 0 ΩΩΩ(B−1)(A+1) · · · ΩΩΩ(B−1)(B−1) 0 ΩΩΩ(B−1)(B+1) · · · ΩΩΩ(B−1)N

0 · · · 0 ΩΩΩB A 0 · · · 0 ΩΩΩBB 0 · · · 0

ΩΩΩ(B+1)1 · · · ΩΩΩ(B+1)(A−1) 0 ΩΩΩ(B+1)(A+1) · · · ΩΩΩ(B+1)(B−1) 0 ΩΩΩ(B+1)(B+1) · · · ΩΩΩ(B+1)N
...

. . .
...

...
...

. . .
...

...
...

. . .
...

ΩΩΩN 1 · · · ΩΩΩN (A−1) 0 ΩΩΩN (A+1) · · · ΩΩΩN (B−1) 0 ΩΩΩN (B+1) · · · ΩΩΩN N

























=ΩΩΩ+UAB VAB

where the matrix perturbation can be written in terms of the reduced-rank matrices UAB and
VAB :

UAB =





0 · · · 0 13 0 · · · 0 13 0 · · · 0

−ΩΩΩ1A · · · −ΩΩΩ(A−1)A 0 −ΩΩΩ(A+1)A · · · −ΩΩΩ(B−1)A 0 −ΩΩΩ(B+1)A · · · −ΩΩΩN A

−ΩΩΩ1B · · · −ΩΩΩ(A−1)B 0 −ΩΩΩ(A+1)B · · · −ΩΩΩ(B−1)B 0 −ΩΩΩ(B+1)B · · · −ΩΩΩN B





T

VAB =





−ΩΩΩB1 · · · −ΩΩΩB(A−1) 0 −ΩΩΩB(A+1) · · · −ΩΩΩB(B−1) 0 −ΩΩΩB(B+1) · · · −ΩΩΩB N

−ΩΩΩA1 · · · −ΩΩΩA(A−1) 0 −ΩΩΩA(A+1) · · · −ΩΩΩA(B−1) 0 −ΩΩΩA(B+1) · · · −ΩΩΩAN

0 · · · 0 13 0 · · · 0 13 0 · · · 0





The subscript to U and V thereby dictates the position of the two (3×3) identity matrices (and the
0-entries, correspondingly). With the help of permutation matrices, MA and MB , we can re-order
columns and rows such that the zeros are in the first rows and columns, which gives

Ω̃ΩΩAB = MT
B MT

A

(

ΩΩΩ+UAB VAB

)

MA MB =










ΩΩΩA A 0 0 · · · 0

0 ΩΩΩBB 0 · · · 0

0 0
...

... ΩΩΩ
′′
AB

0 0










. (A.33)

Using (A1A2A3)−1=A−1
3 A−1

2 A−1
1 , the property of (single) permutation matrices MT=M=M−1 and

the rules for inverting block-diagonal matrices, we can write the inverse of this matrix as

Ω̃ΩΩ
−1
AB = MT

B MT
A

(

ΩΩΩ+UAB VAB

)−1
MA MB =










ΩΩΩ
−1
A A 0 0 · · · 0

0 ΩΩΩ
−1
BB 0 · · · 0

0 0
...

...
(

ΩΩΩ
′′
AB

)−1

0 0










. (A.34)
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Thus, we can obtain the inverse of ΩΩΩ′′
AB by removing the first six rows and columns of the inverse

of Ω̃ΩΩAB . Alternatively, we can restore the previous order by applying the opposite re-shuffling of
rows and columns and then remove the Ath and B th rows and columns. Restoring the previous
ordering of rows and columns is achieved by applying the inverse of MA and MB to the obtained
result. With Eq. (A.34) and (single) permutation matrices being unitary, this gives

MAMB Ω̃ΩΩ
−1
AB MT

B MT
A =

(

ΩΩΩ+UAB VAB

)−1 (A.35)

So, the inverseΩΩΩ′′−1
AB is given by removing the Ath and B th rows and columns from

(

ΩΩΩ+UAB VAB

)−1.
With this, we can obtain the inverse of ΩΩΩ′′

AB from the inverse of the corresponding rank-updated
matrix ΩΩΩ+UAB VAB .

A7.2 Inversion of Rank-Updated Matrix as Rank-Update of Inverse

For finding the inverse of a rank-updated matrix, we can make use of the Woodbury Identity. In
its most general form,

(

A+DGF
)−1 = A−1 −A−1D

(

G−1 +F A−1D
)−1

F A−1 . (A.36)

So, instead of finding the inverse of the rank-updated matrix, we can simply rank-update the
inverse of the original matrix. In the present case, A =ΩΩΩ, D = UAB , G =19, and F = VAB . Hence,

(

ΩΩΩ+UAB VAB

)−1 =ΩΩΩ
−1 −ΩΩΩ

−1UAB

(

19 +VAB ΩΩΩ
−1UAB

)−1
VAB ΩΩΩ

−1 . (A.37)

The great advantage of this reformulation comes from the fact that VAB ΩΩΩ
−1UAB gives a (9×9)-

dimensional matrix. Thus, we only have to find the inverse of the 9-by-9 matrix (19+VAB ΩΩΩ
−1UAB )

and perform basic matrix operations including only addition and multiplication, while the full

matrix ΩΩΩ needs to be inverted only once at the beginning. In summary, instead of performing
N 2 inversions of a (3N –6×3N –6)-dimensional matrix, we perform N 2 inversions of an only
(9×9)-dimensional matrix and a few matrix-matrix multiplications to obtain

ΩΩΩ
′′−1
AB =

[

ΩΩΩ
−1 −ΩΩΩ

−1UAB

(

19 +VAB ΩΩΩ
−1UAB

)−1
VAB ΩΩΩ

−1
]

i j
∀ (i , j ) ∈ (A,B) , (A.38)

where [A]i j denotes the matrix obtained after removing the i th column and j th row from matrix
A. For large N , the computational cost of inverting (3N×3N )- or (3N –6×3N –6)-dimensional
matrices is nearly the same. So, trading N 2 inversions of (3N –6×3N –6)-dimensional matrices for a
single inversion of a (3N×3N )-dimensional matrix offers a substantial reduction of computational
costs.

105



A8 Rank-Update Determinant via Matrix Determinant Lemma

A8 Rank-Update Determinant via Matrix Determinant Lemma

Considering that

det

{(
A 0

0 B

)}

= det{A} ·det{B} , (A.39)

we first write the matrix

Ω̃ΩΩAB = MT
B MT

A

(

ΩΩΩ+UAB VAB

)

MA MB =










ΩΩΩA A 0 0 · · · 0

0 ΩΩΩBB 0 · · · 0

0 0
...

... ΩΩΩ
′′
AB

0 0










(A.40)

as introduced in Appendix A7. According to det{AB} = det{BA}, the unitarity of (single) permuta-
tion matrices and Eq. (A.39), the determinant of this matrix is given by

det
{

Ω̃ΩΩAB

}

= det
{

ΩΩΩ+UAB VAB

}

= det
{

ΩΩΩA A

}

·det
{

ΩΩΩBB

}

·det
{

ΩΩΩ
′′
AB

}

. (A.41)

Using the Matrix Determinant Lemma, in its most general form,

det
{

A+DGF
}

= det
{

G−1 +FA−1D
}

·det
{

G
}

·det
{

A
}

, (A.42)

we can also write the determinant in Eq. (A.41) as

det
{

ΩΩΩ+UAB VAB

}

= det
{

19 +VAB ΩΩΩ
−1UAB

}

·det
{

19
}

·det
{

ΩΩΩ
}

= det
{

19 +VAB ΩΩΩ
−1UAB

}

·det
{

ΩΩΩ
}

= det
{

ΩΩΩA A

}

·det
{

ΩΩΩBB

}

·det
{

ΩΩΩ
′′
AB

}

.
(A.43)

Hence,
det

{

ΩΩΩ
′′
AB

}

= det
{

19 +VAB ΩΩΩ
−1UAB

}

·det
{

ΩΩΩ
}

·det
{

ΩΩΩA A

}−1 ·det
{

ΩΩΩBB

}−1 . (A.44)

Even better, the expression for the Coulomb interaction energy of a set of quantum harmonic
oscillators as given in Eq. (5.12) contains the prefactor det{ΩΩΩ}/det{ΩΩΩ′′

AB }, which becomes

det
{

ΩΩΩ
}

det
{

ΩΩΩ
′′
AB

}
(A.44)=

det
{

ΩΩΩA A

}

·det
{

ΩΩΩBB

}

det
{

19 +VAB ΩΩΩ
−1UAB

} . (A.45)

So, we only need to evaluate low-dimensional determinants (3×3 and 9×9) plus lower-cost
matrix operations involving the inverse of the global matrixΩΩΩ, which we need to obtain only once
in the beginning.
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A9 Qualitative Descriptors of Dipole-Correlated Coulomb Singles

The Dipole-Correlated Coulomb Singles (DCS) energy can be separated into charge polarization
effects arising from long-range electron correlation and beyond-dipolar vdW interactions. Corre-
spondingly, the displaced charge due to vdW dispersion as obtained within the MBD formalism
resembles the relative trend in DCS interaction energies. Fig. A.6A shows a correlation plot of the
displaced charge with the DCS contribution to the binding energy of a fullerene to various host
molecules.

To further analyze geometric descriptors for spatial proximity, we tested a variety of power law
summations of the atom-pairwise distances. As can be seen from Fig. A.6B, the sum of inverse
distances to the power eight also provides a qualitative descriptor for EDCS. Within the atom-
pairwise formulation of vdW interactions, such a sum also represents dipole–quadrupole vdW
contributions. This connection is merely coincidental, however. DCS reduce the binding energies
in all cases, whereas extending MBD with atom-pairwise dipole–quadrupole vdW interactions
(−C8/R 8-potentials), would add additional, attractive interaction.

The best correlation (i.e., the least spread from linear behavior) between EDCS and power law
summations can be found for the fifth power of inverse atom-pairwise distances (cf. Fig. A.6B).
This can be rationalized by the fact that, as a leading-order term, dipolar quantum fluctuations
induce static quadrupole moments, whose interaction decays as R−5. Further investigation of the
general validity and origin of the observed correlations is subject to future studies.

Fig. A.6: Correlation of displaced charge (A) and the sum of R−5- or R−8-terms (B) with Dipole-

Correlated Coulomb Singles interaction energies for the C70-fullerene in various host molecules.
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A10 Summary of Machine-Learned Repulsive Potentials for DFTB

The SchNetPack toolbox allows to train deep tensor neural networks (DTNNs) based on energies
as well as on forces. We performed our tests of different sampling algorithms for the training set
selection for DTNN-models trained on repulsive energies. The corresponding learning curves
for random sampling, our eq+X approach and farthest point sampling (FPS, non-monotonic
behavior due to stochastic nature of the algorithm) are shown in Fig. A.7. Our NNrep model can
thereby be combined with arbitrary electronic parameterizations and different levels of DFTB.
This is exemplified for DFTB2 with mio parameterization in Fig. A.7.

Fig. A.7: Learning curves of NNrep for
DFTB3 using different algorithms of
training set selection and for DFTB2.
Blue circles: Random selection of training
points, blue squares: eq+X selection, blue
diamonds: eq+FPS selection, and red tri-
angles: NNrep model of repulsive energy
for DFTB2. Reproduced with permission
from Ref. 4. © 2020 American Chemical
Society.
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The repulsive energy can be also learned by using kernel ridge regression (KRR) as implemented in
the QML package, [364,365] for instance. Fig. A.8 shows the learning curves (a) and error distribution
(b) for several molecular descriptors. As expected due to the nature of the property target, local
descriptors (labeled with the prefix “at.”) provide a better performance than global ones.

Fig. A.8: Learning curves for Kernel Ridge Regression of the repulsive energy using different global
and local atomic representations. (a) Learning curves and (b) distribution of errors. Reproduced with
permission from Ref. 4. © 2020 American Chemical Society.
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A11 Dimensionality & Complexity of Global vs Local Chemical Space

The complexity of the global chemical space spanned by QM7-X can be estimated by the number
of distinct configuration times the conformational degrees of freedom (DOF). We can further
approximate the required training set size or complexity of the set, C, by multiplying the resulting
number of DOF by an estimate for the number of samples per DOF. Given ∼42k unique equilib-
rium structures, an average of ∼16 atoms per molecules and approximately 5 samples per DOF,
we get

N
(glob)
DOF =Nmols · (3 N̄atoms −6) ≈ 2 ·106

and Cglob . 9 ·106

We note that thanks to the extensive sampling of configurational space by choosing all equilib-
rium structures, the (3N̄atoms – 6) conformational DOF can be taken in eigenmode representation,
which justifies the rather low choice of 5 samples per DOF. Considering that many DOF share
common characteristics, one may see the above as an upper bound.

One can alternatively consider the average number of non-hydrogen elements per molecule
being 6.9. Limiting the minimum content of carbon atoms to 50 %. This leaves an average of
3.45 carbon atoms per molecule, while 3.45 atoms can be chosen from {C, N, O}, which gives
a compositional diversity of 33.45. In order to account for configurational and conformational
diversity, we may now place each composition in an appropriately-sized volume. From the
conformations of benzene as contained in QM7-X, we can estimate this to be V ≈ 6×6×3 Å. All
possible configurations and conformations can then be represented by covering the (3N̄atoms – 6)
displacements of each atom of the molecule (including previously neglected hydrogens) within
our estimated “molecular volume”. In this case, the (3N̄atoms – 6) displacements have to cover
both configurational and conformational space and thus sample the full “molecular volume”. A
reasonable discretization step for this sampling, that accounts for the fact that we cannot place
atoms at random, is ∆V ≈ 0.5×0.5×0.5 Å. Together with N̄atoms = 16, we arrive at

Cglob & 33.45 · (3N̄atoms − 6) ·V /∆V = 106

This measure does not account for the compositional diversity of different hydrogen contents
at the same non-hydrogen composition (i.e., ethane vs ethylene vs acetylene, for example). The
above number thus represents a lower bound to the actual complexity and number of samples
needed to fully describe QM7-X. Combining both approaches, we get

106 . Cglob . 9 ·106

and can assume

∑

N
(glob)
DOF ≈ 2 ·106 and Cglob ≈ 5 ·106

∑

We can thus expect a purely data-driven, global model to require about five million training
instances in order to be applicable to the whole QM7-X dataset.

For the space of local (chemical) environments, we may expand the structure to property mapping
into local, force-field-like descriptors (i.e., bonds, angles, dihedrals). The total complexity of
the local chemical space can then be defined as the number of possible two-, three-, and four-
body terms times an estimate for how many distinct samples one needs in order to describe the
corresponding term. The individual n-body terms, we get for the set {H,C,N,O} are summarized
in Tab. A.2.
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Tab. A.2: Summary of two-, three-, and four-body terms defining the space of local chemical
environments for molecules containing {H,C,N,O}.

n Terms

2 Pairs A = B NA A = 4

A–B A 6= B NAB =
(
4
2

)

= 6

Exclude H–H (won’t be in larger molecules) Nb = NA A +NAB −1 9

3 Angles B ∈ {C,N,O}, giving 3 options to insert an
element into each possible pair AB .

NABC = 3 · (NA A +NAB )

A–B–C We neglect H–O–H. Na = NABC −1 29

4 Dihedrals Let’s first take the case A = D ∧ B 6=C and
remember A–B–C –A = A–C –B–A.

NABC A = NA A ·3 = 12

A–B–C –D Next, A = D and B =C . NABB A = NA A ·3 = 12

B ,C 6=H For A 6= D , we have B ,C ∈ {C,N,O}. NABC D = NAB ·3 ·3 = 54

We neglect H–O–O–H and O–O–O–O,
which won’t be part of larger molecules.

Nd = NABC A +NABB A

+NABC D −2
76

As a result we obtain a total of 114 DOF. In terms of the number of required samples, we can
estimate for angles (a) and dihedrals (d) ∆a =∆d ≈ 5◦ ⇒ ns(a) = ns(d) ≈ 36. Assuming the space
of bonds (b) to be within a range of 0.5 to 4 Å, we can say ∆b ≈ 0.1 Å ⇒ ns(b) ≈ 36. So, the number
of DOF and the complexity of or the number of samples needed to sample the local chemical
space are

∑

N (loc)
DOF = Nb +Na +Nd = 114 and Cloc = Nb ·ns(b)+Na ·ns(a)+Nd ·ns(d) ≈ 4 ·103

∑

The required training set for a global model scales with the number of distinct molecules and
ranges at ∼106 in the present case of the QM7-X dataset. The necessary number of structures to
sample all possible local environments as detailed above is thus 3 orders of magnitude less than

for the global chemical space.

Now, this is for arbitrary conformations of points in space. In nature, the individual terms are
strongly limited, however. Angles and dihedrals preferably take a value from a very limited set of
the total 180◦ span assumed above plus a considerable number of combinations is prohibited due
to the corresponding three-dimensional arrangements potentially resulting in a fusing of atoms.
For the sake of simplicity and in order to stick to a complete description of local environments
including potential rare transition states, we do not include these aspects in the current analysis.

Note that, contrary to the global complexity, the dimensionality and complexity of the local
chemical space is independent of the total size of the molecule and thus independent of the
configurational/conformational dimensionality. For local environments considering four ele-
ments, the dimensionality is fixed at 114 and the required number of samples fixed at the above
approximate value. When extending beyond four elements, the complexity grows solely due to
combinatorics. In the case of the global complexity, one additionally has to consider the rapidly
exploding configurational and conformational part.
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A12 Analytical Repulsive Potentials in Two-Center Approximation

In order to evaluate the individual terms for the pair-integrals in Eq. (6.15), we will rely on the
following reformulation of the Coulomb potential between points r and r′:

1

‖r− r′‖
= 2

p
π

∞∫

0

e−s2‖r−r′‖2
d s . (A.46)

Furthermore, we will employ several Gaussian integrals, in a general form,

∫

R

e−ax2+bx−c d x =
√

π

a
e

b2
4 a −c . (A.47)

Hartree Energy Contributions

When expressing the electron density in the form of simple Gaussians as proposed in Eq. (6.16)
(or linear combinations thereof), the contributions from the Hartree energy terms in Eq. (6.15)
can be written in the form of a general double integral (or linear combinations thereof).
Setting RA = 0, R = (Rx ,Ry ,Rz)T ≡ RB −RA = RB , we can write the general form

Ω
(H)
AB

≡
Ï

ρA ρ
′
B

‖r− r′‖
drdr′ = nAnB

Ï
e
− ‖r‖2

σA e
−‖r′−R‖2

σB

‖r− r′‖
drdr′ . (A.48)

With identity (A.46), we can expand the norm in the exponentials into its x, y, z components, such
that

Ω
(H)
AB

= 2nAnBp
π

∞∫

0

∫

R

Ix e
− (r ′x−Rx)2

σB dr ′
x

∫

R

Iy e
−

(

r ′y−Ry

)2

σB dr ′
y

∫

R

Iz e
− (r ′z−Rz)2

σB dr ′
z d s , (A.49)

where, with the help of Eq. (A.47), we can obtain

Ik =
∫

R

e
−s2

(

rk−r ′
k

)2
−

r 2
k

σA drk =
∫

R

e−
(

s2+σ−1
A

)

r 2
k
+ 2 s2 rk r ′

k
− s2r ′2

k drk =
√

π

s2 +σ−1
A

e
−

s2σ−1
A

r ′2
k

s2+σ−1
A . (A.50)

Thus,

Ω
(H)
AB

= 2nAnBp
π

∞∫

0

(

π

s2 +σ−1
A

)3/2

·Γx ·Γy ·Γz d s (A.51)

where Γk =
∫

R

e
−

s2σ−1
A

r ′2
k

s2+σ−1
A

−
(

r ′
k
−Rk

)2

σB dr ′
k

(A.47)=
√
√
√
√

π

s2σ−1
A

s2+σ−1
A

+σ−1
B

exp







s2σ−1
A

s2+σ−1
A

σ−1
B R2

k

s2σ−1
A

s2+σ−1
A

+σ−1
B







. (A.52)

So,

Ω
(H)
AB

= 2nAnBp
π

∞∫

0

(

π

s2 +σ−1
A

)3/2







π

s2σ−1
A

s2+σ−1
A

+σ−1
B







3/2

exp







s2σ−1
A

s2+σ−1
A

σ−1
B

‖R‖2

s2σ−1
A

s2+σ−1
A

+σ−1
B







d s (A.53)

= 2nAnBp
π

π3

∞∫

0

(
σAσB

(σA +σB ) s2 +1

)3/2

e
− s2

(σA+σB )s2+1
·‖R‖2

d s . (A.54)
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Substituting t 2 = ‖R‖2 s2 ·
[

(σA +σB ) s2 +1
]−1

, which includes

d s =
[

(σA +σB ) s2 +1
]3/2

‖R‖ d t and lim
s→∞

t =
‖R‖

p
σA +σB

, (A.55)

we get

Ω
(H)
AB

= nAnB
π3 (σAσB )3/2

‖R‖
2
p
π

‖R‖p
σA+σB∫

0

e−t 2
d t = nAnB

π3 (σAσB )3/2

‖R‖ erf

( ‖R‖
p
σA +σB

)

. (A.56)

When using an “outer-shell” or p-orbital-like ansatz for the valence–valence Hartree contribution
as given in Eq. (6.16), the linear combination of Ω(H)

AB
terms can involve positive as well as negative

contributions.

External Potential Contributions

Using the same steps as for the Hartree potential energy contributions above, we can also derive
the interaction of nucleus A and the (core) electrons on atom B . In this case, we set RB = 0 and
RA = RA −RB = R. With identity (A.46), we can write the general term

Ω
(ext)
AB

=
∫

ZA ̺B

‖r−RA‖
dr = 2 ZA nBp

π

∞∫

0

∫

R3

e−s2‖r−R‖2
e
− 1

ςB
‖r‖2

drd s (A.57)

= 2 ZA nBp
π

∞∫

0

{x,y,z}∏

k

∫

R

e
−s2(rk−Rk )2 − 1

ςB
r 2

k drk d s (A.58)

= 2 ZA nBp
π

∞∫

0

{x,y,z}∏

k

√
ςB π

ςB s2 +1
e
− s2

ςB s2+1
R2

k d s (A.59)

= 2 ZA nBp
π

∞∫

0

(
ςB π

ςB s2 +1

)3/2

e
− s2

ςB s2+1
‖R‖2

. (A.60)

Next, we substitute

t 2 = s2 ‖R‖2

ςB s2 +1
with d s =

(

ςB s2 +1
)3/2

‖R‖ d t and lim
s→∞

t =
‖R‖
p
ςB

(A.61)

to arrive at the final expression

Ω
(ext)
AB

= ZA nB (απ)3/2

‖R‖
2
p
π

‖R‖/
p
ςB∫

0

e−t 2
d t = ZA nB (ςB π)3/2

‖R‖ erf

( ‖R‖
p
ςB

)

. (A.62)

Total Two-Center-Approximated Repulsive Potential

Together with the classical nuclear repulsion energy and in two-center approximation, the Gaus-
sian expansion of electron densities leads to a repulsive potential between atoms A and B , which
can in general form be written as

V
(AB)
tcr

(

RAB

)

= ZA ZB

RAB
+

∑

i , j

Ω
(H)
Ai B j

+Ω
(ext)
A j B j

= ZA ZB

RAB
+

∑

i , j

p Ai
pB j

erf

(

RAB
√

qAi
+qB j

)

R−1
AB , (A.63)

where the prefactors incorporate the sign of the individual contributions entering Eq. (6.15).
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Publications during the course of the doctorate:

• M. Stöhr, M. Sadhukhan, Y. S. Al-Hamdani, J. Hermann, and A. Tkatchenko “Coulomb Inter-
actions between Dipolar Quantum Fluctuations in van der Waals Bound Molecules and Ma-
terials” Nat. Commun. accepted (2020). Preprint available at https://arxiv.org/abs/2007.12505.

• M. Stöhr, L. Medrano Sandonas, and A. Tkatchenko “Accurate Many-Body Repulsive Po-
tentials for Density-Functional Tight Binding from Deep Tensor Neural Networks” J. Phys.

Chem. Lett. 11, 6835 (2020).

• B. Hourahine, B. Aradi, V. Blum, F. Bonafé, A. Buccheri, C. Camacho, C. Cevallos, M. Y. De-
shaye, T. Dumitrică, A. Dominguez, S. Ehlert, M. Elstner, T. van der Heide, J. Hermann,
S. Irle, J. J. Kranz, C. Köhler, T. Kowalczyk, T. Kubař, I. S. Lee, V. Lutsker, R. J. Maurer, S. K. Min,
I. Mitchell, C. Negre, T. A. Niehaus, A. M. N. Niklasson, A. J. Page, A. Pecchia, G. Penazzi,
M. P. Persson, J. Řezáč, C. G. Sánchez, M. Sternberg, M. Stöhr, F. Stuckenberg, A. Tkatchenko,
V. W.-z. Yu, and T. Frauenheim “DFTB+, a software package for efficient approximate density
functional theory based atomistic simulations” J. Chem. Phys. 152, 124101 (2020).

• M. Stöhr and A. Tkatchenko “Quantum mechanics of proteins in explicit water: The role of
plasmon-like solute–solvent interactions” Sci. Adv. 5, eaax0024 (2019).

• M. Stöhr, T. Van Voorhis, and A. Tkatchenko “Theory and practice of modeling van der
Waals interactions in electronic-structure calculations” Chem. Soc. Rev. 48, 4118 (2019).

• D. V. Fedorov, M. Sadhukhan, M. Stöhr, and A. Tkatchenko “Quantum-Mechanical Relation
between Atomic Dipole Polarizability and the van der Waals Radius” Phys. Rev. Lett. 121,
183401 (2018).

Previous publications:

• M. Stöhr, G. S. Michelitsch, J. C. Tully, K. Reuter, and R. J. Maurer “Communication: Charge-
population based dispersion interactions for molecules and materials” J. Chem. Phys. 144,
151101 (2016).

• J. A. Lloyd, A. C. Papageorgiou, S. Fischer, S. C. Oh, Ö. Saǧlam, K. Diller, D. A. Duncan,
F. Allegretti, F. Klappenberger, M. Stöhr, R. J. Maurer, K. Reuter, J. Reichert, and J. V. Barth
“Dynamics of Spatially Confined Bisphenol A Trimers in a Unimolecular Network on Ag(111)”
Nano Lett. 16, 1884 (2016).

Software (co-)development during the doctorate:

• DFTB+ (https://github.com/dftbplus/dftbplus)
Software package for density-functional tight-binding calculations and extended methods.
Contribution: MBD and vdW(TS) dispersion models.

• libMBD (https://github.com/jhrmnn/libmbd)
Library for many-body dispersion calculations and beyond with various interfaces.
Contribution: Original ScaLAPACK implementation of MBD formalism.

• Hotbit (https://github.com/pekkosk/hotbit)
Open-source ASE density-functional tight-binding calculator and companion for DFT.
Contribution: GGA exchange-correlation functionals for atomic DFT calculations.
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[107] O. Sinanoǧlu, Many-Electron Theory of Atoms, Molecules and Their Interactions, in Adv. Chem.

Phys., edited by I. Prigogine, pages 315–412, John Wiley & Sons, London, 1964.

[108] S. Wilson, Electron Correlation in Molecules, Dover Publications, New York, dover edition, 1984.

[109] K. Hirao, Recent Advances in Multireference Methods, Vol. 4 of Recent Advances in Computational

Chemistry, World Scientific, Singapore, 1999.

117

https://dx.doi.org/10.1103/PhysRev.94.1498
https://dx.doi.org/10.1063/1.1740588
https://dx.doi.org/10.1103/PhysRevB.18.7165
https://dx.doi.org/10.1021/jp071338j
https://dx.doi.org/10.1039/b105782k
https://dx.doi.org/10.1021/jp068802p
https://dx.doi.org/10.1021/jp068802p
https://dx.doi.org/10.1021/ct300849w
https://dx.doi.org/10.1021/ct401002w
https://dx.doi.org/10.1021/ct5009137
https://dx.doi.org/10.1021/acs.chemrev.5b00584
https://dx.doi.org/10.1002/pssc.200778667
https://dx.doi.org/10.1002/pssb.201100694
https://dx.doi.org/10.1063/1.4935095
https://dx.doi.org/10.1016/j.theochem.2009.04.034
https://dx.doi.org/10.1021/acs.jctc.6b01243
https://dx.doi.org/10.1021/acs.jctc.5b00734
https://dx.doi.org/10.1021/jp070598y
https://dx.doi.org/10.1088/1367-2630/10/6/065022
https://dx.doi.org/10.1063/1.4705760
https://dx.doi.org/10.1038/ncomms3341
https://dx.doi.org/10.1039/C5SC00410A
https://dx.doi.org/10.1002/wcms.30
https://dx.doi.org/10.1063/1.4754130
https://dx.doi.org/10.1103/PhysRevLett.108.235502
https://dx.doi.org/10.1103/PhysRevLett.108.235502
https://dx.doi.org/10.1021/jz5012934
https://dx.doi.org/10.1002/adfm.201403029
https://dx.doi.org/10.1021/jz100309m
https://dx.doi.org/10.1103/PhysRevLett.114.096101
https://dx.doi.org/10.1103/PhysRevLett.116.146101
https://dx.doi.org/10.1103/PhysRevLett.111.045501
https://dx.doi.org/10.1002/anie.201502544
https://dx.doi.org/10.1021/acs.jpclett.7b03316
https://dx.doi.org/10.1063/1.4867195
https://dx.doi.org/10.1103/PhysRevLett.114.176802
https://dx.doi.org/10.1103/PhysRevLett.114.176802


Bibliography

[110] J. F. Dobson, A. White, and A. Rubio, Phys. Rev. Lett. 96, 073201 (2006).

[111] J. Chen, A. Zen, J. G. Brandenburg, D. Alfè, and A. Michaelides, Phys. Rev. B 94, 220102 (2016).

[112] L. M. Woods et al., Rev. Mod. Phys. 88, 045003 (2016).

[113] S. Y. Buhmann, Dispersion Forces I, Vol. 247 of Springer Tracts in Modern Physics, Springer-Verlag,
Berlin/Heidelberg, 2012.

[114] J. Hermann, R. A. DiStasio Jr., and A. Tkatchenko, Chem. Rev. 117, 4714 (2017).

[115] L. D. Landau and E. M. Lifshitz, Statistical Physics, Vol. 5 of Course of Theoretical Physics, Pergamon
Press, Oxford, 2nd edition, 1970.

[116] M. Born and V. Fock, Z. Phys. 51, 165 (1928).

[117] T. Kato, J. Phys. Soc. Japan 5, 435 (1950).

[118] S. L. Adler, Phys. Rev. 126, 413 (1962).

[119] N. Wiser, Phys. Rev. 129, 62 (1963).

[120] J. Toulouse, F. Colonna, and A. Savin, Phys. Rev. A 70, 062505 (2004).

[121] H. B. G. Casimir and D. Polder, Phys. Rev. 73, 360 (1948).

[122] H. Hamaker, Physica 4, 1058 (1937).

[123] F. London, Z. Phys. Chem. Abt. B 11, 222 (1930).

[124] S. Grimme, J. Comput. Chem. 25, 1463 (2004).

[125] A. D. Becke and E. R. Johnson, J. Chem. Phys. 122, 154104 (2005).

[126] E. R. Johnson and A. D. Becke, J. Chem. Phys. 123, 024101 (2005).

[127] S. Grimme, J. Comput. Chem. 27, 1787 (2006).

[128] T. Sato and H. Nakai, J. Chem. Phys. 131, 224104 (2009).

[129] S. N. Steinmann and C. Corminboeuf, J. Chem. Theory Comput. 7, 3567 (2011).

[130] S. Grimme, S. Ehrlich, and L. Goerigk, J. Comput. Chem. 32, 1456 (2011).

[131] A. Tkatchenko, A. Ambrosetti, and R. A. DiStasio Jr., J. Chem. Phys. 138, 074106 (2013).

[132] Q. Wu and W. Yang, J. Chem. Phys. 116, 515 (2002).

[133] J. Tao, J. P. Perdew, and A. Ruzsinszky, Phys. Rev. B 81, 233102 (2010).

[134] J. Tao, J. P. Perdew, and A. Ruzsinszky, Proc. Natl. Acad. Sci. U. S. A. 109, 18 (2012).

[135] P. L. Silvestrelli, Phys. Rev. Lett. 100, 053002 (2008).
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