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  Abstract 
 
 

Accurate modelling of chemical and physical interactions is crucial for obtaining 
thermodynamic and dynamical properties of any chemical system, enabling a myriad of 
possible applications. Many of these applications are computationally prohibitive when using 
advanced Computational Chemistry (CompChem) methods even on modern supercomputers. 
Because of this, machine learning (ML) force fields (FFs), combining the accuracy of state-of-
the-art ab initio methods and the efficiency of classical FFs, are being increasingly used to 
reconstruct potential-energy surfaces (PESs) of molecules and solids. It is precisely the 
synergy of ML and CompChem that has revolutionized the field in the last decade, rising the 
applications to a qualitatively new level. Despite this great success, there are still many 
unsolved challenges. In this context, my thesis aims to investigate the capability of the existing 
MLFFs to provide simultaneously accurate and efficient models offering unprecedented 
insights into the (thermo)dynamics of realistic molecular systems. 

Using the examples of molecular interactions that are pervasive in (bio)chemical systems, we 
show a counterintuitive effect of strengthening of such interactions, as well as an unexpected 
prevalence of quantum nuclear fluctuations over thermal contributions at room temperature. 
We reveal that, when dealing with complex PESs, the predictions of state-of-the-art ML models 
(BPNN, SchNet, GAP, and sGDML) greatly depend on the descriptor used, and on the region 
of the PES being sampled. Given the varying performance of MLFFs, we present a descriptor 
optimization scheme improving simultaneously the accuracy and efficiency of ML models. Our 
results show that the commonly employed strategies followed to construct both local and 
global descriptors need to be improved because the optimal descriptors are a non-trivial 
combination of local and global features. Therefore, the work presented in this thesis highlights 
the potential of MLFFs to provide insights into chemical systems while, at the same time, 
discloses the current limitations preventing the construction of accurate MLFFs for more 
realistic systems. Also, I propose the optimization of the description of interactions within an 
ML model as a valuable step towards obtaining efficient and accurate MLFFs of large and 
flexible molecules. 

Overall, this thesis suggests that the full workflow for building ML models still need significant 

elaboration. Despite this finding, the combination of CompChem and ML methods in atomistic 

modelling promises to enable us to solve multiple problems in different areas, such as 

medicine, materials design, pharmacology, energy production, environmental sciences, 

among others. 
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CHAPTER 1 
 

Introduction 
 

1Chapter_mark_1 
The potential-energy surface (PES) is the basic element to study the dynamics, 

thermodynamics, and the reaction kinetics of chemical systems. A faithful description 

of PESs is crucial for understanding chemical reactions,1,2 conformational changes in 

molecules,3,4 nucleation events during phase transitions,5,6 and folding and unfolding 

of proteins,7–9 to name a few examples of a myriad of possible applications.10–15 There 

are different approaches to reproducing PESs in Computational Chemistry 

(CompChem). Among them, we can find ab initio methods,16 classical force fields 

(FFs),17 and machine learning (ML) models.15 Ab initio methods are based on solving 

the electronic Schrödinger equation with some approximations. In contrast, classical 

FFs and ML models do not explicitly solve the quantum mechanical problem. Classical 

FFs use manually predefined analytic functions to model PESs, while ML models are 

trained on precomputed CompChem datasets without explicitly assuming any 

functional forms. The selection of a given approach depends on the accuracy and 

computational cost requirements for a desired application (see Fig. 1.1 for a schematic 

representation). For instance, applications that only need a few calculations, such as 

single-point energy calculations and geometry optimizations, can be done using 

accurate ab initio methods. Conversely, the applications that require simulations of 

long trajectories consisting of millions of steps, like the computation of heat capacities 

and free energies or dealing with rare events, are limited to efficient FFs. 

Overall, ab initio approaches, like wavefunction methods or density functional theory 

(DFT), yield the most accurate chemical/physical properties.16 The state-of-the-art 

diffusion Monte Carlo18 and the coupled cluster method that involves single, double, 

and perturbative triples excitations [CCSD(T)]19,20 calculations are often used as 

benchmarks in CompChem since they have been demonstrated to achieve “chemical 

accuracy” of 1 kcal mol-1 for atomization energies of many small molecular systems 
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(in comparison to experiment). Unfortunately, their excessive computational cost [e.g., 

diffusion Monte Carlo scales as 𝑂(𝑛%) and CCSD(T) as 𝑂(𝑛&) with respect to the 

number of electrons] limits their applicability to systems with only tens of atoms. When 

one needs to deal with larger systems, DFT is widely used due to its better scaling law 

[𝑂(𝑛')]. Despite having larger errors than wavefunction methods, DFT calculations 

with suitable exchange-correlation functionals and  appropriate considerations for van 

der Waals (vdW) dispersion interactions are reliable for many applications, such as 

performing conformational searches for molecules and predicting physical/chemical 

properties of materials.21–24 Their relatively high computational cost, however, still 

represents an obstacle for computationally demanding tasks, like modelling the 

dynamics and thermodynamics of realistic systems. 

 

 

 

The interest in large scale applications fostered the development of classical  

FFs.17,25–32 Such FFs are fitted empirically to experimental and/or CompChem data, 

and evaluated very efficiently by explicitly considering the interactions between atoms 

and treating electrons only in an implicit manner. The low computational cost of 

classical FFs makes them suitable for reconstructing the PESs of large biomolecular 

systems (e.g., proteins, biopolymers).33–35 However, this advantage comes at the cost 

of accuracy because it is very hard to manually predefine the functional forms of all 

possible interactions within a studied system.36 

The need for efficient, albeit accurate, PES models shifted the efforts of a broad part 

of the CompChem community to developing MLFFs.37–67 MLFFs aim to keep the 

Ab initio
Methods

Machine Learning

Classical Force Fields
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Figure 1.1: Hierarchies in Computational Chemistry methods. 
Only the methods relevant for this work are presented. 
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accuracy of ab initio calculations while achieving an efficiency comparable to that of 

classical FFs. Contrary to other CompChem methods, MLFFs use CompChem data 

to estimate functional relationships (or surrogate models) that can recover mappings 

between molecular configurations and their corresponding energy and/or forces. 

Plenty of different MLFFs has been proposed in recent years: the Behler-Parrinello 

neural network (BPNN),62 SchNet,66 the symmetric gradient domain machine learning 

(sGDML),45,46,48 Gaussian approximation potentials (GAPs),56 PhysNet,67 the 

embedded atom NN (EANN),39 DeepMD,40 the deep potential – smooth edition 

(DeepPot-SE),41 the hierarchically interacting particle NN (HIP-NN),42 ANI,43 and 

TensorMol,44 are a few examples. Most of these models allow reconstruction of PESs 

for a wide range of systems from small organic molecules to bulk condensed materials 

and interfaces with energy prediction errors under 1 kcal mol-1 with respect to the 

reference ab initio calculations.11,36,44–47,64–86 Typical applications include 

understanding the origins of electronic and structural transitions in materials,87 

enhancing the sampling of rare events,88 and computing molecular spectra.65 

Despite the great success of MLFFs, there are still open challenges. In this context, 

this thesis aims to investigate in detail the capability of existing MLFFs to provide 

simultaneously accurate and efficient models offering unprecedented insights into the 

(thermo)dynamics of realistic molecular systems. To achieve this, we first study the 

consequences of nuclear quantum effects (NQE) at finite temperature on molecular 

interactions.89 Long molecular dynamics (MD) simulations obtained using MLFFs 

revealed a counterintuitive strengthening of molecular interactions in the aspirin and 

toluene molecules, as well as a prevalence of quantum fluctuations over thermal 

contributions at a wide range of temperatures from 50 to 450 K. As a second important 

step, we assess the ability of state-of-the-art ML models, such as BPNN, SchNet, 

GAP, and sGDML, to reconstruct the complex PESs of large and/or flexible molecules, 

which might present several minima and many possible transition paths.90 We found 

that ML models present an uneven accuracy across configurational space [up to an 

order of magnitude difference in root mean squared error (RMSE)], and their 

descriptors cannot equally resolve the states along different parts of the PES. This 

clearly demonstrates that typically employed strategies to construct both local (based 

on finite cutoff radius) and global (all degrees of freedom) descriptors are insufficient 

when one needs to deal with complex PESs. An optimal descriptor should keep only 
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some of the features included in local descriptors, together with the information about 

certain long distances (even beyond 10 Å) that are only present in global descriptors. 

Such descriptor optimization leads to simultaneously more efficient and accurate 

MLFFs, which is crucial for practical applications. 

This thesis is organized as follows: Chapter 2 provides an introduction to the 

theoretical background that this work is based on. It contains brief discussions of 

CompChem and ML methods. Chapter 3 reports the use of MLFFs of the aspirin and 

toluene molecules to unveil and explain counterintuitive effects induced by NQE at 

finite temperature on molecular interactions that are ubiquitous in realistic systems.89 

In Chapter 4, we discuss the problems that state-of-the-art MLFFs, such as BPNN, 

SchNet, GAP, and sGDML, face when reconstructing the complex PESs of flexible 

molecules.90 Chapter 5 addresses the need of finding optimal descriptors for obtaining 

accurate and efficient MLFFs of large and flexible molecules. Finally, Chapter 6 

contains a summary of all the results and provides perspectives for future research. 
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CHAPTER 2 
 

Theoretical Background 
 

2Chapter_mark_2 
Parts of this chapter have been reproduced from 
J. A. Keith, V. Vassilev-Galindo, B. Cheng, S. Chmiela, M. Gastegger, K.-R. Müller & 
A. Tkatchenko, Chem. Rev. 121, 9816-9872 (2021)91 
https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00107 
with the permission of ACS Publications. Further permissions related to the material 
excerpted should be directed to the ACS. 
 
 
Sec. 2.1 summarizes CompChem methods relevant to the content of this thesis. In 

particular, wavefunction theory methods, DFT, and interatomic potentials are covered. 

For a deeper description of the methods, the reader is referred to one of the many 

books available on the topic. See Refs. 92–96, for example. The section concludes 

with an introduction to MD simulations, which includes a discussion of nuclear 

quantum effects (NQE). 

Sec. 2.2 introduces the field of ML in general terms and provides an overview of the 

overall construction of ML models, starting from a dataset all the way to a trained and 

tested model. The section concludes with a brief introduction to MLFFs. Further details 

can be found in the original publications and reviews (e.g., Refs. 15,71,91). 

 

2.1 Basics of Computational Chemistry Methods 

Here, quantum mechanics is described by the nonrelativistic time-independent 

Schrödinger equation 

 𝐻.𝛹 = 𝐸𝛹 ( 1 ) 

 
where the Hamiltonian operator (𝐻.) is the sum of the kinetic (𝑇1) and potential (𝑉1 ) 

operators, 𝛹 is the wavefunction (i.e., an eigenfunction) that represents the electrons 
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and nuclei in the system, and 𝐸 is the energy (i.e., an eigenvalue). This is considered 

as the “standard model” because it accurately represents the physics of charged 

particles (electrons and nuclei) that make up almost all molecules and materials. 

In a real system, however, the position and interactions of a single particle in the 

system with respect to all other particles will be correlated, and this makes the exact 

solution of the Schrödinger equation impossible for almost all systems of practical 

interest. Thus, different types of approximations can be exploited to make the problem 

more tractable. For instance, the Born-Oppenheimer (BO) approximation considers 

nuclei as fixed point charges at any part of the PES since they are expected to move 

much slower than electrons. Eq. 1, then, can be transformed into the electronic 

Schrödinger equation: 

 

 𝐻.()𝛹()(𝒓; 𝑹) = 6𝑇1((𝒓) + 𝑉1(*(𝒓; 𝑹) + 𝑉1**(𝑹) + 𝑉1(((𝒓)8𝛹()(𝒓; 𝑹)

= 𝐸()𝛹()(𝒓; 	𝑹)	 
( 2 ) 

 

where the Hamiltonian 𝐻.() and wavefunction 𝛹()(𝒓; 𝑹) only depend parametrically on 

the nuclear coordinates 𝑹. The above expression is composed of single electron (e), 

electron-nuclear (eN), nuclear-nuclear (NN), and electron-electron (ee) terms. 

Any theoretical method for predicting molecular or material phenomena must first be 

rooted in quantum-mechanical theory and then suitably coarse-grained and 

approximated so that it can be applied in a practical setting. CompChem, or more 

precisely, computational quantum chemistry defines computationally driven numerical 

analyses based on quantum mechanics.  

This section provides a concise overview of some of the CompChem methods that are 

relevant in the context of this thesis. 

 

2.1.1 Wavefunction Theory Methods 

As mentioned before, the BO approximation can be applied to transform the time-

independent Schrödinger equation (Eq. 1) into the electronic Schrödinger equation 

(Eq. 2), where nuclei are considered as fixed point charges. A second common 

approximation is to expand the total electronic wavefunction in terms of one-electron 

wave-functions (i.e., spin orbitals): 𝜙(𝒓+). Electrons are Fermions and therefore exhibit 
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antisymmetry, which in turn results in the Pauli exclusion principle. Antisymmetry 

means that the interchange of any two particles within the system should bring an 

overall sign change to the wavefunction (i.e., from + to −, or vice versa). This property 

is conveniently captured mathematically by combining one electron spin orbitals into 

the form of a Slater determinant:  

 

 
𝛹(𝑟,, ⋯ , 𝑟") =

1
√𝑛!

@
ϕ,(𝒓𝟏) … ϕ"(𝒓,)

⋮ ⋱ ⋮
ϕ,(𝒓") … ϕ"(𝒓")

@ ( 3 ) 

 

The spin orbitals can be treated as a mathematical expansion using a basis set of µ 

functions 𝜒., each having coefficients 𝑐.+, which are generally Gaussian basis 

functions,97–99 Slater-type hydrogenic orbitals,100 or plane waves under periodic 

boundary conditions:101–103 

 

 𝜙+ =H𝑐.+χ.
.

 ( 4 ) 

 

The different types of mathematical functions bring different strengths and 

weaknesses, but these will not be discussed further here. A universal point is that 

larger basis sets will have more basis functions and thus give a more flexible and 

physical representation of electrons within the system. On one hand this can be crucial 

for capturing subtle electronic structure effects due to electron correlation. On the other 

hand, larger basis sets also necessitate significantly higher computational effort. 

Using the BO approximation (Eq. 2) together with a Slater determinant wavefunction 

(Eq. 3) expressed in a finite basis set (Eq. 4) brings about the simplest wavefunction 

based method, the Hartree−Fock (HF) approach (for historical context see  

Refs. 104–106). The HF method is a mean field approach, where each electron is 

treated as if it moves within the average field generated by all other electrons. It is 

generally considered inaccurate when describing many chemical systems, but it 

continues to serve as a critical pillar for CompChem electronic structure calculations 

since it either establishes the foundation for all other accurate methods or provides 

energy contributions (i.e., exact exchange) that is not provided in some CompChem 

methods.  
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CompChem methods that achieve accuracy higher than HF theory are said to contain 

electron correlation, a critical component for understanding molecules and materials. 

While correlation energy makes up a rather small contribution to the overall energy of 

a system (usually about 1 % of the total energy), because internal energies in 

molecular and material systems are so enormous, this contribution becomes rather 

significant. As an example, most molecular crystals would be unstable as solids if 

calculated using the HF level of theory. The missing component is attractive forces 

that are obtained from levels of theory that account for correlation energy. Correlation 

energies are obtained by calculating additional electron−electron interaction energies 

that arise from different arrangements of electron configurations (i.e., different possible 

excitations) that are not treated with the mean-field approach of HF theory. For 

instance, coupled cluster theory, a widely used post-HF method, includes additional 

electron configurations via cluster operators.107 One coupled cluster method that 

involves single, double, and perturbative triples excitations, CCSD(T), is referred to as 

the “gold-standard” approach for CompChem electronic structure methods since it has 

been demonstrated to achieve “chemical accuracy” of 1 kcal mol-1 for many small 

molecular systems (in comparison to experiment). 

A key point is that correlated wavefunction methods are founded on the HF theory, 

and so they are even more computationally demanding than HF calculations [𝑂(𝑛%)], 

for example, CCSD(T) scales poorly with the number of electrons in the system as 

𝑂(𝑛&). 

 

2.1.2 Density Functional Theory 

DFT96 is another method to calculate the quantum mechanical energy of a system 

using an energy expression that relies on functionals of electronic density  

ρ = K𝚿()(𝒓;𝑹)K
4:  

 

 𝐸[ρ] = 𝑇[ρ] + 𝑉[ρ] ( 5 ) 

 

Compared to wavefunction theory, DFT should be far more efficient since the 

dimensionality of a density representation for electrons will always be three rather than 

the 3n dimensions for any n-electron system described by a many-body wavefunction 
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method. DFT has an important drawback that the exact expression for the energy 

functional is currently unknown, all approximations bring some degree of 

uncontrollable error, and this has precipitated disagreeable opinions from purists in 

chemical physics, especially those who are developing correlated wavefunction 

methods. However, there is also substantial evidence that DFT approximations are 

reasonably reliable and accurate for many practical applications that bring information, 

knowledge, and sometimes insight. 

The most used form of DFT (which is also one of the most widely used CompChem 

methods in use today) is called Kohn-Sham (KS-)DFT.108 In KS-DFT, one assumes a 

fictitious system of noninteracting electrons with the same ground state density as the 

real system of interest. This makes it possible to split the energy functional in Eq. 5 

into a new form that involves an exact expression of the kinetic energy for 

noninteracting electrons:  

 

 𝐸[𝜌] = 𝑇"+[ρ] + 𝑉(*[ρ] + 𝑉(([ρ] + Δ𝑇(([ρ] + Δ𝑉(([ρ] ( 6 ) 

 

Here, 𝑇"+[ρ] is the kinetic energy of the noninteracting electrons, 𝑉(*[ρ] is the exact 

nuclear-electron potential, and 𝑉(([ρ] is the Coulombic (classical) energy of the 

noninteracting electrons. The last two terms are corrections due to the interacting 

nature of electrons and nonclassical electron−electron repulsion, and these are 

combined into the so-called “exchange-correlation” term (Exc), which uniquely defines 

which scheme of KS-DFT is being used. The formal scaling for KS-DFT is 𝑂(𝑛') with 

respect to the number of electrons. There are several modern exchange-correlation 

functionals that routinely achieve much higher accuracy than HF theory with less 

computational cost, and thus KS-DFT is a competitive alternative to many correlated 

wavefunction methods in for applications to molecules and materials. 

A remaining problem is constructing a practical expression for the exchange-

correlation functional, as its exact functional form remains unknown. This has spawned 

a wealth of approximations that have been founded with different degrees of first 

principles and/or empirical schemes. Classes of KS-DFT functionals are defined by 

whether the exchange-correlation functional is based on just the homogeneous 

electron gas (i.e., the “local density approximation”, LDA), that and its derivative (i.e., 

the “generalized gradient approximation”, GGA), as well as other additional terms that 
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should result in physically improved descriptions or error cancellations. For instance, 

hybrid DFT functionals (e.g., PBE0109) include a fraction of HF exact exchange 

repulsion, which reduces some of the shortcomings of pure GGA functionals. 

 

2.1.3 Interatomic Potentials 

Interatomic potentials, or force fields (FFs), introduce levels of abstraction compared 

to methods described above. Instead of using quantum mechanical expressions to 

create the PES for the system, analytic functions are used to model a presupposed 

PES that contains explicit interactions between atoms, while electrons are treated in 

an implicit manner (sometimes using partial charge schemes).110–115 Interatomic 

potentials thus are (oftentimes drastically) more computationally efficient than 

correlated wavefunction and DFT. This efficiency makes it possible to study even 

larger systems of atoms (e.g., biomolecules, surfaces, and materials) than is possible 

with other computational methods. Note that different empirical potentials bring 

substantially different computational efficiencies. The degree of efficiency arises from 

the balance of using accurate or physically justified functional forms, approximations, 

and model parametrizations. While efficient and versatile, the accuracy of all 

interatomic potentials is inherently constrained by their functional forms. There are 

many different formulations, but a typical energy expression for classical FFs is  

 

 𝐸565 = H 𝑘+7R𝑟+7 − 𝑟̅+7U
4

86"9:
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( 7 ) 

 

where the first three terms are the energy contributions of the distances (𝑟+7), angles 

(θ+7;) and dihedral angles (ϕ+7;)) between bonded atoms. Because of this, they are 

also referred to as bonded contributions. Bond and angle energies are modeled via 

harmonic potentials, with the 𝑘+7 and 𝑘+7; parameters modulating the potential strength 

and 𝑟̅+7 and θW+7; are the equilibrium distances and angles. The dihedral term is modeled 

with a Fourier series to capture the periodicity of dihedral angles, with 𝑘+7;) and γ as 

free parameters. The last two terms account for nonbonded interactions. The long-
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range electrostatics are modeled as the Coulomb energy between charges 𝑞+ and 𝑞7, 

and the vdW energy is treated via a Lennard-Jones potential  
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 ( 8 ) 

 

where ε+7 modulates the strength of the interaction function and σ+7 defines where it 

reaches its minimum. 

In FFs, empirical parameters are tabulated for a variety of elements and different 

chemical environments (for example Ref. 116). Parameters for any one system should 

not necessarily be assumed to transfer well to other systems, and reparametrizations 

may be needed depending on the application. Different sets of parametrization 

schemes give rise to different types of classical FFs, with CHARMM,25 Amber,26,27 

GROMOS,28–30 and OPLS31,32 being a few of many examples.  

For further discussions on these methods see the extensive review by Akimov and 

Prezhdo.16 Also, an excellent review for interatomic potentials is provided by Harrison 

et al.,17 and an excellent overview of modern methods can be found in a special issue 

of J. Chem. Phys.117 

 

2.1.4 Molecular dynamics 

So far, only the electronic structure problem has been addressed. However, the 

interactions between nuclei need to be considered with methods, such as MD, for 

properly studying the dynamical properties of molecules and materials.  

In MD simulations, the motion of nuclei, despite being quantum mechanical in nature, 

is computed with the principles of classical mechanics. Namely, Newton’s equations 

of motion are numerically solved to propagate the evolution of nuclei on the PES in 

time. MD averages computed over time provide insights into properties, such as 

average thermodynamic quantities, structure, and free energies along transition paths 

on the PES.  
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Nuclear Quantum Effects 

A classical treatment of the nuclei is oftentimes sufficient to provide accurate 

simulations, but the quantum nature of lighter elements, such as H−Li, and even 

heavier elements that form strong chemical bonds (C−C bond in graphene for 

example118) gives rise to significant nuclear quantum effects (NQEs). Such effects are 

a consequence of the impact of zero-point energy (ZPE) and quantum tunneling, and 

are responsible, for instance, for large differences from the Dulong−Petit limit of the 

heat capacity of solids, isotope effects, and the deviations of the particle momentum 

distribution from the Maxwell-Boltzmann equation.119 

One way to capture NQEs is the path-integral molecular dynamics (PIMD) method 

based on Feynman path integrals. PIMD generates the quantum-mechanical 

ensemble of a system by relating the statistics of a quantum particle to that of several 

replicas of a particle coupled by harmonic springs. The result of this approach is exact 

in the limit of infinite replicas, but in practice only a finite number of them is needed to 

achieve convergence. 

 

For obtaining a reliable property prediction with (PI)MD simulations, one requires 

simulation times comparable to the timescale of the real process of interest. This 

requirement limits the applicability of accurate electronic-structure methods, since 

their use results in quite computationally demanding simulations that are normally 

restricted to small system sizes and short simulation times. Alternatives, such as ML 

methods constructed using accurate data, are appealing to overcome this issue. 

 

2.2 Basics of Machine Learning 

ML has had a drastic impact on many aspects of our daily lives and has arguably 

become one of the most far-reaching technologies of our era. It is hard to overstate its 

importance in solving long-standing computer science challenges, such as image 

classification120–122 or natural language processing,123–126 tasks that require knowledge 

that is hard to capture in a traditional computer program.127,128 Over the past decade, 

advances in ML algorithms and computer technology made it possible to learn 

underlying regularities and relevant patterns from massive data sets that enable 

automatic constructions of powerful models that can sometimes even outperform 
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humans at those tasks. This development inspired researchers to approach 

challenges in science with the same tools, driven by the hope that ML would 

revolutionize their respective fields in a similar way. 

In the most general sense, ML algorithms estimate functional relationships without 

being given any explicit instructions of how to analyze or draw conclusions from the 

data. Learning algorithms can recover mappings between a set of inputs and 

corresponding outputs. Specifically, ML techniques aim to identify functions to predict 

interpolations between data points and thus minimize the prediction error for new data 

points that might later appear.129 Such functions, or models, 𝑓k satisfy 

 

 
𝑓k =

𝑎𝑟𝑔	𝑚𝑖𝑛
𝑓 ∈ ℱ dHℒ(𝑓(𝒙+), 𝑦+)

J

+

+ K|ΓΘ|K4i ( 9 ) 

 

where K|ΓΘ|K4 is a regularization term, which influences the selection of candidate 

models by introducing additional properties that promote generalization. Γ is a matrix 

that defines “simplicity” with regard to the model parameters Θ. Usually, Γ = λ𝐼 (where 

𝐼 is the identity matrix and λ > 	0) is chosen to simply favor a small L2-norm on the 

parameters, such that the solution does not rely on individual input features too 

strongly. 

A model that is heavily regularized (i.e., using a large λ) will eventually become biased 

in that it is too simplistic to fit the data well. In contrast, a lack of regularization might 

yield an overly complex model with high variance. Such an overfitted model will follow 

the data exactly to the point that it also models the noise components and 

consequently fails to generalize. Finding the appropriate amount of regularization λ to 

manage under- and overfitting is known as attaining a good bias-variance trade-off.130 

In what follows, an overview of the different stages involved in finding a suitable model 

𝑓k is presented. 

 

2.2.1 ML Workflow 

The ML workflow typically includes the following stages:  

A. Gathering and preparing the data 
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B. Choosing a representation 

C. Training the model 

1. Train model candidates 

2. Evaluate model accuracy 

3. Tune hyperparameters 

D. Testing the model out of sample 

Note, that the progression to a good ML model is not necessarily linear and some 

steps (except the out of sample test) may require reiteration as one learns about the 

problem at hand. 

 

Datasets 

On a fundamental level, ML models could be simply regarded as sophisticated 

parametrized functions of datasets. While the architectural details of the model matter, 

the reference data set forms the backbone that ultimately determines the effectiveness 

of the model. If the data set is not representative of the problem at hand, the model 

will be incomplete and behave unpredictably in situations that have been improperly 

captured. The same applies to any other shortcomings of the dataset, such as biases 

or noise artifacts that will also be reflected in the model. 

Robust models can generally only be constructed from comprehensive datasets, but 

it is possible to incorporate certain patterns into models to make them more data-

efficient. Prior scientific knowledge or intuition about specific problems can be used to 

reduce the function space from which an ML algorithm has to select a solution. If some 

of the unphysical solutions are removed a priori, less data are necessary to identify a 

good model. 

 

Descriptors 

To apply ML, the dataset needs to be encoded into a numerical representation (i.e., 

features/descriptors) that allows the learning algorithm to extract meaningful patterns 

and regularities.52,58,60,131–137 This is particularly challenging for unstructured data like 

molecular graphs that have well-defined invariable or equivariable characteristics that 

are hard to capture in a vectorial representation. For example, if one encodes a 

molecule using the Cartesian coordinates (ℛ'*) and the chemical elements (𝒵*) of all 
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its 𝑁 atoms, one would introduce substantial redundancies into the ML model (e.g., an 

ML model might consider two identical molecules that are rotated or translated as 

different molecules). To avoid these problems, atomic coordinates are transformed 

into an appropriate descriptor, tailored for a given task. This transformation allows the 

incorporation of physical invariances, such as rotations about an axis or the translation 

of the whole molecule in Cartesian space. The relevance of a descriptor in the 

accuracy of an ML model has motivated the design of multiple different  

descriptors,52–58,60,131–135,138–148 and efforts to find suitable representations are still 

ongoing. Descriptors are designed to emphasize particular aspects of a system or to 

disambiguate similar chemical or physical principles across different molecules or 

materials. The set of features contained in the descriptor normally depends on the task 

at hand and on the chemical physical intuition. 

 

Training 

The training process is the key step that ties together the dataset and model 

architecture. Through the choice of the model architecture, we implicitly define a 

function space of possible solutions, which is then conditioned on the training data set 

by selecting suitable parameters. This optimization task is guided by a loss function 

that encodes the two somewhat opposing objectives: i) achieving a good fit to the data, 

while ii) keeping the parametrization general enough such that the trained model 

becomes applicable to data that is not covered in the training set (see the two terms 

in Eq. 9). Satisfying the latter objective involves a process called model selection in 

which a suitable model is chosen from a set of variants that have been trained with 

exclusive focus on the first objective. Depending on the model architecture, more or 

less sophisticated optimization algorithms can be applied to train the set of model 

candidates. In the context of CompChem, both NNs37,38,49,60,62–66 and kernel-based 

methods45–48,50–59,61 are the most used model architectures.  

Kernel-based learning algorithms are typically linear in their parameters 

 

 
𝑓(𝒙) =Hα7𝐾R𝒙7 , 𝒙U
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where α7 are the parameters adapted to the data, 𝒙 denotes a query sample, 𝒙7 

denotes the j-th training sample, 𝑀 is the number of training points and 𝐾 is the  

so-called kernel. Eq. 10 coupled with a quadratic loss function, 

ℒR𝑓k(𝒙), 𝑦U = 	R𝑓k(𝒙) − 	𝑦U
4, yield a convex optimization problem. Convex problems can 

be solved quickly and reliably due to only having a single solution that is guaranteed 

to be globally optimal. This solution can be found algebraically by taking the derivative 

of the loss function and setting it to zero. For example, kernel ridge regression (KRR) 

and Gaussian processes (GPs) then yield a linear system of the form  

 

 ∇𝛂ℒR𝑓k(𝒙), 𝑦U = (𝑲 + λ𝐼)𝛂 − 𝑦 = 0 ( 11 ) 

 

which is typically solved in a robust way by factorizing the kernel matrix 𝐾. 

Factorization approaches are, however, only feasible if enough memory is available 

to store the matrix factors, and this can be a limitation for large-scale problems. In that 

case, numerical optimization algorithms provide an alternative. They take a multistep 

approach to solve the optimization problem iteratively by following the gradient:  

 

 𝜶5 = 𝜶5M, − γ ∇NℒR𝑓k(𝒙), 𝑦U���������
(.=.,(𝑲QRS)𝜶"#$MU

 ( 12 ) 

 

where γ is the step size (or learning rate). Iterative solvers follow the gradient of the 

loss function until it vanishes at a minimum, which is much less computationally 

demanding per step, because it only requires the evaluation of the model 𝑓k. 

On the other hand, NNs are constructed by nesting nonlinear functions in multiple 

layers. 

 

 
𝑓;(𝑥) = 𝑔�H𝑤;7𝑔 dH𝑤7+𝑥+
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Here, 𝑔(∙) denotes an activation function that is the nonlinear transformation that 

allows complex mappings between input and output, and 𝒙 denotes the 𝑀-dimensional 
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input to the node. The nodes have parameters consisting of 𝑤 (so-called weights) and 

𝑏 (a so-called threshold) that are learned from data.  

Eq. 13 yields nonconvex optimization problems and closed-form solutions like Eq. 11 

do not exist. Hence, the parameters of multilayer NNs are learned using iterative 

algorithms that compute the gradient of the loss-function (analogous to Eq. 12) using 

the back-propagation (BP) algorithm.149–151 Because of multiple local minima and 

saddle points on the loss surface, the global minimum is exponentially hard to obtain 

(since iterative algorithms usually converge to a local minimum). However, thanks to 

the strong modeling power of NNs, local solutions are usually good enough.152 

In addition to the parameters that are determined when fitting an ML model to the data 

set (i.e., the node weights/biases in Eq. 13 or regression coefficients in Eq. 10), many 

models contain hyperparameters that need to be fixed before training. Two types of 

hyperparameters can be distinguished: ones that influence the model, such as the 

type of kernel or the NN architecture, and ones that affect the optimization algorithm, 

for example, the choice of regularization scheme or the aforementioned learning rate. 

Both tune a given model to the prior beliefs about the data set and thus play a 

significant role in model effectiveness. Hyperparameters can be used to gauge the 

generalization behavior of a model.  

Hyperparameter spaces are often rather complex: certain parameters might need to 

be selected from unbounded value spaces, others could be restricted to integers or 

have interdependencies. This is why they are usually optimized using primitive 

exhaustive search schemes like grid or random searches in combination with 

educated guesses for suitable search ranges. Common gradient-based optimization 

methods typically cannot be applied for this task. Instead, the performance of a given 

set of hyperparameters is measured by evaluating the respective model on another 

training dataset called the validation dataset. 

 

Out-of-Sample Testing 

For a reasonably complex model, it is typically not challenging to generate the right 

responses for the data known from the training set. This is why the training error is not 

indicative of how the model will fulfill its ultimate purpose of predicting responses for 

new inputs. Alas, since the probability distribution of the data is typically unknown, it 
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is not possible to determine this generalization error exactly. Instead, this error is often 

estimated using an independent test subset that is held back and later passed through 

the trained model to compare its responses to the known test labels. If the model 

suffers from overfitting on the training data, this test will yield large errors. It is 

important to remember not to tweak any parameters in response to these test results, 

as this will skew this assessment of the model performance and will lead to overfitting 

on the test set.140 

 

2.2.2 ML Potentials 

In CompChem, one important type of ML models that are constructed following the 

workflow presented above are MLFFs. 

Contrary to interatomic potentials introduced in Sec. 2.1 that require an explicit 

parametrization, MLFFs find suitable functional expressions for interactions and 

energy in a fully data-driven manner and are only limited by the amount and quality of 

available reference data. Because of this, MLFFs have emerged as way to achieve as 

high accuracy as KS-DFT or correlated wavefunction methods but with a fraction of 

the cost. 

Training an MLFF to reproduce the PES of a system usually requires generating 

diverse and high quality CompChem data points that cover the relevant temperature 

and pressure conditions, reaction pathways, polymorphs, defects, compositions, 

etc.153–159 After data points comprised of atomic configurations, system energies, and 

forces are obtained, different methods for constructing MLFFs employ either different 

descriptors or different ML architectures to perform interpolations of the sampled parts 

of the PES. Smoothness is an essential feature for any PES, so special considerations 

are needed to avoid numerical noise that would result in discontinuities.160,161 Some of 

the most important MLFFs will be introduced in the following paragraphs. 

 

Behler-Parrinello Neural Networks 

The Behler-Parrinello NN (BPNN)62 is a descriptor-based NN, which is the first 

developed NN architecture for training MLFFs. The method obtains molecular 

properties as the sum of individual atomic contributions. These contributions are 

assumed to depend on the local chemical environment of each atom. Because of such 
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assumption, the output does not change when the input is permuted, and models can 

be transferred between system sizes whenever a sufficient sampling of the local 

environments is performed and a suitable correction for long-range effects is 

considered. 

In BPNNs, local environments are described by atom-centered symmetry functions 

(ACSFs)60 consisting of two body terms 
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and three body terms 
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Where 𝑟+7 is the distance between atoms 𝑖 and 𝑗, θ+7; the angle spanned by atoms 𝑖, 𝑗 

and 𝑘 centered around 𝑖, and 𝑁 is the number of atoms. The parameters η, 𝑟:, ζ, and 

λ determine the sensitiveness of ACSFs to the different distances, or combination of 

angles and distances. The cutoff function 𝑓[\5(𝑟) ensures the smoothness of 𝐺+4 and 

𝐺+', and its value depends on a predefined cutoff distance 𝑟[\5 
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 ( 16 ) 

 

ACSFs only use geometric information, so they work best for systems containing only 

atoms of one element. To improve its performance, a modification, labelled as 

weighted ACSFs (wACSFs),162 accounts for the composition of the chemical 

environment in an implicit manner by introducing element-dependent weighting 

functions to Eqs. 14 and 15, instead of using separate functions to describe different 

combinations of elements. 
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SchNet 

SchNet66 is an end-to-end NN architecture. This means that the NN can learn the 

descriptors for molecules and materials, following fundamental symmetries of 

atomistic systems by construction. Such data-driven representations are constructed 

by iteratively refining a set of atom-wise features 𝑥+ based on interactions with 

neighboring atoms. Higher-order interactions can then be captured in a hierarchical 

fashion. For example, a first information pass would only capture radial information, 

but further interactions would recover angular relations and so on. In SchNet, 

continuous convolutions are used to describe the interactions, so the update function 

depending on the atomic environment takes the form 
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Here, 𝑙 indicates the number of overall update steps. The sum runs over all atoms 𝑗 in 

the local environment, and a cutoff function 𝑓[\5 ensures smoothness of the 

representation. Each feature is updated with information from all neighboring atoms 

with a feature transformation (𝑁𝑁5@) and a radial dependence (𝑁𝑁@<9), which are both 

modeled as trainable NNs  

Even though SchNet primarily learns local features, interaction blocks in its 

architecture embed such features into the local environments of different parts of the 

molecule to learn other interactions. 

 

Gaussian Approximation Potentials 

Gaussian approximation potentials (GAPs)56 are an implementation of GPs regression 

to fit quantum mechanical data. Like BPNNs, GAPs consider the total energy as the 

sum of the energy of atom-centered environments. Such environments are defined by 

a cutoff radius that guarantees that atomic energy contributions are local, and no 

discontinuities are introduced.  

Despite quantum mechanical calculations only provide total energies and its 

derivatives, atom-wise energy contributions can be approximated by GPs. Specifically, 
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one can construct a kernel function for two given systems 𝒙 and 𝒙b with 𝑁 and 𝑁b 

atoms, respectively, by summing over all kernels of the local environments 
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For representing local environments within the GAP method, the smooth overlap of 

atomic positions (SOAP)58 descriptor has been widely used. To construct SOAP 

descriptors, one first considers an atomic environment 𝒳 and a Gaussian function of 

width σ is then placed on each atom 𝑖 in 𝒳 to make an atomic density function  
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Here, 𝒓 denotes a point in Cartesian space, 𝒓+ is the position of atom 𝑖 relative to the 

central atom of 𝒳, and the cutoff function 𝑓[\5 smoothly decays to zero beyond the 

cutoff radius. This density representation ensures invariance with respect to 

translations and permutations of atoms of the same species but not rotations. 

Rotational invariance is obtained when constructing the SOAP kernel with an integral 

over rotations ℛ of atomic densities  
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In practice, the density is expanded in a basis of spherical harmonics and a set of 

orthogonal radial functions to evaluate the kernel in Eq. 20. 

 

Gradient Domain Machine Learning 

Gradient domain machine learning (GDML)45 is a kernel-based ML method that allows 

the construction of complex multidimensional PESs by combining rigorous physical 

laws with data-driven ML techniques. Contrary to most other MLFFs, it learns directly 

from forces and its flexible nature can recover both local and non-local interactions. 
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For avoiding the violation of energy conservation, conservative forces are ensured by 

using a kernel that models the forces 𝑭 as a transformation of an unknown PES 𝐸 

 

 𝑲(𝒙, 𝒙b) = ∇𝒙𝐾f(𝒙, 𝒙b)∇𝒙*
g  ( 21 ) 

 

Then, GDML solves the normal equation of the ridge estimator, but it does it in the 

gradient domain since the kernel defined in Eq. 21 corresponds to the Hessian matrix 

of the original kernel 𝐾f. 

To disambiguate Cartesian coordinates, GDML encodes the chemical structure in a 

descriptor 𝒙 consisting of the inverse of all pairwise distances. Such a representation 

is rotationally and translationally invariant but is not permutationally invariant. Because 

of this, an extension of the original method, symmetric GDML (sGDML),46,48 exploits 

all the static and dynamic symmetries of the molecules to achieve permutational 

invariance. The imposition of relevant symmetries reduces the complexity of the 

learning process without incurring in additional computational costs. 

 

In the following chapters, the use of MLFFs trained on accurate electronic-structure 

data will be addressed by highlighting their power to obtain insights into chemical 

systems, and by discussing the challenges and improvement opportunities that can 

extend their success to large and flexible molecules. 
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CHAPTER 3 
 

Strengthening of Molecular 
Interactions by Nuclear Quantum 
Effects at Finite Temperature 

 
 
The ML models and MD simulations, on which the results of Section 3.2 in this chapter 
are based, as well as the results shown in Fig. 3.2 and Fig. 3.4 were done by Dr. Huziel 
E. Sauceda. 
Parts of this chapter have been published in this or similar form in 
H. E. Sauceda, V. Vassilev-Galindo, S. Chmiela, K.-R. Müller & A. Tkatchenko, Nat. 
Commun. 12, 442 (2021) (distributed under CC BY)89 
and have been produced in a collaboration of the above authors. 
 

3Chapter_mark_3 
Nuclear delocalization is a fundamental feature of quantum mechanics resulting from 

Heisenberg's uncertainty principle. In molecules, light elements such as protons and 

first row atoms are especially prone to delocalization. Even molecules or materials 

with heavier atoms and strong bonds can exhibit significant NQE.118,163–167 Within the 

BO approximation, NQE tend to lower energy barriers and stimulate tunnelling. In 

addition, the inclusion of NQE promotes a delocalized sampling of the molecular 

configuration space, consequently exploring regions of the PES inaccessible by 

classical dynamics. As a result, this can enhance or inhibit certain molecular 

interactions.168 A clear example is the hydrogen bond, where the NQE affect 

interactions in biological systems and molecular crystals by delocalizing protons. In 

the case of bulk water, NQE can even qualitatively change its fundamental physical 

and chemical properties.169,170  

In general, the study of NQE in molecular and biological systems is a thriving research 

field covering from rigid and fluxional molecules45,48,171–173 to liquids and DNA base 

pairs,119,174–178 allowing the analysis of, for example, interactions between neighboring 
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molecules via hydrogen bonding,168,169,179 spectroscopic properties46,180 and proton 

transport.181 Nevertheless, previous works have been mainly focused on the general 

implications of proton delocalization and much less is known about how NQE influence 

other types of interactions. Particularly, biological systems often use combinations of 

covalent and non-covalent interactions for carrying out a wide variety of different 

processes. Therefore, it is crucial to understand whether NQE can also play an 

important role beyond hydrogen bonding, where, for instance, they generate two 

competing phenomena in water: a weakening and a strengthening of interactions, 

leading to a reduction of the viscosity of liquid water and to an increment in the dipole 

moment in water molecules, respectively.171 

In this chapter, counterintuitive effects induced by NQE are reported: nuclear 

delocalization can lead to a dynamical strengthening of different molecular 

interactions. The conclusions are shown to be valid for different molecules. In order to 

demonstrate these results, representative mechanisms ubiquitously occurring in 

biological systems have been selected: 𝑛 → 𝜋∗ interactions, and methyl rotors. The 

faithful description of such weak molecular interactions require high levels of theory 

(e.g., coupled cluster) which is not always computationally affordable when performing 

long ab initio PIMD simulations. In this study, PIMD simulations have been performed 

using MLFFs constructed using the sGDML framework45–48,182–184 and trained on 

coupled cluster reference data (CCSD(T) or CCSD depending on the size of the 

molecule). 

 

3.1 Reference Data Generation and Computational Details 

(PI)MD simulations were performed using the i-PI package185 coupled with sGDML 

FFs trained on 1000 configurations of the MD17 datasets45 of aspirin and toluene at 

the CCSD/cc-PVDZ and CCSD(T)/cc-PVDZ levels of theory, respectively. All the 

simulations presented here were done for at least 500 ps with time steps of 0.2 fs. For 

an initial assessment of the impact of NQE on molecular interactions, (PI)MD 

simulations at room temperature (300 K) were run for aspirin and toluene. 

Additional simulations for aspirin were run at temperatures from 50 to 450 K in 

intervals of 50 K to analyze the interactions and NQEs as a function of temperature. 
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To properly account for NQE at low temperatures in the PIMD formalism, the number 

of beads was set, for most of the temperatures, using the relation 

 

 𝑃 =
4800
𝑇  ( 22 ) 

 

where 𝑃 is the number of beads, 𝑇 is the temperature and the constant value of 4800 

was calculated by considering that 𝑃 =	16 when 𝑇 =	300 K. Table 3.1 shows the 

values of 𝑃 for all temperatures considered in this study. When 𝑇 was greater than 

300 K, 𝑃 was kept fixed to 16. Since only even values of 𝑃 can be used, the number 

of beads was set to 20 for 𝑇 =	250 K, instead of 19, which is the result of Eq. 22. 

Finally, for 𝑇 =	50 K, the number of beads was reduced from 96 (the result of Eq. 22) 

to 72 because convergence is already expected with this lower number of beads. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Additional post-processing of ab initio calculations was done using methods such as 

natural bond orbital (NBO)186 to compute second order perturbative energies (𝐸"→$∗) 

and Wiberg bond indices (WBI) with NBO 7.0187 coupled with ORCA 4.1.2188,189 at the 

CCSD/cc-pVDZ (for aspirin) and CCSD(T)/cc-pVDZ (for toluene) levels of theory. The 

𝐸"→$∗ energies were taken as the stabilization energies due to 𝑛 → 𝜋∗ interactions. 

Such interactions, which play an important role in molecular reactivity and 

conformation (for instance, the Bürgi-Dunitz trajectory190 preferred during nucleophilic 

𝑇 (K) 𝑃 

50 72 

100 48 

150 32 

200 24 

250 20 

300 16 

350 16 

400 16 

450 16 

 

Table 3.1: Number of beads (𝑃) used in the PIMD 
simulations at different temperatures (𝑇). 
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attacks at a carbonyl carbon), comprise delocalization of lone-pair electrons (𝑛) of an 

electronegative atom into an empty 𝜋∗-antibonding orbital of an aromatic ring or a 

carbonyl group.191–193 

 

3.2 Dynamical Molecular Stabilization Induced by NQE 

Here, we analyze the role of NQE for two small molecules that serve as fundamental 

examples of mechanisms that are present in larger chemical and biological systems. 

First, 𝑛 → 𝜋∗ interactions in aspirin are analyzed as an example of local electronic 

orbital effects influenced by nuclear quantum delocalization. Then, the unexpected 

NQE-induced localization of methyl rotor in toluene is studied as a model for methyl 

groups in biomolecules. All results discussed in this section were obtained from 

simulations run at room temperature. 

 

3.2.1 Enhanced 𝑛 → 𝜋∗ Interaction 

A particularly important type of interaction often occurring between pairs of 

neighboring carbonyl groups is the so-called 𝑛 → 𝜋∗ interaction. It arises from the 

delocalization of lone–pair electrons on electronegative atoms (e.g., oxygen atom) into 

an antibonding 𝜋∗ orbital of an aromatic ring or a carbonyl group (see Fig. 3.1A).194 

First discussed in early 1970, the 𝑛 → 𝜋∗ interaction has attracted significant attention 

in recent years and it is hypothesized to impart substantial structural stability to 

proteins195–198 and molecules,191,193,199,200 as well as define reactivity,193 regulate 

isomerisation194 and energy barriers,201 and promote charge transfer.202 Nevertheless, 

the actual dynamical implications at finite temperature of such interaction have not 

been explicitly studied. 

To elucidate this matter, here the aspirin molecule is studied as a proof of concept. 

For this molecule the 𝑛 → 𝜋∗ interaction is the main contribution to the relative energy 

of the global minimum (Fig. 3.2a) and two other local minima (Fig. 3.2b, c), thereby 

defining their energetic ordering.193,199 Fig. 3.2 shows the configuration space 

sampling obtained from classical MD and PIMD simulations at room temperature, 

where the dynamical implications of the NQE on aspirin’s behavior are evident: NQE 

constrain the dynamics of the molecule to the global minimum in contrast to the results 

from classical MD. Hence, the NQE must be promoting a particular intramolecular 
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interaction and, given the evidence provided by Choudhary et al.,193 the 𝑛 → 𝜋∗ 

interaction between the ester and carboxyl groups is the main candidate. 

 

 

 

To investigate further the contribution of the 𝑛 → 𝜋∗ interaction to the total energy, the 

𝑛 → 𝜋∗ interaction energy (𝐸"→$∗) was computed along the ester’s minimum energy 

pathway (MEP) trajectory (Fig. 3.1A) using the NBO analysis.186,187 In what follows, 

the NBO definition for the 𝑛 → 𝜋∗ energy is used,186,187 whereby a positive energy 

value means stabilization and zero energy means absence of overlap between 𝑛 and 

𝜋∗ orbitals. Hence, a positive value of the 𝑛 → 𝜋∗ energy in Fig. 3.1 implies stabilization 

Figure 3.1: Enhancement of the 𝒏 → 𝝅∗ interaction by nuclear delocalization in aspirin. A)-
Bottom aspirin’s PES and A)-Middle 𝑛 → 𝜋∗ interaction energy 𝐸"→$∗ along the minimum energy 
path (MEP) of the ester’s dihedral angle. The energy 𝐸"→$∗ was computed using NBO 
method186,187 at CCSD/cc-pVDZ level of theory, whereby a positive energy value means 
stabilization and zero energy means absence of overlap between 𝑛 and 𝜋∗ orbitals. Hence, a 
positive value implies a stabilization of the molecule. Both plots are in the same energy scale. 
A)-Top The configuration (1a) (marked by the green circle) defines the maximum interaction 
(stabilization) energy 𝐸"→$∗ along the MEP, while (1b) represents a configuration where overlap 
between lone-pair electrons 𝜙(") and the antibonding 𝜙($∗) orbitals, and therefore the energy 
𝐸"→$∗ , has gone to zero. B) Estimations of the maximum 𝐸"→$∗ interaction energy values 
reached while running PIMD (blue circle, ~6.6 kcal mol−1) and classical MD (red circle, 
~3.9 kcal mol−1) at 300 K using the sGDML@CCSD model. As a reference, the energy 𝐸"→$∗ 
curve is plotted along the MEP trajectory as a function of its two main degrees of freedom, the 
interatomic distance dO⋯C and the ester’s dihedral angle. The maximum energy 𝐸"→$∗ value 
along the MEP is ~2.4 kcal mol−1 (green circle). C) Approximate functional dependence of the 
interaction energy 𝐸"→$∗ on the oxygen (in hydroxyl) and carbon (in ester) interatomic distance 
dO⋯C. The '

("
 function was fitted to the free-attractive-regime part of 𝐸"→$∗ (black circles) along 

the MEP starting from 3.8 Å, giving a value of 𝑛 ~ 11. Reproduced from Ref. 89 (distributed 
under CC-BY).  
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of the molecule. The visual representation of the 𝑛 electron delocalization into 𝜋∗ is 

presented in Fig. 3.1A-Top. These results show that the 𝐸"→$∗ is maximum near the 

global minimum of aspirin (green circle in Fig. 3.1A-Middle, 1a), such value quickly 

vanishes as the molecule moves away towards the transition state (at 180º). From 

these results it is seen that the 𝑛 → 𝜋∗ interaction contributes ~40 % of the global 

energy minimum relative to the transition state. Additionally, this result also shows that 

the two main degrees of freedom describing 𝐸"→$∗ in aspirin are the dO⋯C distance, 

also known as Bürgi-Dunitz parameter,193–195,197,200 and the ester’s dihedral angle, as 

shown in Fig. 3.1B.  

 

 
 

Now, in order to understand the results from finite temperature simulations (Fig. 3.2) 

in the context of the 𝑛 → 𝜋∗ interaction (Fig. 3.1A-Middle), the 𝐸"→$∗ energy was 

computed for a set of configurations sampled from the classical MD and PIMD 

trajectories on the global minimum (Fig. 3.2a), and then we have plotted their 

maximum 𝐸"→$∗ respective values in Fig. 3.1B. All the computed samples are plotted 

against the Bürgi-Dunitz parameter dO⋯C in Fig. 3.1C.  

The results displayed in Fig. 3.1B already provide a clear picture of the behavior of the 

𝑛 → 𝜋∗ interaction at finite temperature: The maximum 𝐸"→$∗ energy along the MEP 

(i.e., 0 K) is of 2.4 kcal mol−1 (green circle in Fig. 3.1), but this value can be enhanced 

by 160 % due to pure thermal fluctuations (red circle in Fig. 3.1) and up to 270 % by 

NQE at room temperature (blue circle in Fig. 3.1). This means that the NQE alone 

Figure 3.2: Classical MD and PIMD 
simulations at room temperature of 
aspirin described by the 
sGDML@CCSD molecular force field. 
The plots are projections of the 
dynamics to the two main degrees of 
freedom of aspirin: carboxyl and ester 
dihedral angles. Structures of three 
relevant molecular configurations are 
shown: a global minimum and b, c two 
of the lowest local minima. Reproduced 
from Ref. 89 (distributed under CC-BY). 
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could strengthen the attractive interaction energy between the carbonyl and the ester 

functional groups by up to ~2.7 kcal mol−1 at room temperature. Consequently, given 

the evidence of such a considerable increment of the 𝑛 → 𝜋∗ interaction energy and 

the configurational localization resulting from the MD simulations, both originated by 

the NQE, it has been found that nuclear quantum delocalization can stabilize 

intramolecular interactions and selected molecular conformations. 

It is worth to analyze the underlying dynamics created by NQE that lead to such a 

prominent increase of the 𝐸"→$∗ energy, which could suggest ways to generalize the 

results found here to other systems. From the MEP trajectory in Fig. 3.1B it can be 

seen the approximate dependence of the 𝐸"→$∗ energy as a function of the dO⋯C 

distance and the ester’s dihedral angle. Given the nature of the 𝑛 → 𝜋∗ interaction, i.e., 

its increase with the orbital overlap,198 variations of the dO⋯C distance should generate 

the steepest changes of 𝐸"→$∗. This can be seen in Fig. 3.1B, where a small decrease 

of the dO⋯C and dihedral values increase the interaction energy. More interestingly, if 

one only focus on the free-attractive-regime of the interaction energy as displayed in 

Fig. 3.1C, the fitting of a 𝑟M" function to the attractive part of the MEP trajectory 

suggests that the 𝑛 → 𝜋∗ interaction energy can be approximated by 𝐸"→$∗ 	~	𝑟M,, 

(dashed line in Fig. 3.1C). This approximation serves as a upper limit envelope to the 

out-of-equilibrium configurations sampled from classical MD and PIMD simulations 

(red and blue circles in Fig. 3.1, respectively), and even extrapolates to the more 

extreme cases such as the maximum energy value reached by the quantum dynamics. 

Such a steep dependence on the distance between functional groups reveals that 

even a minor nuclear quantum delocalization leads to a substantial increase in 

stability. 

From these results, and based on the fact that 𝑛 → 𝜋∗ interactions have been 

consistently reported to occur in different molecular and biological  

systems,191,193,202,194–201 one can hypothesize that the strengthening of such interaction 

by the NQE at finite temperature could prompt similar localization effects in biological 

systems. Hence, it can be concluded that nuclear quantum fluctuations are not only 

the source of the enhanced sampling in atomic systems, but also they can promote 

molecular and intermolecular rigidity in systems with prominent 𝑛 → 𝜋∗ interactions 

such as polyproline helices in protein fragments which display a double  

carbonyl–carbonyl interaction.200 
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3.2.2 Methyl Rotor Hindering 

The methyl (Me) functional group is a pervasive fragment in chemical and biological 

systems, playing a fundamental role in, for example, genetics203 and protein 

synthesis.204 The immediate chemical neighborhood of the Me group can drastically 

modify its energy landscape, going from a free rotor to a localized one with large 

energetic rotational barriers.  

In general, NQE are known to play an important role in lowering energetic barriers 

when these are of the order of 𝑘h𝑇. In the particular case of the Me group, rotational 

barriers can be much lower than 𝑘h𝑇. For this reason the Me group is often considered 

to be a nearly free rotor at room temperature (𝑘h𝑇 ≈ 0.6 kcal mol−1 at 𝑇 = 300 K). The 

toluene molecule is one of the simplest representative examples of a molecule with a 

Me group. The Me rotor in toluene has a six-fold rotational PES whose best 

experimental estimates for the energetic barrier range from ~0.014 to 0.028 kcal mol−1 

(~4.9–9.8 cm−1),205–207 while theoretical results at the CCSD(T) level of theory give 

~0.024 kcal mol−1 (blue curve in Fig. 3.3B). After performing MD simulations at room 

temperature (classical MD and PIMD) at the sGDML@CCSD(T) level of theory and 

analyzing the Me rotor’s dynamics, results show contrasting outcomes to what can be 

trivially assumed given the nature of the system. One would expect that NQE lower 

the rotational energy barriers even more, but Fig. 3.4C shows that NQE actually hinder 

the Me group rotations (red) contrary to the free rotation obtained from classical MD 

(blue). In fact, an incremental inclusion of the NQE via increasing the number of beads 

in PIMD simulations demonstrates that nuclear delocalization systematically localizes 

the Me rotor dynamics. Additionally, the PIMD results show that the Me group no 

longer stays in the plane defined by the benzene ring as in the classical case, instead 

higher amplitude out-of-plane oscillations are observed due to the NQE (Fig. 3.4D).  

To understand the origin of this localization, it is important to first focus on the time 

evolution of the Me rotor shown in Fig. 3.4B. Here one can see that the classical 

description of the rotor is indeed a free rotor most of the time, nevertheless an 

interesting phenomenon emerges: The Me rotor can suddenly stop rotating for up to 

4 ps. Still this is not apparent from the cumulative histograms in Figs. 3.4C, D due to 

the rare nature of this event. Contrasting with the classical model, PIMD results show 
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a qualitatively different picture. In this case the rotor localization is much more frequent 

but in general the lifetime of the localized state is shorter. From this, one can 

hypothesize that nuclear quantum delocalization promotes the localization of the Me 

rotor, but at the same time the NQE tunnel the system out of the localized state. In 

contrast, Me rotor localization is a rare event in classical dynamics, but when it occurs, 

it can take a longer time for purely thermal fluctuations to bring the system out of such 

state. 

 

 
 

The hindering of the rotations of the Me group has a dynamical origin, and it is 

determined by the delocalization of the benzene carbon-carbon bonds generated by 

the NQE. Bond length delocalization is a well known implication of NQE, which, in this 

particular case, transforms the Me rotor’s PES from a six-fold energy surface to a 

three-fold energy surface as shown in Fig. 3.3B. Furthermore, the magnitude of the 

transition state energy is determined by the two benzene ring bonds C2−C3 and C2−C7 

near to the Me group (see Figs. 3.4A, 3.3B). To corroborate this and to assess its 

behaviour at finite temperatures, the WBI of these bonds were monitored during a Me 

localized state for classical MD and PIMD. The correlation WBIC2−C3 ∼ −WBIC2−C7 in 

the plot shown in Fig. 3.3B agrees with the linear correlations between WBIC2-C3 and 

Figure 3.3: Relations 
between WBI, bond lengths, 
and the PES of toluene. A) 
Dynamical correlation 
between the WBI for the bond 
C3−C2 and bond length dC3−C2 
(left) and bond length dC7−C2 
(right). The classical MD (red) 
is contrasted with the PIMD 
(blue) simulations. B) Methyl 
rotor’s PES for different fixed 
values of the C2−C3 distance 
(left) and its qualitative 
relationship with the WBI 
(right). Reproduced in altered 
form from Ref. 89 (distributed 
under CC-BY). 
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the corresponding bond lengths (dC2-C3 and dC2-C7), giving the direct relationship  

WBIC2-C3 ~-dC2-C3 ~+dC2-C7 (Fig. 3.3A). In this context, the electron gain/depletion (bond 

length decrease/increase) drastically changes the energy landscape. Computing the 

dC2−C3-restricted Me rotor PES (Fig. 3.3B) gives a lower bound estimate for the 

increase of the Me rotor energy barrier, which can be up to ∼400 % larger than the 

reference (∼0.028 → 0.120 kcal mol−1).  

 

 

 

Consequently, PIMD will tend to generate much higher rotation energy barriers given 

the extra dilation of such bond lengths induced by the NQE beyond the thermal dilation 

generated by classical MD. According to the results, the rotor described by PIMD 

experiences energetic barriers of up to 0.55 kcal mol−1, energy comparable to 𝑘h𝑇, 

therefore hindering Me rotations. From here, one can conclude that the intricate 

Figure 3.4: Hindering of methyl rotor dynamics by nuclear delocalization in toluene 
molecule. A) Global minima and transition state of Me rotor. B) Time evolution of the Me rotor 
for classical MD (top) and PIMD (bottom) simulations. The red rectangles indicate some of the 
localized states in the dynamics. The size of the bins are 5 ps x 6º. Histogram of the Me rotor’s 
dihedral angle (C) and out-of-plane dihedral angle (D) computed from classical MD (blue) and 
PIMD (red). Reproduced in altered form from Ref. 89 (distributed under CC-BY). 
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quantum dynamics exhibited by the Me rotor in toluene is due to two competing NQE: 

On one side the nuclear delocalization of the carbon atoms promotes higher rotational 

energetic barriers hindering the rotor, but the quantum fluctuation of the hydrogen 

atoms in the Me takes the rotor out of the localized state. 

Even though the results shown here are for toluene, the electronic origin of the 

rotational energetic barrier of Me rotor is very similar in different molecular  

systems.207–210 Hence, similar dynamical effects are to be expected in large biological 

systems given the ubiquity of Me groups in macro-molecules and protein fragments.  

 

3.3 Prevalence of NQE over Thermal Contributions in 
Molecular Interactions at Temperatures from 50 to 450 K 

Sec. 3.2 was dedicated to discussing the strengthening of molecular interactions due 

to NQE. Now, the present section focuses on the aspirin molecule for analyzing the 

𝑛 → 𝜋∗ interaction and NQE as a function of the temperature. Simulations in this 

section were obtained at different temperatures ranging from 50 to 450 K, and only the 

regions of the PES corresponding to the global minimum of aspirin (see Fig. 3.2) are 

considered for the discussion because in these regions is where the 𝑛 → 𝜋∗ interaction 

is present. 

To perform a reliable analysis of the interaction at different temperatures, one requires 

to sample the 𝐸"→$∗ for all relevant configurations (i.e., configurations in regions close 

to the global minimum) in each simulation. Although for computing this energy one 

only needs single-point calculations, at high levels of theory (like CCSD/cc-pVDZ) 

doing such calculations hundreds of thousand times becomes computationally 

prohibitive. To overcome this problem, an ML model to predict the 𝐸"→$∗ was 

constructed. First, 100 steps and 16 beads for each PIMD simulation were randomly 

selected (for those simulations where the number of beads was equal to 16, all beads 

were selected). Then, the 𝐸"→$∗ for all these configurations (1600 for each PIMD 

simulation) were computed using the NBO analysis.186,187 In total, 14400 samples of 

𝐸"→$∗ were obtained, from which 12000 were used to train a KRR model with an RBF 

kernel and all inverse pairwise distances as descriptor (RMSE of 0.2 kcal mol-1). This 

model was used to predict the 𝐸"→$∗ of all configurations in all MD and PIMD 

simulations. 
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As it was mentioned in Sec. 3.2, the Bürgi-Dunitz parameter (the dO⋯C distance) can 

be used to accurately describe the 𝐸"→$∗. Fig. 3.5 shows the functional behavior of the 

𝐸"→$∗ with respect to the dO⋯C distance for the PIMD simulations at all temperatures 

considered in this work. The curves were obtained by fitting the 𝐸"→$∗ values of the 

100 configurations with the highest 𝐸"→$∗ at each interval of 0.05 Å of the dO⋯C 

distance from 2.2 to 3.3 Å. Overall, the dependence of the 𝐸"→$∗ on the dO⋯C distance 

is practically the same for all temperatures, meaning that 𝑛 → 𝜋∗ interaction does not 

explicitly depends on the temperature. This is especially true for configurations with a 

dO⋯C distance between 2.5 and 2.9 Å, which present a small dispersion in their 𝐸"→$∗ 

at different temperatures (see top of Fig. 3.5). Such configurations are the ones closest 

to the global minimum (dO⋯C distance of ~2.8 Å). The remaining configurations, 

featuring extreme dO⋯C distances (closer to 2.2 and 3.3 Å) further away from the 

equilibrium value, present a larger dispersion of 𝐸"→$∗ values with respect the 

temperature. This is the consequence of the limitations of projecting the 𝐸"→$∗ on a 

single degree of freedom. This projection hides the fluctuations of other degrees of 

freedom (e.g., the ester and carboxylic dihedral angles in Fig. 3.2), which are more 

pronounced at higher temperatures. Thus, at high temperatures some configurations 

(with diverse 𝐸"→$∗ values) that are not accessible at lower temperatures are sampled. 

 

 
 

The relevance of NQE for the 𝑛 → 𝜋∗ interaction can be further observed when 

comparing the evolution of maximum values of 𝐸"→$∗ with increasing temperature 

between classical MD and PIMD simulations. For doing this comparison, Fig. 3.6 

Figure 3.5: Functional behavior of 
𝑬𝒏→𝝅∗ with respect dO⋯C distances at 
different temperatures. Curves were 
obtained by fitting the 𝐸"→$∗ values of 
the 100 configurations with the highest 
𝐸"→$∗ at each interval of 0.05 Å of the 
dO⋯C distance from 2.2 to 3.3 Å. At the 
top, a schematic graph of the dispersion 
of 𝐸"→$∗ values at different temperatures 
is shown. Only PIMD simulations were 
considered for this plot. 
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presents the mean of the 100 highest values of 𝐸"→$∗ at each temperature. The 𝐸"→$∗ 

in classical MD simulations shows a steep linear increase with the temperature from 

50 to 300 K and PIMD simulations have an almost constant value of 𝐸"→$∗ from 50 to 

150 K. In classical MD simulations, only the thermal energy contributes to the 𝐸"→$∗, 

while in PIMD simulations the quantum fluctuations govern the dynamics of the 

molecule. Indeed, the constant 𝐸"→$∗ at low temperatures can be explained by the 

ZPE. The major contributions to the energy when temperatures are low are given by 

the vibrational energy, which remains fairly constant at these temperatures. If the 

temperature increases much, however, the contributions of the thermal energy 

become comparable to those of the ZPE. This leads to the almost equal behavior of 

𝐸"→$∗ from 150 to 300 K in PIMD simulations and from 50 to 300 K in classical MD 

simulations. Finally, at high temperatures (greater than 350 K) the thermal energy 

contributions start to saturate in both classical MD and PIMD simulations, and the 

excess of energy starts to be distributed to other degrees of freedom in the molecule, 

thus promoting other processes, such as conformational changes. 

 

 
 

Although thermal energy contributions do increase the maximum values of 𝐸"→$∗, NQE 

clearly dominate the interaction. For instance, in PIMD simulations the minimum value 

of 𝐸"→$∗ among the 100 highest at 450 K is less than 1.0 kcal mol-1 greater than the 

highest value of 𝐸"→$∗ at 50 K, whereas in classical MD simulations this difference 

exceeds 3.0 kcal mol-1 (Fig. 3.6). In addition, 𝐸"→$∗ values in classical MD simulations 

at 450 K are, in general, lower than those in PIMD simulation at 50 K. This prevalence 

Figure 3.6: Change of 
maximum values of 𝑬𝒏→𝝅∗ as a 
function of the temperature. 
Circles mark the mean of the 100 
highest 𝐸"→$∗ values at a given 
temperature. Data intervals on 
each circle indicate the 
maximum and minimum value of 
𝐸"→$∗. Different stages for 
understanding the behavior of 
𝐸"→$∗ are depicted with dashed 
lines. 
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of quantum fluctuations over thermal contributions also explains the results observed 

in Fig. 3.5 and the “global” localization of aspirin in its global minimum due to local 

nuclear delocalization discussed in Sec. 3.2. 

 

3.4 Conclusions 

In this section, MLFFs were used to run long (PI)MD simulations of aspirin and toluene 

at CC level of theory. Such long simulations allowed the finding of counterintuitive 

consequences of NQE on the dynamics of the studied molecules. Namely, there is a 

strengthening of interactions that induces a localization of the aspirin molecule in its 

global minimum and the hindering of the methyl rotor in toluene. Furthermore, 

additional simulations at different temperatures for aspirin granted a deeper 

understanding on how NQE enhance the	𝑛 → 𝜋∗ interaction and the stability of the 

global minimum. Specifically, the predominance of quantum effects (e.g., ZPE) over 

thermal contributions determines the relative stability of different aspirin configurations 

even at high temperatures. 

This section showcased the power of MLFFs to provide insights. The accuracy and 

efficiency of MLFFs allow obtaining of results that would be computationally prohibitive 

otherwise. Such accurate and insightful results are also desirable for flexible 

molecules. Nevertheless, there are still open challenges to solve before making 

MLFFs applicable to the complex PESs of such molecules. Because of this, the focus 

of the next sections will be the discussion of some of those challenges, as well as the 

possible solutions to further advance the applicability of MLFFs. 
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CHAPTER 4 
 

Challenges for Machine Learning 
Force Fields in Reproducing 
Potential Energy Surfaces of Flexible 
Molecules 

 
 
Parts of this chapter have been published in this or similar form in 
V. Vassilev-Galindo, G. Fonseca, I. Poltavsky & A. Tkatchenko, J. Chem. Phys. 154, 
094119 (2021)90 
and they are reprinted with the permission of AIP Publishing. 
 

4Chapter_Mark_4 
One of the main components of any PES are the transition paths that connect minima 

because they are related to chemical reactions and conformational changes. The 

state-of-the-art methods for finding transition pathways range from the optimization of 

a single direction on the PES211,212 or a chain of states connecting both minima, e.g., 

the string213 and nudged elastic band (NEB)214,215 methods, to the more sophisticated 

transition path sampling techniques.216,217 Most of them often provide only a single 

“optimal” transition path. The rate of success in finding the path highly depends on the 

dimensionality and complexity of the PES: flexible molecules containing a few tens of 

atoms, such as organic photoswitches and peptides, are already challenging to deal 

with. Moreover, due to the non-trivial interplay between covalent and non-covalent 

interactions, the transitions in such molecules may happen following several different 

pathways. In this case, one needs to consider the contribution of every path to the 

transition process, and the knowledge about just one optimal pathway is insufficient. 

Practical studies of such transitions require reliable FFs able to accurately reconstruct 

broad regions of the PES, including multiple local minima and all the relevant pathways 

connecting them. 
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MLFFs appear as a natural solution to solve the problem of accurately modelling 

transition processes. Indeed, some efforts have already been directed toward 

improving ML-aided search and sampling of transition states and pathways.88,218,219 

For instance, Noé et al.88 showed a promising method to sample rare events between 

equilibrium states using Boltzmann generators. The method is by many orders of 

magnitude more efficient than “brute force” MD simulations. Other approaches218,219 

are built on the state-of-the-art methods for calculating transition states enhanced with 

ML techniques. ML-enhanced transition state search methods are more efficient than 

their precursors but present the same limitations. ML methods are often data 

demanding, making their application infeasible when computationally expensive ab 

initio methods are required. Hence, constructing robust ML models for flexible 

molecules is the necessary next step for practical applications of ML potentials in 

chemistry and biology. 

There are two main challenges in building accurate ML models for complex PESs with 

many minima and transition paths: First, generating enough data around the transition 

regions of the PES. Second, building a highly accurate and data-efficient ML model 

that faithfully describes all relevant parts of the resulting complex PES. In this chapter, 

both of these challenges are addressed in an azobenzene (C12H10N2) molecule, as 

example. While being small in size, azobenzene is flexible enough to feature a cis to 

trans thermal relaxation following at least three possible channels: a rotation, an 

inversion, and a rotation assisted by inversion mechanisms.220–224 The chapter starts 

with a description of the computational details. Then, the problem of building reliable 

reference datasets for these transitions is discussed. Finally, the performance of the 

state-of-the-art ML methods is assessed in the prediction of forces and energies along 

the obtained transition paths. The methods include NNs, such as BPNNs60,62 and 

SchNet66,225,226 architectures, and kernel-based methods, such as sGDML45–48 and 

GAPs56,57 using the SOAP representation.58 To highlight how the complexity in 

learning the PES increases with the flexibility of a molecule, the results of azobenzene 

are compared with those of a simpler glycine molecule. The training datasets were 

limited to 1000 geometries. The ML models unable to predict the PES of the 

considered small molecules correctly within this limit would face considerable 

problems for large flexible molecules where the cost of reference calculations 

increases very steeply.  
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4.1 Computational Details 

4.1.1 Reference Energies and Forces 

All reference data was obtained using FHI-aims software227 with the DFT functional 

Perdew-Burke-Ernzerhof (PBE)228 and tight settings. The Tkatchenko-Scheffler 

(TS)229 scheme was employed to account for vdW interactions.  

 

4.1.2 Transition Paths 

The string213 and NEB214,215 methods were used coupled with a climbing image 

approach230 as implemented in FHI-aims to find transition paths connecting the minima 

of glycine. The first two algorithms search for the MEP going from one metastable 

state to the other by building a chain of states. Convergence is achieved when the 

residual force of the curve connecting the states is optimized under a given threshold. 

Then, the climbing method looks for a saddle point by moving the points with highest 

energies toward a higher energy location along the path. Force thresholds were set at 

0.2 eV Å-1 for the MEP and at 0.02 eV Å-1 for the saddle point.  

 

4.1.3 Reference Datasets 

MD was used to construct reference datasets for training ML models. All calculations 

were carried out with i-PI185 wrapped with FHI-aims code to compute forces and 

energies. In all simulations a global Langevin thermostat was employed. Below it is 

described the set-up of the MD simulations performed for each dataset, separately.  

 

Glycine 

For building the dataset of glycine isomerization, two MD simulations of 5000 steps 

were run starting from each of the minima used in this work. Velocities were initialized 

at 500 K and the simulation temperature was also set to 500 K. A timestep of 1 fs and 

a friction coefficient of 2 fs were used.  
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Azobenzene 

The datasets for the rotation and inversion mechanism of azobenzene were 

constructed combining the results of different MD runs:  

1. Two long MD simulations (∼120k steps) at the PBE+TS/light level of theory at 

300 K starting from both the cis and trans isomers. The velocities were 

initialized also at 300 K. The timestep was set to 1 fs and a friction coefficient 

of 2 fs was used. Then, from these simulations, a configuration was selected 

every 25 steps (this interval was chosen to have a trade-off between enough 

decorrelated configurations and size of the datasets) and carried out single-

point calculations with the PBE+TS/tight method for each of these geometries.  

2. Short MD simulations of 300 steps at 100 K (initial temperature was set to 

300 K) starting from each of the intermediate configurations on the rotation and 

inversion paths (see Sec. 4.2). A timestep of 0.5 fs and a friction coefficient 

equal to 1 fs were used. A low temperature and a strong friction coefficient were 

selected to allow the system to go from a configuration close to the transition 

state to an equilibrium state, thus avoiding high-energy states. A small timestep 

was chosen to collect enough points from the transition paths. All the low-

energy trans- and cis-like configurations sampled in the simulations were 

removed because they do not give additional information.  

3. Four MD simulations (of 2500 steps) with velocities initialized at 3000 K and a 

simulation temperature of 750 K, two starting close to the cis isomer and the 

other two close to the trans isomer. The timestep was set to 1 fs and, for 

keeping local geometry fluctuations under control, a friction coefficient of 0.2 fs 

was used. 

4. MD simulations with velocities initialized at 300 K and a simulation temperature 

of 50 K with a timestep of 0.025 fs and a friction coefficient of 1 fs in order to 

have a progressive movement of the desired degree of freedom. The initial 

geometries were the steps 7 and 9 of the inversion path, and the steps 8 and 

10 of the “optimized” rotation path (see Sec. 4.2, and Tables A.3 and A.5 in the 

Appendices for details). Each simulation is comprised of 2500 steps.  
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4.1.4 ML Models 

The ML models were built with sGDML,45–48 SchNet,66,225,226 BPNN,60,62 and GAPs56,57 

with the SOAP representation.58 All models were trained on training sets containing 

from 100 to 1000 configurations in steps of 100. 

sGDML models were validated using 1000 configurations and values for the 

hyperparameter 𝜎 from 2 to 200 with a step of 10 were explored.  

SchNet models were trained using a cutoff radius of 5 Å, 128 features and 6 interaction 

layers.  

BPNN models were trained using the wACSFs162 descriptor. To match the number of 

features to those selected for SchNet (128 features) the amount of radial functions 

was set to 84 and the number of angular functions to 22. A cutoff radius of 5 Å was 

considered. The calculations were carried out with the implementation of BPNN in 

SchNetPack.226 

GAPs were trained with the SOAP descriptor. 12 radial and 6 angular functions were 

used for the descriptor. The cutoff radius was set to 5 Å, although additional tests were 

done with larger cutoffs (up to 10 Å). 𝛿 was set to 0.25, the atom 𝜎 was set to 0.3, and 

the default 𝜎s for energy and forces were set to 0.001 and 0.2, respectively. All 

calculations were performed with the QUIP program package.231 

  

4.1.5 Metadynamics Simulation 

Metadynamics simulations for the azobenzene molecule were run using the dihedral 

𝜙 and the angle 𝜃 as collective variables (see Fig. 4.1). The calculation was carried 

out with i-PI wrapped with FHI-aims code to compute forces and energies and 

PLUMED232–234 to add the bias potential. The simulation temperature was set to 500 K, 

with a timestep of 1.5 fs to enhance the sampling, and a friction coefficient of 0.2 fs to 

keep local geometry fluctuations under control. The gaussian height was set to 

2.5 kJ mol-1 and the gaussian widths were set to 0.5 rad for 𝜙 and 0.4 rad for 𝜃. The 

bias was added every 50 steps.  
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4.1.6 Subset Selection Procedure 

Before applying cross-validation for building the training and test sets, the training set 

selection process of sGDML was used to construct subsets of the datasets with a size 

equal to five times the number of training points (e.g., for 1000 training points a subset 

of 5000 configurations was constructed). The training set selection procedure of 

sGDML draws a sample from the dataset that preserves its original energy distribution. 

The distribution is estimated from a histogram were the bin size is determined using 

the Freedman-Diaconis rule.235 This rule is designed to minimize the difference 

between the area under the empirical probability distribution and the area under the 

theoretical probability distribution. A reduced histogram is then constructed by 

sampling uniformly in each bin. It is intended to populate all bins with at least one 

sample in the reduced histogram, even for small training sizes.  

 

4.1.7 MD Simulations with ML Potentials 

The best GAP/SOAP, SchNet and sGDML models trained on 1000 training points 

were used to run with each method four MD simulations of 50k steps using a Langevin 

thermostat at 300 K with a timestep of 0.5 fs, and a friction coefficient of 2 fs. The 

simulations started from steps 7 and 9 of the inversion path, and steps 8 and 10 of the 

rotation path (see Sec. 4.2, and Tables A.3 and A.5 in the Appendices for details). All 

simulations were done with the atomic simulation environment (ASE).236 

 

4.2 Constructing Reference Datasets for Isomerization 

The starting point for building any MLFF is collecting reference data covering the 

relevant parts of the PES of interest. When modeling transition pathways, the 

reference data can be split into two parts: (i) data covering the vicinity of the equilibrium 

states between which the transition process happens and (ii) data of  

“far-from-equilibrium” parts of the PES defining the transition path(s). While equilibrium 

states are normally readily available, configurations describing transition paths 

connecting them are, in most cases, not trivial to find. Moreover, the complexity of this 

task rapidly grows with the increase in flexibility and size of the molecule. In view of 

this, we had to employ two different strategies for generating the datasets for glycine 
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and azobenzene isomerization. Below, we discuss in detail the process followed for 

each molecule separately.  

 

 

 

4.2.1 Glycine 

Glycine, being a rather small molecule, possesses numerous planar and non-planar 

conformers in the gas phase whose relative energies have been extensively 

studied.237,238 Here, only the isomerization from the global minimum geometry, called 

Ip, to the IIIp conformer is considered because it is the closest “directly connected” 

minimum. Transitions to any other metastable state from Ip go through this conformer. 

The Ip–IIIp transformation can be characterized by a change in torsional angles 𝜏1 and 

𝜏2 (see Fig. 4.1), both around the C bond. They go from 180.0º and 0.0º in isomer Ip 

to 0.0º and 180.0º in isomer IIIp, respectively.  

 

Transition Path 

To construct the transition path between the equilibrium states of glycine, the string213 

and NEB214,215 methods were used. Both methods converge without any issues, 

providing similar pathways. The transition state obtained by employing the PBE+TS 

method lies only 2.4 kcal mol−1 above the Ip isomer (see Fig. 4.2). The mechanism is 

Figure 4.1: Optimized configurations of the minima considered in this study and labels 
of the main degrees of freedom: the bonds a (C1−N2 and N3−C4 in azobenzene) and b (N2=N3 
in azobenzene), the bending angles 𝜃 and 𝜃′ (C1−N2=N3 and N2=N3−C4 in azobenzene), and 
the torsional angles 𝜙 (C1−N2=N3−C4 in azobenzene) and 𝜏1 and 𝜏2 (N1−C2−C3−O4 and 
N1−C2−C3=O5 in glycine). 
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defined by almost equal rotations of both 𝜏1 and 𝜏2 torsional angles (see Table A.1 in 

the Appendices for important geometric details).  

 

Dataset 

Since the relative energy between the Ip isomer and the highest-energy structure 

found on the MEP is less than 3.0 kcal mol−1, the Ip–IIIp transformation is accessible 

via standard constant-temperature MD simulations. Therefore, two dynamics starting 

from both equilibrium geometries were ran to construct the dataset for glycine 

isomerization. A total of 5000 configurations at 500 K with a time step of 1 fs were 

obtained from each simulation. A transition was observed in the simulation starting 

from the IIIp isomer.  

 

4.2.2 Azobenzene 

Azobenzene is a photochemical compound; however, it also exhibits a cis to trans 

thermal relaxation, on which this work is focused. Hence, issues with electronic 

multireference states in azobenzene are avoided and one can use the generalized 

gradient approximation DFT-PBE functional and include vdW interactions with the  

TS-vdW method for generating the reference data. The cis and trans configurations of 

azobenzene (Fig. 4.1) differ mostly by a change in the torsional angle 𝜙 around the 

N=N double bond from close to 10.0º to 180.0º during the isomerization. Although the 

existence of the two forms has been known since the works of Hartley in the 

1930s,239,240 there is still an open debate regarding whether azobenzene primarily 

follows a rotation (changes around the dihedral angle 𝜙), an inversion (changes in the 

angles 𝜃 and 𝜃′), or a rotation assisted by an inversion (changes in both 𝜙 and 𝜃 and 

𝜃′) mechanism. DFT, multi-reference methods, and ML approaches have been used 

in an attempt to unveil the actual mechanism of isomerization,220–224,241–243 but 

conclusive evidence favoring a particular mechanism is yet to be found.  
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Transition Paths 

Although azobenzene is not much larger than glycine, all the transition pathways that 

can be found in the literature for this molecule are constructed manually. One can 

easily check that neither the string nor NEB methods converge to a reasonable path 

for cis to trans transition. Following the previous works,220–224 we also constructed the 

transition pathways manually as follows:  

Figure 4.2: Energy profiles (in kcal mol-1) for the paths constructed in this work: the glycine 
isomerization path, and rotation, inversion, rotation assisted by inversion and “optimized” rotation 
paths of azobenzene cis to trans thermal relaxation. The relative energy between the highest 
energy configuration on the path and the cis isomer is given.
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• The rotation path, which is defined by a change in the torsional angle 𝜙 around 

the central double bond (see Fig. 4.1). 

• The inversion path whose main feature is the bending of either 𝜃 or 𝜃′ (see 

Fig. 4.1). 

• The rotation assisted by an inversion path, which is the combination of the first 

two. 

Each path is comprised of 15 intermediate geometries linking the minima. In all cases, 

the molecule was forced to follow the desired mechanism by linearly interpolating the 

main degree(s) of freedom between both minima (Tables A.2-A.4 in the Appendices 

show important geometric data, and Fig. 4.2 shows the energy profiles). The obtained 

highest-energy geometries are in good agreement with those found elsewhere.220–222 

Table 4.1 shows the relative energies (with respect to cisazobenzene) of the highest-

energy structures found for each transition path. The rotation mechanism is the most 

favorable path at the initial and final steps of the isomerization, but it has the highest-

energy barrier among the three transition paths considered here. The inversion 

mechanism is the one with the lowest-lying highest-energy structure within PBE+TS 

calculations. The rotation assisted by an inversion path is the least favored at the 

zones close to the minima and presents a plateau region at the top of the curve with 

two “peaks” with relative energies close to that of the highest-energy configuration in 

the inversion mechanism. 

The pathways introduced in the previous paragraphs are just linear interpolations 

between the cis and trans geometries. This introduces constraints on how the different 

degrees of freedom can evolve through the transition. To obtain a path affected by the 

contributions of all the important degrees of freedom, the rotation path was “optimized” 

by choosing the values of 𝜃, 𝜃′, and a and b (Fig. 4.1) that minimize the energy at each 

step. The optimized rotation path is the most favorable with the PBE+TS method with 

an energy barrier of 26.1 kcal mol-1. The geometric details of this path can be found in 

Table A.5 in the Appendices. 
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All the paths described here can be considered as good insights into the real 

isomerization process. It has been found that the activation barrier of the cis to trans 

thermal relaxation in n-heptane solution is between 22.7 kcal mol-1 and  

25.1 kcal mol-1.242 Hence, in the gas phase, one would expect greater values like those 

presented here. In what follows, this study will focus on the optimized rotation (named 

simply rotation from now on) and the inversion mechanisms.  

 

Datasets 

Constructing a dataset for a molecule such as azobenzene requires a more elaborate 

procedure compared to the simpler glycine molecule. First of all, the transition process 

is a rare event at ambient conditions and cannot be easily accessed; second, there 

are more than one possible transition pathways.  

Here, separate datasets are constructed for the rotation and inversion mechanisms. 

First, two types of MD simulations are combined: (a) long constant-temperature MD 

runs with a time step of 1 fs at 300 K at the PBE+TS/light level of theory starting from 

the equilibrium geometries, from which a configuration was selected every 25 steps 

and single-point calculations were carried out with the PBE+TS/tight method (around 

3500 configurations were collected for each minimum); (b) constant-temperature MD 

runs of 300 steps with a 0.5 fs time step at 100 K starting from each of the intermediate 

steps of the rotation and inversion paths. From the energy distributions shown in 

Fig. 4.3a, one can conclude that the configurations visited during the MD simulations 

are bounded by the temperature to certain energy ranges, as indicated by the well-

defined peaks representing trans- and cis-like configurations. The addition of 

configurations obtained from the rotation and inversion mechanisms had little impact 

on the energy distribution, which leads to the conclusion that the transition parts are 

still poorly sampled. Thus, additional configurations were generated by performing (a) 

Table 4.1: Relative energies (𝛥E in kcal mol−1) of the highest-energy structures on each 
mechanism computed with the PBE+TS method.

Mechanism Rotation Inversion Rot+Inv 

𝛥E	 30.2 27.4 27.5, 27.6 
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four constant-temperature MD simulations (of 2500 steps each) at 750 K with a time 

step of 1 fs starting from structures close to equilibrium and (b) constant-temperature 

MD simulations of 2500 steps at 50 K with a very small time step (0.025 fs) starting 

from steps 7 and 9 of the inversion path and the steps 8 and 10 of the rotation path 

(see Tables A.3 and A.5 for details). The former provide the data required to model 

the cooling down process from transition states to minima, which involves high kinetic 

energies. The latter allow us to include slow changes in the degrees of freedom during 

the transition process. Fig. 4.3b shows that the new reference geometries sample 

different energy distributions for close-to-equilibrium, rotation, and inversion datasets. 

The final datasets combine the results of all four types of simulations containing 26455 

data points for the rotation and 25528 data points for the inversion mechanisms.  

 

 
 

An alternative to the above-described procedure would be to use an enhanced 

sampling technique (e.g., metadynamics or umbrella sampling). The key component 

in such methods is the introduction of a bias potential that penalizes already visited 

system configurations. To do so, one defines a low dimensional projection of the 

a)

b)

Figure 4.3: Distribution of relative 
energies (in kcal mol−1, with respect 
to the optimized configuration of 
transazobenzene) of different sets 
of MD simulations: a) “close-to-
equilibrium” configurations at 300 K 
and geometries close to the transition 
paths at 100 K and b) high-energy 
“close-to-equilibrium” configurations 
and properly sampled geometries 
close to the transition paths. 
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configurational space of the system, the so-called collective variables (CVs), where 

energy minima and transition paths are well distinguished. During the simulation, a 

repulsive (bias) potential is added every n steps in the CV space to prevent revisiting 

already sampled parts of the configuration space. As a result of this procedure, all 

configurations have an equal probability of being sampled, regardless of their potential 

energy. Thereby, broad regions of the PES containing multiple minima and transition 

pathways can be sampled. In this work, concern is focused in specific parts of the 

PES: the regions surrounding the cis and trans isomers of the azobenzene molecule 

and the transition pathways between them. While the two angles of azobenzene could 

be used as CVs, it is not clear that these two variables are sufficient to properly resolve 

different transition mechanisms. In addition, the transition state energies are high 

compared to the thermal energy of the molecule at ambient conditions. As a result, 

choosing the parameters of the bias potential for an efficient metadynamics simulation 

yields a dataset where the transition mechanisms are undersampled. For a more 

detailed analysis, see Sec. 4.5. On the contrary, setting the width and the amplitude 

of the bias potential that allows for a good resolution in the transition region makes the 

metadynamics simulation inefficient. Hence, the construction of datasets combining 

manual and MD-generated configurations is more efficient for sampling high-energy 

transitions, giving the opportunity to assess the performance of ML models on the 

transition paths of flexible molecules.  

 

4.3 Advantages and Limitations of Different ML Methods 

In Sec. 2.2 it was discussed that before applying any ML method, the molecular 

configurations must be encoded into a rotationally, translationally, and permutationally 

invariant representation or descriptor.52–57,131,134,139–142,144–148 Now, it is important to 

remark that a descriptor must balance efficiency with accuracy; hence, different 

descriptors are applicable to different scenarios. One can divide them into local and 

global descriptors. For the former, NNs (e.g., SchNet66,225,226) and kernel-based 

potentials (e.g., when using descriptors such as FCHL52,134 or SOAP58) assume 

locality through the introduction of a cutoff radius, and the interactions between atoms 

are modeled as a sum of individual atomic contributions. Conversely, global 

descriptors (such as inverse pair-wise distances45,131,133) can serve to build models 

where the prediction is obtained for the whole structure. Both approaches have their 
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own advantages: for instance, while local descriptors can identify similar 

neighborhoods in small molecules that can later be transferred to larger systems, 

global descriptors can capture all interactions of a given system whenever the 

reference calculations contain the relevant information. However, descriptors also 

have their pitfalls, some of which arise with large flexible molecules and might become 

problematic when dealing with complex processes, such as those happening along 

transition paths.  

The first immediate issue that one can foresee is the limited reach of local descriptors, 

as imposed by the selection of the cutoff radius of the atomic environments. Fig. 4.4 

shows the interatomic distance distribution in glycine and azobenzene rotation 

datasets. While for glycine, the largest distances remain below 6 Å and values lower 

than 4 Å are the most populated, in azobenzene, the distances present values of up 

to 12 Å, and distances between 5 Å and 8 Å are rather common. Thus, local 

descriptors might already face problems with molecules as large as azobenzene when 

relevant interactions fall outside their scope (see the results with GAP/SOAP in 

Sec. 4.4). An example of such interactions is the long-range ones, which play an 

important role in azobenzene isomerization as suggested from the paths constructed 

in Sec. 4.2. Specifically, vdW interactions decrease going from the cis to the trans 

configuration, and these interactions lead to an increment in the energy barriers of all 

paths of more than 1.0 kcal mol−1 (the details are shown in Tables A.2-A.5 in the 

Appendices). Increasing the cutoff radius appears to be a straightforward solution, but 

the potential gain in accuracy might lead to a significant loss in efficiency. 

The second problem affects both local and global descriptors and is related to the 

scope of the descriptor itself. If some important features are not included or not 

properly represented in the selected descriptor, the method will fail to achieve 

appropriate performance (see the results with sGDML in Sec. 4.5). This could well 

apply to transition paths, where small changes in specific degrees of freedom of the 

molecule result in considerable energy variations. The addition of the relevant features 

to the descriptor might alleviate this issue but requires a priori knowledge of the studied 

system.  
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4.4 Accuracy of ML Models for Transition Paths 

Although ML potentials have evolved successfully, there are many open challenges. 

Among others, the problem of building accurate and data-efficient ML models for 

flexible molecules describing equilibrium states and the transition pathways between 

them deserves special attention. Below, the performance of the state-of-art ML models 

(BPNN,60,62 SchNet, 66,225,226 GAP/SOAP,56–58 and sGDML45–48) is assessed on the 

PES of glycine and azobenzene molecules. Namely, (a) the glycine dataset and (b) 

the inversion and rotation datasets of azobenzene (see Sec. 4.2) were used. 

The training and test sets were created as follows: first, the training set selection 

process of sGDML (which draws a sample from the dataset that preserves its original 

energy distribution) was used to create subsets from each of the datasets used in this 

work. The subsets have a size equal to five times the number of training points (e.g., 

for 1000 training points, a subset of 5000 configurations was constructed). Then, 

fivefold cross-validation was performed on each subset, using a single fold for training 

and the rest for testing. For instance, when using 1000 training points, the model was 

tested with the remaining 4000 configurations (which represents around 15% of the 

datasets of azobenzene and 40 % of the glycine dataset). The cross-validation tasks 

were randomly created while ensuring that in each fold the energy distribution of the 

Figure 4.4: Distribution of interatomic distances (in Å) in glycine and azobenzene 
rotation datasets. The molecules present different length scales that will make the 
performance of ML methods variable from one system to another. The distributions were 
constructed using all the interatomic distances of all configurations in glycine and azobenzene 
rotation datasets, which, in turn, were built from MD simulations. 
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whole dataset was preserved. In this way, each of the folds is representative of the 

original dataset such that testing the models on these folds will give the same results 

as testing on the complete dataset. The proposed training/test set selection procedure 

is comparable to a default random scheme, as implemented in SchNet, while providing 

more reliable and accurate ML models.  

Fig. 4.5 shows the energy and force prediction accuracy for the best models out of all 

cross-validation tasks. For SchNet, BPNN, and GAP/SOAP, the best model for a given 

training set size is the one showing the lowest energy RMSE in the test set because 

these methods are trained on energies and forces. In the case of sGDML, the best 

model usually is the one with the lowest force RMSE in the test set because sGDML 

is trained only on forces. However, if two or more sGDML models with similar force 

RMSE [∼0.1 kcal (mol Å)−1] present substantially different energy RMSEs 

(∼1.0 kcal mol−1), the one with the lowest energy RMSE was favored. The errors 

discussed in the following paragraphs correspond to those of the best models. 

For the small glycine molecule (Fig. 4.5a), BPNN presents high errors, with a RMSE 

above 6.0 kcal (mol Å)−1 for forces and around 2.0 kcal mol−1 for energies, even after 

using 1000 training points. sGDML and SchNet perform much better with errors below 

1.0 kcal mol−1 and 1.0 kcal (mol Å)−1 with 300 and 400 training points, respectively. 

GAP/SOAP also shows a good performance in energy prediction with errors below 

1.0 kcal mol−1 after using 100 training points, although it is less accurate when 

predicting forces [errors remain around 1.5 kcal (mol Å)−1 with 1000 training points]. 

Based on this analysis, BPNN is henceforth not considered as a valid candidate to 

reproduce a more complex PES of flexible molecules using a limited amount of training 

points, and the remaining analysis is only focused on GAP/SOAP, sGDML, and 

SchNet. 

For the azobenzene datasets, the results for different models show high variability. 

GAP/SOAP obtains an error in energies below 1.0 kcal mol−1 for the inversion 

mechanism with only 200 training points (Fig. 4.5b). However, for the rotation 

mechanism, this performance is achieved with 400 training points (Fig. 4.5c). In 

addition, force prediction accuracy is worse for the rotation mechanism [remains above 

2.4 kcal (mol Å)−1 with 1000 training points] than for the inversion mechanism [remains 

above 1.8 kcal (mol Å)−1 with 1000 training points] along the whole learning curves. 
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This means that the parts of the PES that are covered by each transition process 

cannot be evenly described with the same mapping. Indeed, SOAP learns the local 

information (within the selected cutoff radius), which quickly saturates with the 

increase in the training set, but cannot equally capture the relevant interactions of both 

mechanisms.  

 

 

 

a)

b)

c)

Figure 4.5: Energy (in kcal mol−1) and force [in kcal (mol Å)−1] prediction accuracy of the 
best models in terms of RMSE as a function of training set size. Prediction accuracy for a) 
glycine, b) inversion, and c) rotation datasets of azobenzene using the best models of BPNN, 
GAP/SOAP, SchNet, and sGDML with the default descriptor (sGDML [1/r]) or with the extended 
descriptor (sGDML [1/r + ang]) out of all cross-validation tasks. Only models with errors below 
5.0 kcal (mol Å)−1 and 3.0 kcal mol−1 are shown. b) and c) show a side view of the highest-
energy structure on the inversion and rotation paths of azobenzene, respectively.  
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The sGDML model achieves an outstanding performance for both transition 

mechanisms. For the inversion dataset, errors in energy go below 1.0 kcal mol−1 with 

100 training points and errors in forces go below 1.0 kcal (mol Å)−1 with 800 training 

points (Fig. 4.5b). For the rotation dataset, 300 training points are needed to obtain an 

energy RMSE lower than 1.0 kcal mol−1 and the force RMSE gets close to 

1.1 kcal (mol Å)−1 after using 1000 training points. To achieve this performance, 

however, one requires different descriptors for different mechanisms: the default 

descriptor (inverse pair-wise distances) for the inversion mechanism and an extended 

descriptor [inverse pair-wise distances, and information on bonded angles and 

dihedrals in the form 𝐷i = (1 − 𝑒Mi)4 − 1 and 𝐷j = 1 + 𝑐𝑜𝑠Φ, respectively]. The 

features in a given descriptor are not evenly important for all parts of the PES. Thus, 

a single descriptor might be unable to properly resolve all relations between the 

relevant degrees of freedom for the PES and each of its transition mechanisms. 

SchNet also achieves a “chemical accuracy” of 1.0 kcal mol−1 for both inversion and 

rotation datasets, but, contrary to sGDML, it can deal with both mechanisms using the 

same settings (Figs. 4.5b, c). However, SchNet is less reliable than sGDML when 

predicting forces, with an overall RMSE of around 1.4 kcal (mol Å)−1 for both the 

inversion and the rotation datasets with 1000 training points. Better performance can 

be expected with larger training sets. However, this is a trivial solution limited in 

practice by the increased computational costs of the reference data for larger 

molecular sizes. The reason that SchNet outperforms GAP/SOAP is also clear: even 

though SchNet primarily learns local features, it can learn other interactions by 

embedding such features into the local environments for different parts of the 

molecule. 

 

4.5 Challenges for ML Models in Flexible Molecules 

Even though GAP/SOAP, sGDML, and SchNet methods are able to learn the PES of 

the azobenzene molecule with chemical accuracy, there is a considerable difference 

between the predictions for different methods, as well as for different transition 

mechanisms within the same method. Below, it is demonstrated that these contrasting 

results are caused by imperfections of the implemented training set selection schemes 

(suboptimal for a complex PES with multiple local minima), as well as intrinsic 
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limitations of the employed descriptors (unable to equally capture all interactions). To 

do so, (i) the dependence of the performance of ML methods on the specific selection 

of a training set is explored by considering the results of all cross-validation tasks and 

(ii) the descriptors of GAP/SOAP and sGDML models are modified.  

The prediction accuracy of GAP/SOAP models is not considerably affected by the 

particular choice of a training set of each cross-validation task. The average energy 

RMSE over all cross-validation tasks (see Fig. 4.6) is practically the same as the 

RMSE of the best model (see Fig. 4.5), with both errors going below 1.0 kcal mol−1 

with 400 training points. The main shortcoming of GAP/SOAP models seems to be the 

learning of long-range interactions. This would explain the ∼0.3 kcal mol−1 larger 

RMSE for the rotation mechanism (Fig. 4.6). Indeed, due to the different mutual 

orientations of the benzene rings (see geometries of the highest-energy structures on 

each transition path in Figs. 4.5b, c), the vdW energy contribution along the rotation 

transition pathway is, in average, larger by ∼0.3 kcal mol−1 than that for the inversion 

one. To further explore this conclusion, the vdW correction to the energy and forces is 

removed from the rotation dataset (i.e., a dataset at the PBE level of theory was 

constructed) and GAP/SOAP models using the same cross-validation tasks were 

retrained. Unexpectedly, the prediction accuracy of all models was the same with or 

without the inclusion of long-range vdW interactions. This means that GAP/SOAP 

might face a different problem, which could be related to an issue in the mapping from 

configuration space to the PES for the rotation mechanism. Since this error is 

comparable to the vdW energy contributions, neglecting it is comparable to ignoring 

non-covalent vdW interactions. Increasing the cutoff radius while keeping the same 

number of basis functions does not resolve this issue. Fig. 4.7a shows the best energy 

and force RMSE as a function of the cutoff radius in GAP/SOAP models with 12 radial 

and 6 angular functions. In fact, both energy and force prediction become slightly 

worse. Increasing the number of basis functions to alleviate this issue would lead to 

computationally expensive ML models, impractical for realistic applications. 

The sGDML model provides the most accurate and data-efficient FF but faces two 

important issues. The first one is the descriptor, as shown in Fig. 4.5, where one has 

to employ different descriptors for different transition mechanisms. Specifically, for the 

inversion mechanism, the default sGDML descriptor (inverse pair-wise distances) is 

sufficient. In contrast, a reliable description of the rotation mechanism requires the 
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inclusion of information about angles and dihedrals in the form 𝐷i = (1 − 𝑒Mi)4 − 1 

and 𝐷j = 1 + 𝑐𝑜𝑠Φ, where Θ and Φ are any bonded angle and dihedral of the molecule 

in radians, respectively. The performance of the default and extended descriptors is 

shown in Fig. 4.7b. The default descriptor for the rotation mechanism and the 

extended descriptor for the inversion mechanism present considerable oscillations in 

the energy error as a function of training set size (Fig. 4.7b), which is unacceptable 

behavior for a reliable ML model. The reason is simple: on the one hand, inverse pair-

wise distances cannot correctly resolve the states along the transition path of the 

rotation mechanism, which are defined by changes in the dihedral angle 𝜙. On the 

other hand, all angles and dihedrals are not equally representative of the inversion 

mechanism, and adding them misleads the model in this case. 

 

 

 

a)

b)

Figure 4.6: Mean of the energy (in kcal mol−1) and the force [in kcal (mol Å)−1] prediction 
accuracy over all cross-validation tasks in terms of RMSE as a function of training set 
size. RMSEs of models trained with SchNet, SOAP, and sGDML with the default descriptor 
(sGDML [1/r]) and with the extended descriptor (sGDML [1/r + ang]) for a) the inversion and b) 
the rotation datasets of azobenzene. Only models with errors below 5.0 kcal (mol Å)−1 and 
2.0 kcal mol−1 are shown. In the case of sGDML models, only the curve of the best performing 
descriptor for each mechanism is shown. 
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It is important to remark that even when using an appropriate descriptor, the training 

set selection is still crucial. Out of all the methods, sGDML is the most affected by the 

model selection in cross-validation tasks (compare Figs. 4.5c and 4.6b).  

While for 1000 training points, the difference between the average energy RMSE over 

all cross-validation tasks and the energy RMSE of the best model is of only 

0.2 kcal mol−1, for 400 training points, this difference is as large as 0.6 kcal mol-1. 

Thereby, one needs to be very careful when selecting the best sGDML models. 

 

 

 

Furthermore, the training set dependency often leads to models with a similar force 

RMSE but considerably different energy RMSEs. For instance, the average difference 

in energy RMSEs between the best and the worst models for the rotation mechanism 

using the extended descriptor (over all training set sizes considered here) is of 

0.7 kcal mol−1, while the average difference in force RMSEs is less than 

a)

b)

Figure 4.7: Energy (in kcal mol−1) and force [in kcal (mol Å)−1] prediction accuracy in 
terms of RMSE of GAP/SOAP models with different cutoff radius and sGDML model with 
different descriptors. RMSEs a) as a function of cutoff radius for GAP/SOAP models of the 
rotation dataset of azobenzene trained with 600 training points and b) as a function of training 
set size for sGDML with the default descriptor (sGDML [1/r]) and with the extended descriptor 
(sGDML [1/r + ang]) for the inversion and rotation datasets of azobenzene. Only models with 
errors below 5.0 kcal (mol Å)−1 and 5.0 kcal mol−1 are shown. 
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0.2 kcal (mol Å)-1. To understand this behavior, one needs to recall that sGDML 

models contain two hyperparameters apart from the regularization. One is the width 

of the kernel, which is defined by optimizing the force predictions. The other one is the 

constant shift for the energy, which is employed to minimize the difference between 

the prediction results and the energy values in the dataset. The energies of different 

conformers of flexible molecules are often degenerate. Consequently, even though all 

our training sets follow the energy distribution of the complete dataset, they represent 

different parts of the PES unequally. As a result, the energy shift hyperparameter 

obtained from a given training set can become suboptimal for the whole dataset. 

Hence, the force-based model selection scheme, as implemented in sGDML, may lead 

to large oscillation in energy prediction accuracy as a function of training set size 

(similar to those in the green solid line in Fig. 4.7b). To resolve this issue, one should 

consider both energy and forces to select the optimal model. For each cross-validation 

task, the training scheme does not change and still relies only on forces, but for 

selecting the best model out of many possibilities, the energy prediction accuracy is 

also taken into account. Summarizing, accurate and data-efficient models are 

achievable with sGDML, but both descriptors and training sets must be carefully 

selected. 

SchNet is an optimal compromise between GAP/SOAP and sGDML models. Like 

GAP/SOAP, it does not heavily depend on the specific selection of a training set (see 

Fig. 4.6), while being capable to learn all kind of interactions, akin to sGDML (see 

Fig. 4.5). As a result, SchNet reproduces both transition mechanisms equally 

accurately using the same settings, with errors only slightly larger than those of the 

sGDML models. This is a consequence of the embedding of local features of different 

atoms through the interaction layers. To train the SchNet models, six interaction layers 

were employed with a 5 Å cutoff radius for local environment. This architecture 

guarantees covering all possible interatomic distances within an azobenzene molecule 

(Fig. 4.4), making the SchNet models effectively global. However, a good overall 

RMSE might not always mean a good ML model. Fig. 4.8a shows the energy and force 

prediction accuracy on different clusters of the rotation dataset of the best SchNet 

model out of the five cross-validation tasks with 1000 training points [RMSEs of 

0.6 kcal mol−1 and 1.3 kcal (mol Å)−1 over the complete rotation dataset]. Each cluster 

corresponds to different values of the dihedral angle 𝜙 (from the interval between 0º 
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and 10º for index 0 to the interval between 170º and 180º for index 17). One can see 

that the errors for close-to-equilibrium configurations are four times larger than those 

for the transition regions. Increasing the training set size and having information of the 

two mechanisms (i.e., adding the data of the inversion mechanism to the rotation 

dataset) does not change this ratio (Fig. 4.8b). 

 

 

 

It is important to mention that while building these models, one must expect to be able 

to use them for accurate simulations of the transition mechanism, computing reaction 

rates, and lifetime of cis configuration. In order to achieve this goal, one needs to 

ensure that the MLFF is equally accurate for all relevant parts of the PES. As one can 

see from Fig. 4.8, this requirement is not fulfilled by the obtained SchNet FFs. 

Importantly, by using a total of only 600 training points for both trans- and cis-like 

Figure 4.8: Energy (in kcal mol−1) and force [in kcal (mol Å)−1] prediction accuracy in 
terms of RMSE for different clusters of the rotation dataset using SchNet models. RMSEs 
of a) the best SchNet model obtained with 1000 training points of the rotation dataset [RMSEs 
of 0.6 kcal mol−1 and 1.3 kcal (mol Å)−1 over the complete rotation dataset] and b) a SchNet 
model trained with 4000 configurations combining the rotation and inversion datasets [RMSEs 
of 0.4 kcal mol−1 and 0.8 kcal (mol Å)−1 over the complete rotation dataset]. The configurations 
for each cluster were selected depending on the value of the dihedral angle 𝜙, going from an 
interval between 0º and 10º for index 0 to an interval between 170º and 180º for index 17. 
Relative population of each cluster is also indicated (orange solid lines, arbitrary units). 



 

 60 

configurations (300 for each isomer), one can train a single sGDML model that 

reproduces the performance of the 4k SchNet model on clusters 0, 1, 2, 16, and 17. 

Hence, while learning the entire PES of the azobenzene molecule is possible within a 

SchNet model, this approach is not particularly data efficient. There are two options to 

solve this problem: one is to use a training set optimization technique, flattening the 

prediction across the configuration space.244 The second option would be to design 

schemes that combine a set of local models into a global one, finding optimal 

descriptors, training sets, and models for each part of the PES. 

One might think of training ML models on a dataset constructed from metadynamics 

simulations, called MLmeta models hereafter. However, as mentioned in Sec. 4.2, 

metadynamics datasets of the same size would contain less information about the 

transition processes as compared to the rotation/inversion datasets. One expects the 

MLmeta models to be less accurate compared to ML models trained on the 

rotation/inversion datasets (for simplicity, henceforth, this models are referred as MLmd 

models). Fig. 4.9 shows the energy and force prediction accuracy of SchNetmeta 

models when applied to reproduce the rotation dataset from Sec. 4.2. Each cluster 

corresponds to different values of the dihedral angle 𝜙 (from the interval between 0º 

and 10º for index 0 to the interval between 170º and 180º for index 17) to be compared 

to Fig. 4.8. The average RMSE of the resulting SchNetmeta models is twice larger than 

that of SchNetmd models presented in Fig. 4.8. In addition, the distribution of errors is 

drastically different. The largest errors are now in the transition region (clusters 4–13) 

and can be up to an order of magnitude larger compared to those of the SchNetmd 

models. Moreover, the error distribution is not uniform, which means that the different 

parts of the PES responsible for the transition are not equally represented within the 

metadynamics dataset.  

It is important to comment that several approaches exist to improve ML models to 

large and flexible molecules, such as multiscale GAP/SOAP,143 the recently developed 

LODE,245 or the addition of physical potentials.246 These are all promising directions, 

and this study demonstrates how more advanced techniques are necessary even for 

relatively small molecules such as azobenzene. Nevertheless, multiscale approaches 

might lead to less data-efficient models. Indeed, a single GAP/SOAP model is the most 

computationally expensive method among those used in this work. Therefore, 

although a multiscale GAP/SOAP could solve the problem for azobenzene, it could 
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become infeasible when dealing with larger molecules. As for methods to learn  

long-range interactions, they need to be carefully integrated with local ML models 

since local properties used in long-range interaction models can vary substantially for 

different local chemical environments. This is supported by the results observed when 

comparing the performance of GAP/SOAPmd models trained on PBE and PBE+TS 

reference data.  

 

 

 

The final step to confirm the reliability of the MLmd models is to demonstrate their 

applicability in MD simulations. Fig. 4.10 shows the values of the dihedral angle 𝜙 and 

the angle 𝜃 as a function of simulation time obtained with constant-temperature MD 

runs starting from structures close to the transition states. The best GAP/SOAPmd, 

SchNetmd, and sGDMLmd models trained on 1000 training points were selected to run 

with each method four MD simulations of 50k steps at 300 K with a time step of 0.5 fs. 

For the simulation that starts from step 7 of the inversion mechanism (Fig. 4.10a), 

Figure 4.9: Energy (in kcal mol−1) and force [in kcal (mol Å)−1] prediction accuracy in 
terms of RMSE for different clusters of the rotation dataset using SchNetmeta models. 
RMSEs ofa) a SchNetmeta model trained with 1000 configurations and b) a SchNetmeta model 
trained with 4000 configurations. The configurations for each cluster were selected depending 
on the value of the dihedral angle 𝜙, going from an interval between 0º and 10º for index 0 to 
an interval between 170º and 180º for index 17. Relative population of each cluster is also 
indicated (orange solid lines, arbitrary units).
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GAP/SOAPmd and SchNetmd models lead to the trans isomer, while the sGDMLmd 

model leads to the cis isomer. For the simulations that start from step 9 of the inversion 

path and steps 8 and 10 of the rotation path (Figs. 4.10b-d), all models lead to the 

trans, cis, and trans isomers, respectively. To keep local geometry fluctuations under 

control during the relaxation process, the friction coefficient for the Langevin 

thermostat was set to 2 fs. From Fig. 4.10, one can see that all MLmd models are able 

to correctly reproduce the transition processes avoiding unphysical configurations, 

despite the large fluctuations in the angles caused by the thermostat. This 

demonstrates that the MLmd models are reliable and stable, and the constructed 

datasets contain the information necessary for studying the cis to trans thermal 

relaxation of azobenzene.  

 

 

 

Figure 4.10: Change in the main degree of freedom (𝜙 for the rotation mechanism and 𝜃 
for the inversion one, in º) as a function of the simulation time (in fs) for MD simulations 
performed with MLmd models. Change in a, b) 𝜃 and c, d) 𝜙 for the four different MD 
simulations done using the best GAP/SOAPmd, sGDMLmd, and SchNetmd models trained on 
1000 training points. The initial geometry used for each simulation is indicated over the graph. 
Tick labels on the right mark the value of the degree of freedom in the trans isomer and the cis 
isomer. 
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Summarizing the results of this section, while the state-of-the-art ML models are 

capable of reproducing the complex PES of flexible molecules, this challenge is far 

from being solved in practice. Default approaches demonstrating excellent 

performance for small molecules or rigid systems struggle with increasing flexibility 

and dimensionality. Even the best performing models present difficulties to efficiently 

learn the PES in its entirety. Moreover, the way datasets are constructed is crucial for 

the performance of the resulting ML models. To overcome this challenge, one should 

ensure that the descriptors contain all relevant features to capture the complex 

geometrical transformations in the high-dimensional PES. In addition, training sets 

must represent all parts of configuration space, which exhibits high energetic 

degeneracy, which makes purely following an energy distribution ineffective. Although 

MD simulations executed with the constructed ML potentials are promising, one can 

suggest further developments of robust approaches for selecting training points, 

appropriate descriptors, or even using different models for different parts of the PES. 

 

4.6 Conclusions 

The challenge of modeling the PES of flexible molecules using state-of-the-art ML 

models when using limited sets of training data was discussed in the present chapter. 

The results show that methods based on local descriptors (e.g., BPNN and 

GAP/SOAP) saturate quickly with the increase in the number of training points, while 

not achieving the desired prediction accuracy. This is a consequence of the limitations 

imposed by the cutoff radius for the atomic environments. The ML methods based on 

global descriptors (e.g., sGDML) require careful model selection procedures when the 

reference datasets consist of several disconnected parts of the PES. The main 

challenges are the inability of simple training schemes to select appropriate training 

datasets in unbalanced reference data and the limitations of the standard molecular 

descriptors to pick up the features describing the complex geometric transformations 

in flexible molecules. Finally, end-to-end NNs (e.g., SchNet) do not reproduce all 

relevant parts of the PES with equal accuracy. Moreover, NNs require a larger amount 

of training data compared to kernel methods, which can result in a high computational 

cost when generating reference datasets. All the tested MLFFs in their current form 

can be further improved for quantitative studies of complex processes in flexible 

molecules. Important features of ML, such as descriptors and selection of training 
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points, could and should be revised. The varying performance of most of the ML 

models for the rotation and inversion mechanisms in azobenzene also suggests 

switching from learning the entire PES within a single task to the employment of 

multiple local models for different parts of the PES and then combining them into a 

global FF. 
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CHAPTER 5 
 

Optimizing Descriptors for Accurate 
ML Models for Large and Flexible 
Molecules 

 
5Chapter_mark_5 

In Chapter 3, the power of MLFFs to provide insights was shown by studying the 

impact of NQE on molecular interactions in small (semi-)rigid molecules. Nevertheless, 

from the results discussed in Chapter 4, there are still challenges for MLFFs that need 

to be solved in order to obtain similar insights for larger and more flexible molecules. 

Specifically, it has been stressed through this thesis that one of the main challenges 

is how to properly describe the interplay between local chemical bond fluctuations and 

non-local long-range interactions, prominent in such molecules. 

In MLFFs, the description of interactions is handled to a greater or lesser extent by the 

descriptor used to encode the molecular geometries. Although different descriptors 

relying on different features have been successfully used to reconstruct  

PESs,11,36,44–47,64–66,68–86 one cannot ensure that the features they contain optimally 

describe all important interactions. A common strategy to solve this issue is to 

construct bigger and/or more complex descriptors with additional features aiming to 

enable the description of the interactions missed previously (like it was shown in 

Chapter 4 for the rotation mechanism of azobenzene).245 However, such a solution will 

quickly lead to computationally expensive descriptors with increasing size of the 

molecule. Already, the default SOAP descriptor contains over 10,000 features for a 

molecule such as the alanine tetrapeptide (Ac-Ala3-NHMe; 42 atoms) and default 

descriptors based on interatomic distances (e.g., the one of sGDML) exceed one 

thousand features with molecules of only 50 atoms. Hence, the inclusion of more 

features will lead to immense descriptors when applying ML methods to large 

molecules. 
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In practice, the use of descriptors containing a very high number of features 

compromises the performance of the ML models. Namely, an oversized descriptor i) 

spans a much larger space than what is effectively needed for an accurate prediction, 

making ML models harder to optimize, and ii) requires more computational time for its 

construction, leading to ML models that are inefficient for practical applications. In this 

context, even though many efforts have been made to optimize and reduce the size 

of descriptors,136,247–251 to the best of our knowledge, an extensive assessment of the 

importance of different features for the modelling of PESs has not been performed to 

date. Such a profound analysis is a crucial step to tailor appropriate descriptors for 

building accurate and data-efficient ML models for large and flexible molecules. 

In this chapter, this challenge is addressed by finding the most relevant features of a 

descriptor on the example of three large and flexible systems, for which a precise 

description of short- and long-range interactions is imperative: the alanine tetrapeptide  

(Ac-Ala3-NHMe; 42 atoms), the adenine-thiamine DNA base-pair dimer (AT-AT; 

60 atoms), and the buckyball catcher (148 atoms). The chapter starts with a 

description of the computational details and the datasets used for obtaining the results. 

Then, a strategy to discard the least important features in a descriptor is introduced 

for optimizing the molecular representation. After that, the factors to be considered for 

finding the optimal descriptor of large and flexible molecules are discussed. Finally, 

the performance of models trained on a global, local (relying on a predefined cutoff 

radius) and optimized global descriptor is assessed in the description of interactions 

(from the context of the contribution of each atom to the prediction of forces in all other 

atoms) within the test molecules, as well as in the prediction of forces. For this, 

sGDML45,46 and GAPs56 using the SOAP representation58 are employed. 

The structure of the chapter is given as follows: in Sec. 5.1 the computational details 

and datasets are described. In Sec. 5.2, the procedure used to remove features for 

optimizing the descriptor is introduced. In Sec. 5.3, there is a discussion of the 

considerations that must be taken into account for determining the optimal descriptor 

of large and flexible molecules. Then, in Sec. 5.4, there is an analysis of the 

performance of typical global and local descriptors, and that of an optimized descriptor 

as proposed in this chapter, with special attention to the number of features in each 

descriptor and how they capture the interactions within the test systems. Sec. 5.5 

contains the conclusions to this Chapter. 
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5.1 Computational Details and Datasets 

5.1.1 Reference Datasets 

MD was used to construct the reference datasets. All calculations were done using the 

DFT functional PBE228 with many-body dispersion (MBD)252,253 to account for vdW 

interactions. The calculations were carried out either with i-PI185 wrapped with FHI-

aims code227 to compute forces and energies or with FHI-aims code alone. Table 5.1 

includes all relevant information of the datasets. 

 

 

 

 

 

 

 

 

 

 

5.1.2 ML Models 

The ML models were built with sGDML45,46 and GAPs56 with the SOAP 

representation.58 

sGDML models were trained using a numerical solver with an initial value of 70 

inducing points. All models were validated using 1000 configurations and values for 

the hyperparameter σ from 10 (20 for the buckyball catcher) to 200 with a step of 20 

were explored. No symmetries were considered in the models for a fair comparison 

between the default descriptor and those with a reduced size. 

GAP/SOAP models were trained using 12 radial and 6 angular functions for the 

descriptor. The cutoff radius was set to 5 Å. δ was set to 0.25, the atom σ was set to 

Molecule 
Level of 

Theory 
Temperature Step size  Thermostat Coefficient 

Ac-Ala3-NHMe 
PBE+MBD

Tight 
500 1 

Global 

Langevin 
2 

AT-AT 
PBE+MBD

Tight 
500 1 

Global 

Langevin 
2 

Buckyball 

catcher 

PBE+MBD

Light 
400 1 

Nosé-

Hoover 
1700 

 

Table 5.1: Settings of the MD simulations of the datasets used in the chapter. Temperature is 
given in K and the step size in fs. Coefficient refers to the friction coefficient (in fs) for the global 
Langevin thermostat, and to the effective mass (in cm-1) for the Nosé-Hoover thermostat. 
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0.3, and the default σs for energy and forces were set to 0.001 and 0.1, respectively. 

All calculations were performed with the QUIP program package.231 

 

5.1.3 Pairwise Contributions to Force Prediction 

Given atoms 𝑖 and 𝑗 in a molecule, one can consider that the contribution of atom 𝑖 to 

the prediction of the total force on atom 𝑗 is related to the amount of interaction 

between the given atoms. To compute such pairwise contributions to the force 

prediction of a molecule (𝐹+7), the following was considered. From Eq. 10, one knows 

that the contribution of each training point 𝑀 to the final prediction is given by each α𝐾 

term in the predictor. Since the force predictor in sGDML has not only one but 3𝑁 

values of α (one for each coordinate of each atom) for each training point, the 

contribution of a given atom 𝑖 to the prediction of all atoms was obtained by calculating 

only the sum of the 𝑀𝑥3 α𝐾 terms corresponding to atom 𝑖. The result of this 

calculation is an 𝑁𝑥3 matrix with the contributions of atom 𝑖 to the prediction of each 

force component on all atoms in the molecule. Then, the norm of each row in this 

matrix was computed to get the contribution of atom 𝑖 to the total force on all 𝑁 atoms. 

Finally, repeating this process for all other atoms in the molecule generated a 𝐹+7 

matrix. 

 

5.2 Theory 

The reliability of an ML model depends, of course, on the set of samples used for 

training, but also on the descriptor used to encode the input samples. Although typical 

descriptors that are constructed before the training process (e.g., SOAP,58 ACSFs,60 

inverse pairwise distances45,131,133) provide reliable MLFFs for different molecules and 

materials, there is no guarantee that a given descriptor is the optimal for all different 

instances of a given learning task. Furthermore, the computational cost of generating 

a descriptor steadily grows with the size of the system. For instance, the length of the 

input vector of descriptors based on interatomic distances scales as the square of the 

number of atoms, and other descriptors, such as SOAP, have a fingerprint vector that 

can contain tens of thousands of elements. So, the use of state-of-the-art descriptors 

can become impractical for constructing ML models for large molecules. A solution to 

this issue is the use of data-driven approaches to construct the descriptor. For 
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example, end-to-end NNs learn a representation directly from reference data using the 

atom types and positions of the system as input. The models resulting from these 

architectures are more accurate than those of NNs relying on predefined 

descriptors.42,66,67,254 Unfortunately, such an end-to-end approach is not plausible with 

kernel-based methods because kernels cannot learn their own representation. In this 

regard, different approaches (useful for both NN and kernel-based methods) have 

been proposed to optimize descriptors with reference data, targeting specific 

properties of interest.136,247–251 They have been successfully employed improving the 

accuracy of models trained using descriptors such as ACSFs and SOAP.249–251 What 

is still missing, however, are optimized descriptors that not only provide more accurate 

and efficient MLFFs, but also an interpretable set of features that guarantees a precise 

description of all relevant interactions. An analysis of such descriptors is important to 

lay the foundations for constructing accurate and data-efficient models of large and 

flexible molecules and is the aim of this Chapter. 

 

5.2.1 Reducing Descriptor Dimensionality 

A typical procedure to assess the importance of different inputs in the results of a 

mathematical model is sensitivity analysis (SA).255,256 In SA, one studies the 

relationship between inputs (i.e., features in the descriptor) and the uncertainty in the 

output(s) of the model. Namely, it quantifies how much the output of the model 

changes with respect to a change of each input variable. However, SA cannot explain 

the output of the ML model itself, but a variation of the outputs. This means that one 

could not use such an approach for evaluating the effects of varying/removing features 

on the prediction accuracy of the model. Because of this, here I describe a strategy to 

reduce the size of the descriptor that, like SA, assesses the importance of all features 

but, contrary to SA, it does it by taking the accuracy of the output as reference instead 

of its uncertainty. 

The approach starts from a fully trained ML model (called MLoriginal hereafter), 

considering a kernel-based method as the model architecture (Eq. 10) and a default 

(containing all 𝑛 features) descriptor 𝒙 

 

 𝒙 = [𝑥,, 𝑥4, ⋯ , 𝑥"]. ( 24 ) 
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Then, a subset of configurations in the dataset (avoiding samples used for training and 

validation) is randomly selected, and the energy and/or forces are computed using the 

MLoriginal model. After that, the prediction of energies/forces of the subset of 

configurations is repeated 𝑛 times with the MLoriginal model, but now “masking” at each 

iteration one of the 𝑛 features in the descriptor. The term “masking” in this procedure 

means that at iteration 𝑖 the 𝑖-th feature in the descriptor is set to zero for all training 

and query configurations. This makes all configurations to have the same value for the 

𝑖-th feature in the descriptor. Thus, the 𝑖-th feature does not affect the value of the 

kernel function for two given configurations. 

Once one has the sets of energies/forces predictions with the MLoriginal model masking 

each feature (for simplicity, henceforth, we refer to each of these sets as MLnmasked 

predictions), the RMSE of each set of MLnmasked predictions is computed with respect 

to the MLoriginal one. Since the value of the regression coefficients (α7 in Eq. 10) is not 

changed when computing MLnmasked, the lowest RMSE values should be implicitly 

related to less important features. However, it is not trivial to set a threshold under 

which one can consider a feature as irrelevant. Indeed, the values of the RMSEs 

depend on i) the predicted property, ii) the system(s) for which the model is trained, 

and iii) the reference data used for training. To solve this problem, a distribution with 

the force RMSEs of all MLnmasked predictions is constructed, and the concept of 

percentile is used to select the lowest RMSEs values. A percentile is a score (e.g., an 

RMSE) at or below which a given percentage of scores in its distribution falls. For the 

sake of clarity Fig. 5.1 shows a hypothetical distribution of RMSEs and its 20th 

percentile. The 20th percentile is the RMSE at or below which 20 % of the RMSEs in 

the distribution may be found. So, if one selects all the RMSEs at or below this 20th 

percentile (shaded blue area in Fig. 5.1) and retrieves the features related to them, 

one would obtain, for a descriptor containing 100 features, the 20 least important 

features. In this chapter, different percentiles (in a range from 10 to 90) are used to 

properly study how the removal of different types of features in the descriptor affects 

an ML model. 

It is important to remark that the RMSEs arising from “masking” a feature are by no 

means related to the accuracy of a model trained with a descriptor not containing such 

feature. The errors are a consequence of keeping the values of the regression 

coefficients of the MLoriginal model unchanged, which might be suboptimal for the 
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masked descriptor. The real accuracy of a model with a descriptor of smaller size can 

only be obtained by retraining. Thus, as final step, a new model is trained after 

removing from the default descriptor (Eq. 24) all the features whose corresponding 

RMSEs are at or below the selected percentile.  

 

 

 

Important Considerations 

This subsection discusses some considerations that are important when applying the 

aforementioned approach. The results presented here were obtained with the sGDML 

method using its default descriptor, but any other method or descriptor could have 

been used as well.  

1. The result of the dimensionality reduction approach is independent of the 
training set used for training the MLoriginal model. For example, 5 different 

models for aspirin (210 features in the descriptor) with 500 training points were 

trained, and 5 different subset of 3000 configurations (one for each model) were 

used to select the RMSEs under the 15th percentile. From the 32 removed 

features, 24 of them (75 %) were removed with all 5 aspirin models. This means 

that when applying the dimensionality reduction one only needs to ensure that 

the training set is representative of the dataset.  

Figure 5.1: Hypothetical distribution of root mean squared errors (RMSEs) in 
kcal (mol Å)-1. The red vertical line indicates the limit set by the 20th percentile of the 
distribution (P20). The shaded blue area between the distribution curve and the vertical line 
shows the area of the distribution where the RMSEs are lower than P20. 
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2. The result of the dimensionality reduction approach is independent of the 
training set size used for training the MLoriginal model. For instance, 3 

different models for alanine tetrapeptide (Ac-Ala3-NHMe; 861 features in the 

descriptor) with 100, 200, and 500 configurations were trained, and a subset of 

3000 configurations (the same for all models) was used to select the RMSEs 

under the 65th percentile. From the 559 removed features, 443 of them (~79 %) 

were removed with all three models. This means that one does not need to start 

with a very accurate (probably computationally expensive) initial model.  

3. The result of the dimensionality reduction approach is independent of the 
size of the subset used for computing the MLoriginal and the MLnmasked 
predictions. As an example, a model for an adenine-thiamine DNA base-pair 

dimer (AT-AT; 1770 features in the descriptor) with 100 training points was 

trained, and different subsets with 10, 100, and 1000 configurations were used 

for selecting the RMSEs under the 60th percentile. From the 1062 removed 

features, 1030 of them (~97 %) were removed with all subsets. This is 

advantageous because one can efficiently assess the importance of all features 

in the representation of a molecule, even if the descriptor has thousands of 

features due to the size of the molecule.	 

The reason why the overlap between removed features in the examples of points 1 

and 2 (less than 80 %) is not as high as in the one of point 3 (∼97 %) is simple. Most 

of the features that are not removed by all models (e.g., the remaining 8 features in 

each aspirin model discussed in point 1) involve an H atom. H atoms are the ones that 

fluctuate the most in MD simulations, which are the origin of the datasets. Thus, it is 

not surprising that the relevance of a given feature involving an H atom varies between 

different ML models (trained on different sets) without affecting the reliability of the 

resulting FF. 

The efficiency and consistency of the descriptor dimensionalty reduction approach ex- 

plained in this section give the opportunity to assess thoroughly the relevance of the 

features in the descriptor to construct accurate MLFFs, even for molecules with more 

than 100 atoms. 
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5.3 Size of the Optimal Descriptor for ML Models 

Here, I discuss in detail the accuracy of MLFFs selecting different percentiles for 

removing features on the example of the default global descriptor of sGDML. Through 

an analysis of the performance of different ML models trained using different sizes of 

the descriptor, one can define the size of the optimal descriptor. For this section, Ac-

Ala3-NHMe, the AT-AT dimer, the buckyball catcher, and aspirin were considered in 

order to compare results between large and flexible molecules, for which ML models 

are still suboptimal, and a rather small semi-rigid molecule, for which one can already 

build very accurate and data-efficient MLFFs.45,46,52,66,67 For each of these systems, 

sGDML models with 300, 500, 800 and 1000 training points were trained using 

descriptors of different sizes (i.e. selecting different percentiles for removing features). 

For the larger molecules, percentiles from 10 to 90 in steps of 10 were explored, while 

for aspirin only percentiles from 10 to 50 in steps of 10 were selected (these models 

will be referred as MLPX. X being the percentile selected to remove features). In 

Fig. 5.2, curves of energy and force RMSEs are shown for each training set size as a 

function of the size of the descriptor. The RMSEs were computed from predictions of 

all configurations in the dataset that were not used for training or validation. For 

selecting the optimal descriptor only the models trained with the highest amount of 

training configurations (i.e. models trained using 1000 training points) were taken into 

account. 

For a small semi-rigid molecule as aspirin (210 features in its original descriptor), the 

optimal descriptor is the default global descriptor. The models present an increase in 

energy and force RMSEs with smaller number of features (see Fig. 5.2A). Conversely, 

for Ac-Ala3- NHMe (861 features), the AT-AT dimer (1770 features), and the buckyball 

catcher (10878 features), the optimal descriptor is different from the default global 

descriptor (see Figs. 5.2B-D). ML models for larger and more flexible molecules 

inherently have a reduced accuracy with respect to those of smaller ones (compare 

errors for aspirin in Fig. 5.2A and the rest of molecules in Figs. 5.2B-D). This is mainly 

caused by their complex PESs, more prone to incomplete training sets. For the test 

systems considered here, the MLP60 model is the optimal one. Only around 40 % of 

the original global descriptor (345 features for Ac-Ala3-NHMe, 708 features for the AT-

AT dimer, and 4351 features for the buckyball catcher) is required to accurately 

describe the PES of these systems. For instance, when trained on 1000 training 
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points, MLP60 models show energy and force RMSEs that are up to 1.2 kcal mol−1 and 

0.2 kcal (mol Å)−1 lower than those of the models with the default global descriptor. A 

reliable selection of the optimal size of the descriptor is, however, not straightforward 

since one needs to use as reference an accurate model and to carefully assess the 

change in energy and force accuracy when reducing the size of the descriptor. 

Models trained on a very limited amount of reference data might lead to wrong choices 

of the optimal descriptor size. This becomes evident when increasing the size and 

flexibility of the molecule of interest. While for the aspirin molecule (Fig. 5.2A) the 

behavior of the force RMSEs curves when reducing the number of features in the 

descriptor is qualitatively the same for all training set sizes, for the other molecules 

(Figs. 5.2B-D) the force RMSEs curves of the models trained on only 300 training 

points behave differently than those of the rest of the models. For Ac-Ala3-NHMe 

(Fig. 5.2B), the models trained on 300 training points show as optimal descriptor the 

one of the MLP70 model (259 features) and, for the AT-AT dimer and the buckyball 

catcher (Figs. 5.2C,D), models trained using 300 training points suggest that using 

less than 30 % (less than 531 features) and around 20 % (around 2170 features) of 

the original descriptor would produce more reliable models, respectively. Models that 

use a descriptor with a small number of features will tend to behave as if they were 

trained using typical local descriptors. Therefore, such models can even be transferred 

to configurations that are not well represented in the training set, but whose local 

environments are present in the training data. The advantages of these “more local” 

descriptors over global or optimized global descriptors vanish when more data is used 

for training (see curves for 500, 800, and 1000 training points). Hence, the use of 

training sets including a representative sample of the entire dataset is crucial for 

finding the optimal descriptor for large and flexible molecules. 

The optimal descriptor must be the one that produces the  

models with the best accuracy. However, evaluating the accuracy of different  

sizes of a descriptor is not trivial. For instance, the constant energy shift  

used in sGDML for predicting energies is harder to optimize for large  

and flexible molecules. Molecules like the AT-AT dimer present many different  

minima (i.e., different ways each AT base pair is arranged respect the other),  

making difficult the selection of an appropriate training set for the constant.  
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This results in the appearance of bumps on the energy prediction accuracy as a 

function of the size of the descriptor, like those observed in the energy RMSEs curves 

A Aspirin

B Ac-Ala3-NHMe

C AT-AT dimer

D Buckyball catcher

Energy Force

210

345

708

4351

21 atoms

42 atoms

60 atoms

148 atoms

Figure 5.2: Energy (in kcal mol-1) and force [in kcal (mol Å)-1] RMSE as a function of the 
size of the descriptor. RMSEs of GDML models for A) aspirin, B) Ac-Ala3-NHMe, C) the AT-
AT dimer, and D) the buckyball catcher trained with 300, 500, 800, and 1000 training. The black 
star on the curve of 1000 training points pinpoints the optimal descriptor size for each test 
molecule. 
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of the AT-AT dimer in Fig. 5.2C. Hence, it seems that the RMSEs of the property used 

for training (force RMSEs in the case of sGDML) are always the best reference to 

optimize the descriptor, but one needs to be careful. Although for the peptide and the 

AT-AT dimer (Figs. 5.2B,C) this conclusion is true (the minimum force RMSEs for 

models trained on 1000 training points correspond to the MLP60 model, which also 

provides an accurate energy prediction), for optimizing the descriptor of the buckyball 

cátcher (Fig. 5.2D) force RMSEs are not reliable enough. Namely, while force RMSEs 

suggest that the descriptor of the MLP80 model (2176 features) is the optimal one, its 

energy RMSE is twice as large than that of the MLP60 model (which is the one with the 

lowest energy RMSE). Only considering force RMSEs to find the optimal descriptor 

leads to unphysical models whose force predictors are not related to the actual energy 

of the system. Thus, for selecting the optimal descriptor of large and flexible molecules 

one needs to consider the prediction accuracy of both forces and energy even if only 

one of these properties is used for training. 

Finding an optimal (smaller) descriptor is not only advantageous to correctly describe 

complex PESs. It is also valuable to construct efficient MLFFs, which are crucial for 

practical studies of large and flexible molecules. In fact, the MLP60 models of  

Ac-Ala3-NHMe, the AT-AT dimer and the buckyball catcher trained on 1000 

configurations are around 2 times faster than the models with the default global 

descriptor. All in all, one must consider optimizing the descriptor as an indispensable 

task for building ML models of large and flexible molecules. 

 

5.4 Optimal Description of Interactions in Large and 
Flexible Molecules with ML Models 

In Sec. 5.3, it was shown that the number of features in a typical global descriptor can 

be reduced down to 40 % of the original size, leading to an increase of the accuracy 

of the model. The improvement in accuracy when reducing the size of the descriptor 

should be a consequence of how well the ML model describes interactions within the 

system. Interactions in a molecule can be split into long- and short-range, and Sec. 4.3 

introduced a classification of descriptors, into global and local ones, depending on how 

molecules are encoded, and which interactions can be captured. Although both 

classes of descriptors give a reasonably good description of different interactions and 
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have been applied to obtain reliable MLFFs for a myriad of different molecules and 

materials, each of them stem from certain approximations. On one hand, global 

descriptors assume that, for instance, all pairwise distances are relevant to model a 

given system, which might overdefine the learning problem and make harder the 

optimization of ML models for flexible and large molecules. On the other hand, local 

descriptors consider that all important interactions can be described within a cutoff 

radius that delimits the atomic environments. This might neglect relevant long-range 

interactions, crucial to describe the dynamics of complex systems. Therefore, it 

becomes essential to have a proper assessment of the reliability of a descriptor. For 

this reason, below the performance of different descriptors is assessed using as test 

systems the Ac-Ala3-NHMe molecule (42 atoms), the AT-AT dimer (60 atoms), and 

the buckyball catcher (148 atoms), for which a faithful description of both short- and 

long-range interactions is critical to obtain an accurate model. For each of these 

systems, three different sGDML models with 1000 configurations were trained using 

three different descriptors: i) the default global descriptor (all inverse pairwise 

distances, ,
@
), ii) a ,

@
 descriptor mimicking a local descriptor by removing all features 

involving distances greater than 5.0 Å (the typical value for cutoff radius in local 

descriptors) in at least one configuration in the dataset, and iii) the optimized ,
@
 

descriptor obtained in Sec. 5.3 using the approach described in Sec. 5.2. 

Henceforward these models will be referred as MLglobal, MLlocal, and MLP60, 

respectively. 

This Section starts by analyzing how the different ML models predict the interactions 

between atoms. Namely, there is an analysis of the force prediction in terms of 

pairwise contributions in the molecule (𝐹+7, with 𝑖 and 𝑗 being any atom. The description 

of how the contributions were computed was given in the computational details in 

Sec. 5.1). Fig. 5.3 shows heatmaps of average 𝐹+7 values and of average interatomic 

distances for the three test systems. The averages were computed using 3000 

configurations of the dataset for Ac-Ala3-NHMe and the AT-AT dimer, and 1000 

configurations for the buckyball catcher. 

For the MLglobal models (containing 861 features for Ac-Ala3-NHMe, 1770 for the AT-

AT dimer, and 10878 for the buckyball catcher) the contributions are more distributed 

among different pairs of atoms regardless of the distance between the atoms. This 
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allows the model to effectively capture long-range interactions but it might miss to 

optimally resolve all short-range ones. Conversely, the MLlocal models (287 features 

for Ac-Ala3-NHMe, 296 for the AT-AT dimer, and 1626 for the buckyball catcher) only 

rely on the local environment of the molecule. This is confirmed by the contributions 

of the atoms to the force prediction of other atoms, which are directly related to the 

magnitude of the corresponding interatomic distances. Thus, the MLlocal models offer 

a more adequate description of short-range interactions but completely neglect those 

interactions arising from distances greater than the selected cutoff. Finally, the MLP60 

models (302 features for Ac-Ala3-NHMe, 708 for the AT-AT dimer, and 4351 for the 

buckyball catcher) offer a compromise between the MLglobal and MLlocal models. 

 

 

 

Reduced MLP60 models achieve a satisfactory description of the local environment of 

the molecule but, at the same time, they keep the relevant information for describing 

A Ac-Ala3-NHMe

B AT-AT dimer

C Buckyball catcher

Interatomic distances Contribution to force prediction
MLglobal MLlocal MLP60

Figure 5.3: Heatmaps of average interatomic distances (in Å) and average contributions 
[in kcal (mol Å)-1] of each atom to the force prediction of all atoms. Heatmaps of the 
averages from 3000 configurations of A) Ac-Ala3-NHMe, B) the AT-AT dimer, and 1000 
configurations of C) the buckyball catcher. Each square in the heatmaps represents a given 
pair of atoms in the molecule (atom indices start from 0). The scale goes from red (short 
distances) to blue (long distances) for interatomic distances, while it goes from blue (small 
contributions) to red (big contributions) for the contributions to the force prediction. 
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non-local interactions. The MLP60 models present the highest contributions to the force 

prediction from pairs of atoms that are separated by shorter distances. This is what 

one would expect from a physical point of view, since short-range interactions are 

those contributing the most to the total energy/forces of a given system. However, the 

models trained on the optimized descriptor also show important contributions from 

relevant long-range interactions. For instance, the interactions between one AT base 

pair (atoms 0 to 29 in Fig. 5.3B) and the other (atoms 30 to 59 in Fig. 5.3B) or the 

interactions between the catcher (atoms 0 to 79 in Fig. 5.3C) and the buckyball (atoms 

79 to 147 in Fig. 5.3C). 

The way interactions are described within an ML model must be related to the reliability 

of the predictions given by that model. In this regard, Fig. 5.4 extends the analysis of 

the MLglobal, MLlocal, and MLP60 models by comparing distributions of force errors for 

the three test molecules. Also, distribution of errors for GAP/SOAP models with a 

cutoff of 5 Å trained on 1000 configurations are shown for validating the results of the 

MLlocal model against a state-of-the-art ML local model. The errors used for 

constructing the distributions were obtained from the force predictions of all 

configurations in the datasets that were not used for training or validation. On one 

hand, force error distributions show that the accuracy of the MLlocal models, with 

respect the MLglobal and MLP60 ones, is lower with increasing size and flexibility of the 

molecule. They start with an almost equal distribution as all other models for  

Ac-Ala3-NHMe (Fig. 5.4A) but show a wider and smaller peak than the MLglobal and 

MLP60 models (i.e., the MLlocal model has bigger errors) for the buckyball catcher 

(Fig. 5.4C). This conclusion is supported by the behavior of the GAP/SOAP model that 

presents considerably bigger errors than the other models for the buckyball catcher. 

On the other hand, the models trained with the optimized descriptor present almost 

the same population of small force errors [under an absolute value of  

1.0 kcal (mol Å)-1] as the MLglobal model, while having a lower frequency of larger 

errors. For instance, errors above absolute values of 3.0 and 1.0 kcal (mol Å)-1 for the 

AT-AT dimer (Fig. 5.4B) and the buckyball catcher (Fig. 5.4C), respectively, are more 

common with the MLglobal model. Finally, although the force prediction accuracy of the 

MLlocal models is comparable to that of MLP60 ones, the PESs reconstructed with the 

MLlocal models might not be reliable enough. For example, as observed when 

optimizing the descriptor of the buckyball catcher in Fig. 5.2D, an insufficient number 
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of features in the descriptor produces a function that is accurate for predicting the 

forces but not the actual energy of the system. In other words, the integral of the force 

predictor does not yield an appropriate function for computing the PES of the molecule. 

Therefore, bigger errors in energy predictions can be expected from ML models 

trained on local descriptors. Training on both energies and forces would seem to be a 

possible solution to alleviate this problem. However, the resulting MLFF would produce 

better energy predictions at the cost of much less accurate force predictions. This 

assumption is confirmed by the distribution of force errors obtained with the predictions 

of the GAP/SOAP model (Fig. 5.4C), which are less reliable than those of the MLlocal 

model. 

 

 

A Ac-Ala3-NHMe

B AT-AT dimer C Buckyball catcher

861
345
287
42k

1770
708
396
60k

10878
4351
1626
148k

Figure 5.4: Distribution of force errors [in kcal (mol Å)-1] of the MLglobal, MLP60, MLlocal and 
GAP/SOAP (MLSOAP) models. Distributions of A) Ac-Ala3-NHMe, B) the AT-AT dimer, and C) 
the buckyball catcher. The size of the descriptor of the models is given in the legend box of the 
figures on the right. 
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By now, the advantages of using an optimized descriptor have been consistently 

stressed in this Chapter: an increase in efficiency due to the reduction of the number 

of features and an improvement in accuracy because of an optimal description of all 

interactions in the molecule. However, little has been discussed about how the initial 

descriptor (i.e., the one to be optimized) should look like. One common assumption is 

to consider that everything within the local environment of an atom is relevant. Then, 

on top of this local information, one should only need to include the necessary features 

to account for non-local effects to optimally describe all interactions in the molecule. 

Nevertheless, in addition to local descriptors, such as SOAP, already containing a 

huge number of features that can compromise the efficiency of an MLFF (see 

descriptor sizes in Fig. 5.4), an inspection of the features removed for constructing the 

MLP60 models suggests that relying on a cutoff for constructing the local features is 

incorrect. Fig. 5.5 shows the example of three local features in Ac-Ala3-NHMe and the 

AT-AT dimer, whose information would be included in any local descriptor, that are 

irrelevant for constructing an accurate MLFF (see in Fig. 5.5 the blue squares 

corresponding to negligible contributions to the force predictions for the MLP60 

models). These selected features correspond to interatomic distances between atoms 

that define bonded dihedral angles in the molecule. Also, all these distances have 

lengths shorter than 5 Å (the typical cutoff of local descriptors) for all configurations in 

the dataset as can be concluded from their contributions to the force predictions in the 

MLlocal models. An interesting finding is that these interactions are part of different 

chemical environments. Namely, one can observe that these features belong to 

different pair of elements (H-H, C-N, C-O, C-H) and the atoms involved are embedded 

in different functional groups (e.g., methyl rotors, rings).  

Summarizing the results of this section, while models trained on typical global or local 

descriptors are capable of achieving suitable predictions for big and flexible molecules, 

both descriptors are not optimal to accurately describe all interactions within such 

molecules. A global descriptor might overdefine the problem by including features that 

are not relevant, thus increasing the complexity of the learning task and compromising 

the final accuracy of the MLFF. This issue becomes quite prominent already when 

dealing with systems of 50 atoms, for which the size of the descriptor surpasses the 

thousand features. On the other hand, local descriptors neglect long-range effects, 

generating MLFFs with limited accuracy that might miss important interactions within 
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dimers or between different fragments of a system. To overcome these limitations, one 

should find a reduced set of features that allows an optimal description of all relevant 

interactions. Such an optimized set of features will depend on the molecule of interest 

and the information included in the dataset. The features that are removed from the 

original descriptor can be either local or non-local ones. Hence, although there is not 

only one strategy to obtain such an optimized descriptor, the results suggest starting 

from a global descriptor as the most advantageous one. 

 

 

 

5.5 Conclusions 
In this chapter, an analysis of the challenges complex PESs pose in state-of-the-art 

descriptors was discussed. The results show that typical molecular representations 

used for constructing MLFFs are not optimal for such systems. Apart from having a 

huge number of features, descriptors do not properly resolve all relevant interactions 

in the molecules. Local descriptors (e.g., SOAP) ignore by construction all non-local 

interactions, leading to errors that are rather negligible for molecules of up to 50 atoms 

but that become unacceptable for larger molecules where interactions between 

different fragments play a significant role. On the other hand, despite global 

2.9
2.9

3.2 2.8

3.5
3.6

A MLlocal MLlocalMLP60 MLP60
B

Figure 5.5: Examples of local features that are not important for constructing an accurate 
MLFF. A) Ac-Ala3-NHMe and B) the AT-AT dimer. Zoomed-in sections of the 𝐹+, matrices 
(Figure 5.3) for the MLlocal and MLP60 models show, inside colored frames (pink, red and green), 
the squares belonging to the selected features. Lengths of the distances (in Å) are given next 
to dotted lines connecting the pair of atoms involved in each feature. For the AT-AT dimer, only 
one AT base pair is shown for the sake of clarity. 
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descriptors (e.g., inverse pairwise distances) include information about all interactions 

in the molecule, they are prone to contain irrelevant or strongly correlated features that 

might cause a suboptimal description of both short- and long-range interactions. To 

overcome these limitations, MLFFs require descriptors that can be optimized to only 

include the features that are relevant for describing the interactions within each 

molecule. An optimized descriptor must optimally resolve all interactions in the 

molecule. This results in more robust ML models than those constructed with default 

global or local descriptors. 

Overall, the performance of the optimized descriptor for Ac-Ala3-NHMe, the AT-AT 

dimer, and the buckyball catcher indicates that optimizing the descriptor must be an 

integral part of any MLFF. Our results clearly demonstrate that typically employed 

strategies to construct local descriptors, such as the selection of a cutoff radius, and 

global descriptors, which include all degrees of freedom, are insufficient when one 

needs to deal with complex PESs. An optimal descriptor should keep only some of the 

features included in local descriptors, together with the information about certain long 

distances (even beyond 10 Å) that are only present in global descriptors. Therefore, 

current approaches to construct descriptors could be replaced by more chemically 

inspired schemes, for example, based on concepts such as electrostatic potentials, 

electron affinities or molecular orbitals. 
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CHAPTER 6 
 

Summary and Perspective 
 

6Chapter_mark_6 
The use of machine learning (ML) in Computational Chemistry (CompChem) is 

commonplace nowadays because this synergy has strongly advanced the range of 

possible applications providing novel insights into chemical and physical processes in 

systems of practical interest.91 In particular, ML force fields (FFs) have made possible 

a detailed reconstruction of potential-energy surfaces (PESs) with prediction errors 

under 1 kcal mol-1 with respect to the reference ab initio calculations at a fraction of 

computational cost. This achievement is, undoubtedly, a product of the joint effort of 

many groups and years of research. Despite the great success, MLFFs are still 

methods under development and, as such, certain challenges remain to be solved. 

The aim of the thesis was to investigate the capability of state-of-the-art MLFFs to 

provide simultaneously accurate and efficient models offering unprecedented insights 

into the dynamics of realistic molecules. 

Firstly, a thorough exploration of PESs considering nuclear quantum effects (NQE) 

was done.89 It was found that NQE induce the strengthening of molecular interactions 

that are ubiquitous in biological systems: the 𝐸"→$∗ interaction and the interactions 

related to methyl rotors. Furthermore, quantum fluctuations prevail over thermal 

contributions in the 𝐸"→$∗ interaction at the most important temperature range for the 

majority of practical applications (from 50 to 450 K). These results clearly show the 

necessity to go beyond single-point calculations for understanding the origins of 

interactions in molecular systems at realistic conditions and their effects on the 

measurable observables. 

As a second important step, we analyzed the current limits of state-of-the-art MLFFs 

in reproducing complex PESs on the example of transition paths of flexible 

molecules.90 We found that methods based on local descriptors (e.g., BPNN and 

GAP/SOAP) saturate quickly with the increase in the number of training points, while 
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not achieving the desired prediction accuracy. The MLFFs based on global descriptors 

(e.g., sGDML) require careful model selection procedures when the reference 

datasets consist of several disconnected parts of the PES. The main challenges here 

are the inability of simple training schemes to select appropriate training datasets in 

unbalanced reference data and the limitations of the standard molecular descriptors 

to pick up the features describing the complex geometric transformations in flexible 

molecules. Finally, end-to-end NNs (e.g., SchNet) do not reproduce all relevant parts 

of the PES with equal accuracy required, for instance, to compute transition rates. 

Moreover, NNs require a larger amount of training data compared to kernel methods, 

which can result in a high computational cost when generating reference datasets.  

The revealed challenges inspired us to study in detail the role of a descriptor in the 

performance of an MLFF. Our results showed that the commonly employed strategies 

followed to construct both local and global descriptors need to be improved. On one 

hand, some features included in local descriptors are not required to accurately 

reconstruct a PES, while certain long distances (even beyond 10 Å) can be crucial. 

This suggests that the selection of a predefined cutoff radius to account for local 

environments should be revised. On the other hand, global descriptors can be reduced 

down to a 40 % of their original size for molecules containing 50 to 150 atoms without 

the loose of accuracy. Therefore, optimizing descriptors opens new avenues for 

building simultaneously more efficient and accurate ML models, which is crucial for 

large-scale applications. 

In summary, the work presented in this thesis highlighted the potential of MLFFs to 

provide insights into molecular systems, offering knowledge on new phenomena in 

chemistry and physics. Also, it disclosed the current limitations of state-of-the-art ML 

methods that need to be overcome for extending the applicability of MLFFs to obtain 

novel insights of more realistic systems. Furthermore, it proposed the optimization of 

the description of short- and long-range interactions within a ML model as a valuable 

step towards more efficient and more reliable MLFFs of large and flexible molecules. 

Overall, the results of this thesis suggest that the full workflow for building ML models, 

from training set selection to descriptor construction, still needs significant elaboration 

when dealing with complex systems. Appropriate optimization procedures should be 

implemented at the different stages in the construction of ML models. Training sets 

and descriptors tailored according to the problem at hand and the available data are 
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required to obtain more reliable MLFFs. In this regard, it is precisely the combination 

of supervised and unsupervised ML methods that offers a fully data-driven approach 

for this purpose. Such an approach would demand the integration of different 

techniques, like multiple-kernel methods,143 active learning,59,61,257 classification258,259 

and clustering244,260,261 algorithms. Also, the difficulty of learning complex PESs, as 

revealed in this thesis, suggests that finding a single optimal model for the entire PES 

might not be possible without a drastic loss of efficiency of MLFFs. Therefore, we might 

need, for instance, to consider moving from learning the entire PES in its complexity 

within a single task to the employment of multiple local models for different parts of the 

PES and then combining them into a global FF. 

In addition, descriptors constructed following more physically and chemically inspired 

approaches are needed to make more flexible MLFFs that can easily adapt to the task 

at hand. These descriptors must contain features based on concepts such as 

electrostatic potentials, electron affinities or molecular orbitals, and should be able to 

successfully describe local chemical bonding, as well as long-range electrostatics, 

polarization, and vdW dispersion interactions without incurring in excessive 

computational costs. Therefore, systematic approaches should be developed for 

finding the relevant chemical/physical patterns that define compositional (chemical 

arrangement of atoms in a molecule) and configurational (physical arrangement of 

atoms in space) degrees of freedom.  

While further research is certainly needed, it is already clear that the combination of 

traditional CompChem and ML methods brings new horizons in atomistic modelling. 

By generating an unprecedented impact on our knowledge of physical and chemical 

phenomena, this synergy will ultimately help to solve multiple problems in different 

areas, including medicine, materials design, pharmacology, energy production, 

environmental sciences, among others 
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Appendices 
 
 

Parts of Sec. A1 have been reproduced from the supporting material of Ref. 90 
 

7Chapter_Mark_A 
A1 Energetics and Geometric Data along the Transition 
Path of Glycine and Azobenzene 
 

 
Structure 𝜏1 𝜏2 𝛥(E+vdW) 𝛥E 

Glycine Ip 180.00 0.00 0.00 0.00 

Step1 174.89 -5.19 0.03 0.02 

Step2 169.61 -10.56 0.10 0.09 

Step3 164.16 -16.06 0.22 0.21 

Step4 158.57 -21.67 0.38 0.37 

Step5 152.84 -27.35 0.57 0.58 

Step6 147.01 -33.07 0.80 0.81 

Step7 141.10 -38.79 1.04 1.05 

Step8 135.13 -44.48 1.28 1.30 

Step9 129.16 -50.09 1.50 1.52 

Step10 123.21 -55.59 1.67 1.70 

Step11 117.35 -60.94 1.80 1.84 

Step12 111.58 -66.18 1.87 1.94 

Step13 105.88 -71.38 1.91 2.00 

Step14 100.23 -76.63 1.93 2.03 

Step15 94.62 -82.02 1.93 2.05 

Step16 89.01 -87.60 1.94 2.06 

Step17 83.38 -93.41 1.95 2.07 

Step18 77.70 -99.46 1.96 2.08 

     

Table A.1: Angles (in º), and relative energies (𝛥E and 𝛥(E+vdW)) (in kcal mol-1) through the 
path of glycine at the PBE+TS level of theory. 
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Table A.1 (continued) 

Step19 71.90 -105.77 1.98 2.08 

Step20 66.00 -112.31 1.99 2.07 

Step21 60.00 -118.99 1.97 2.05 

Step22 53.93 -125.66 1.94 2.01 

Step23 47.77 -132.31 1.88 1.95 

Step24 41.58 -138.87 1.81 1.88 

Step25 35.39 -145.31 1.73 1.80 

Step26 29.22 -151.60 1.66 1.72 

Step27 23.11 -157.70 1.60 1.66 

Step28 17.10 -163.60 1.55 1.61 

Step29 11.22 -169.29 1.51 1.56 

Step30 5.50 -174.76 1.48 1.53 

Glycine IIIp 0.00 -180.00 1.47 1.52 
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Table A.2: Angles (in º), and relative energies (𝛥E and 𝛥(E+vdW)) (in kcal mol-1) through the 
rotation path of azobenzene at the PBE+TS level of theory.  

Structure 𝜃	 𝜃' 𝜙	 𝛥(E+vdW) 𝛥E 

Cisazobenzene 123.43 123.43 8.04 0.0 0.0 

Step1 122.56 122.56 18.79 0.8 0.8 

Step2 122.06 122.06 29.54 2.5 2.3 

Step3 121.56 121.56 40.29 5.4 5.0 

Step4 121.06 121.06 51.04 9.5 9.0 

Step5 120.56 120.56 61.79 14.9 14.3 

Step6 120.06 120.06 72.54 21.5 20.7 

Step7 119.56 119.56 83.29 29.0 28.1 

Step8 119.06 119.06 94.04 30.2 29.5 

Step9 118.56 118.56 104.79 22.0 21.2 

Step10 118.06 118.06 115.54 14.1 13.2 

Step11 117.56 117.56 126.29 7.0 5.8 

Step12 117.06 117.06 137.04 0.7 -0.7 

Step13 116.56 116.56 147.79 -4.3 -5.9 

Step14 116.06 116.06 158.54 -8.1 -9.7 

Step15 115.56 115.56 169.29 -10.3 -12.0 

Transazobenzene 114.88 114.88 180.00 -11.6 -13.3 
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Table A.3: Angles (in º), and relative energies (𝛥E and 𝛥(E+vdW)) (in kcal mol-1) through the 
inversion path of azobenzene at the PBE+TS.  

Structure 𝜃	 𝜃' 𝜙	 𝛥(E+vdW) 𝛥E 

Cisazobenzene 123.43 123.43 10.25 0.0 0.0 

Step1 130.67 122.56 7.54 1.5 1.3 

Step2 138.28 122.06 7.04 5.1 4.7 

Step3 145.89 121.56 6.54 9.9 9.2 

Step4 153.50 121.06 6.04 15.0 14.2 

Step5 161.11 120.56 5.54 20.2 19.2 

Step6 168.72 120.06 5.04 24.4 23.2 

Step7 176.33 119.56 4.54 27.0 25.7 

Step8 183.94 119.06 4.04 27.4 26.0 

Step9 191.55 118.56 3.54 25.5 24.0 

Step10 199.16 118.06 3.04 21.5 20.0 

Step11 206.77 117.56 2.54 16.0 14.4 

Step12 214.38 117.06 2.04 9.6 8.0 

Step13 221.99 116.56 1.54 2.7 1.1 

Step14 229.60 116.06 1.04 -4.0 -5.7 

Step15 237.21 115.56 0.54 -9.1 -10.8 

Transazobenzene 
244.83 

(115.17) 
114.88 

0.00 

(180.00) 
-11.6 -13.3 
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Table A.4: Angles (in º), and relative energies (𝛥E and 𝛥(E+vdW)) (in kcal mol-1) through the 
rotation assisted by inversion path of azobenzene at the PBE+TS.  

Structure 𝜃	 𝜃' 𝜙	 𝛥(E+vdW) 𝛥E 

Cisazobenzene 123.43 123.43 10.25 0.0 0.0 

Step1 130.67 122.56 18.79 1.8 1.5 

Step2 138.28 122.06 29.54 6.7 6.2 

Step3 145.89 121.56 40.29 13.6 12.8 

Step4 153.50 121.06 51.04 20.4 19.5 

Step5 161.11 120.56 61.79 25.2 24.1 

Step6 168.72 120.06 72.54 27.2 25.9 

Step7 176.33 119.56 83.29 27.5 26.1 

Step8 183.94 119.06 94.04 27.4 26.1 

Step9 191.55 118.56 104.79 27.6 26.3 

Step10 199.16 118.06 115.54 26.6 25.3 

Step11 206.77 117.56 126.29 22.5 21.1 

Step12 214.38 117.06 137.04 15.2 13.7 

Step13 221.99 116.56 147.79 6.4 4.8 

Step14 229.60 116.06 158.54 -2.1 -3.7 

Step15 237.21 115.56 169.29 -8.5 -10.2 

Transazobenzene 
244.83 

(115.17) 
114.88 180.00 -11.6 -13.3 
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Table A.5: Angles (in º), and relative energies (𝛥E and 𝛥(E+vdW)) (in kcal mol-1) through the 
optimized rotation path of azobenzene at the PBE+TS.  

Structure 𝜃	 𝜃' 𝜙	 b a 𝛥(E+vdW) 𝛥E 

Cisazobenzene 123.43 123.43 10.25 1.25 1.43 0.0 0.0 

Step1 123.06 123.06 18.79 1.25 1.42 0.4 0.3 

Step2 123.06 123.06 29.54 1.26 1.42 1.9 1.6 

Step3 124.00 124.00 40.29 1.26 1.41 4.6 4.1 

Step4 124.00 124.00 51.04 1.26 1.41 8.3 7.7 

Step5 124.00 124.00 61.79 1.27 1.39 13.0 12.3 

Step6 125.00 125.00 72.54 1.28 1.38 18.5 17.6 

Step7 125.00 127.00 83.29 1.28 1.37 24.3 23.4 

Step8 125.00 125.00 88.67 1.28 1.37 26.1 25.2 

Step9 123.00 123.00 94.04 1.27 1.36 25.6 24.8 

Step10 121.50 122.00 99.42 1.27 1.36 22.3 21.5 

Step11 120.00 121.00 104.79 1.27 1.36 18.7 17.9 

Step12 119.00 119.00 115.54 1.27 1.37 11.8 10.8 

Step13 118.00 118.00 126.29 1.27 1.38 5.3 4.1 

Step14 117.00 117.00 137.04 1.27 1.39 -0.5 -1.9 

Step15 116.00 116.00 147.79 1.27 1.40 -5.3 -6.8 

Step16 115.17 115.17 158.54 1.27 1.41 -8.8 -10.4 

Step17 115.17 115.17 169.29 1.26 1.41 -10.9 -12.6 

Transazobenzene 114.88 114.88 180.00 1.26 1.42 -11.6 -13.3 
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