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Machine Learning Force Fields Under the Microscope: Stability, Reliability and

Performance Analysis

by Cordeiro Fonseca Gregory

Machine Learning Force Fields (MLFF) are a crucial tool for bringing the

accuracy of computationally expensive quantum mechanical calculations to

practically feasible applications on molecules and materials. Over time, the

sophistication of MLFF architectures has increased to match the complexity of

systems of ever-growing sizes. This increase in complexity comes with a higher

need for in-depth analytical tools to properly assess a Machine Learning (ML)

model’s quality. Even the most advanced models that showcase remarkably low

overall prediction errors demonstrate highly heterogeneous predictive capabilities

across the Configurational Space (CS) of a single system. In practice, these can

significantly impact the reliability of a model as a high prediction error on a few

key geometries can easily lead to e.g. the destabilisation of a molecular dynamics

simulation.

In this work, we provide a cross-platform software package designed to give a

detailed view into the performance and shortcomings of an MLFF model, complete

with an easy-to-use graphical user interface. Entitled FFAST (Force Field Analysis

Software and Tools), this actively developed software enables any user to gauge

the quality of many state-of-the-art ML architectures and infer potential pitfalls in

HTTPS://WWWEN.UNI.LU/
https://wwwen.uni.lu/fstm
https://wwwen.uni.lu/research/fstm/dphyms
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practical applications. Analytical tools are provided at any desired level of

resolution, from average error metrics over entire datasets to assessments of

prediction accuracies on an atom-by-atom basis.

To provide an optimal compromise between detailed analysis and simplicity, a

novel approach is developed to determine a model’s predictive capabilities across

different regions of CS. This is achieved by employing methods from unsupervised

learning to create clusters of qualitatively different configurations and calculate

their respective prediction accuracies separately. This provides much-needed

context to otherwise general error metrics and captures insightful details of the

model’s capacity to reproduce e.g. important out-of-equilibrium mechanisms

rarely frequented in the reference dataset. Furthermore, inhomogeneous error

curves across clusters also provide information on which regions are likely poorly

represented in a model’s training set.

The potential of the aforementioned methods as well as FFAST are showcased

on example datasets of stachyose and docosahexaenoic acid (DHA) as well as a

handful of smaller organic molecules. After successfully proceeding through a

typical FFAST workflow with two state-of-the-art ML models (Nequip and

MACE), it was quickly determined that carbons and oxygens near glycosidic bonds

of the stachyose molecule have increased prediction errors. Furthermore,

prediction errors on DHA rise as the molecule folds, with notably low accuracy on

the carboxylic group at the edge of the molecule. Finally, the cluster prediction

errors of a handful of small organic molecules were generated for three different

ML models (sGDML, SchNet and GAP/SOAP). The latter showed that in all cases,

prediction accuracies are highly heterogeneous across CS, hinting at a host of

potential problems in real-world applications, where model stability is paramount.

Motivated by the newfound heterogeneities, an iterative training process is

proposed that actively seeks out configuration clusters poorly represented in the

training set. Assisted by clustering techniques, the training set is gradually

extended until it equally reflects all relevant parts of CS of the reference dataset. It
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is found that models trained this way have enhanced stability in molecular

dynamics, with performance comparable to significantly increasing the total

number of training points. Furthermore, they demonstrate an up to two-fold

decrease in the root mean squared errors for force predictions in the problematic

regions of CS.

Finally, future avenues for research are briefly discussed in light of this work’s

findings. This includes the suggestion of a “divide and conquer” approach to

subdivide the task of learning CS into smaller building blocks, providing a

potentially reliable way to ensure reliability across all possible states of the system.

As the complexity and sizes of the systems tackled by MLFFs have grown over

recent years, a subdivision of the learning process into more manageable building

blocks is of wide appeal.
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Chapter 1

Introduction

All matter, ranging from molecules to crystals and solids to gases, are different

manifestations of atoms interacting under the same physical laws at the

microscopic scale. A complete understanding of these interactions and the means

to replicate them in silico allow us to predict how particles move in tandem to

compose matter with various structures and properties. This unlocks

groundbreaking advancements in material design, novel pharmaceutics, energy

solutions such as the development of new batteries, and more [1–14]. As such,

atomistic simulations have developed into an integral part of scientific discovery.

Replicating the movement of atoms in silico at a nanoscopic scale requires

accurately calculating the potential energy associated with every possible

configurational state of the system(s) under study. The derivative of the potential

energy surface (PES) gives rise to a force field (FF) that dictates the direction from

every atom towards an energetically favorable state. The latter can then be used to

run molecular dynamics and observe conformational changes, chemical reactions,

protein folding, ligand binding, et cetera.

Any molecular or condensed system can be fully described by the electronic

Schrödinger equation and have — in theory — its exact PES computed. In practice,

exact solutions to Schrödinger’s equation can only be found for the simplest of

systems, thus approximations are needed for any real application. For instance, the

universally applied Born-Oppenheimer approximation stipulates that the motion

of electrons and nuclei can be treated separately due to electrons being much
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lighter and thus moving much faster. Many additional steps and approximations

are necessary to find numerical solutions to said equations (especially for the

electronic part), the development of which falls into the vast field of electronic

structure theory. The methods that come from works in this field, dubbed ab initio,

are the most accurate way to calculate a PES (and the associated force field).

However, this comes at a significant computational cost with unfavorable scaling

laws as the number of electrons in the system grows. Density Functional Theory

(DFT) [15, 16] is among the cheapest ab initio methods and scales as O(n3) while

Coupled Cluster Single-Double-(Triple) (CCSD(T)) [17, 18], widely regarded as the

“golden standard” in terms of accuracy, suffers from O(n7) scaling, where n

roughly corresponds to the size of the system.

Many applications of interest require large systems or long simulation times,

such that using ab initio methods becomes unfeasible. The development of classical

force fields has been one of the main alternatives providing more computationally

efficient albeit much less reliable FFs. Here, the electrons are only implicitly

considered in the potential energy, which consists of analytical terms modeling a

molecule’s (or any other system’s) stretching and bending, change in torsion

angles, pairwise van der Waals and typically non-polarizable electrostatic

interactions. Each term is given as a predefined function whose parameters are

fitted to experiments or reference ab initio calculations.

The main focus of this work is a second option to bypass the efficiency problems

of ab initio methods: Machine Learning Force Fields (MLFF) [19–46]. Here, statistical

models are trained on substantial amounts of ab initio data to accurately reproduce

highly accurate energy and force calculations at a fraction of the cost. The early

developments of MLFF were largely jumpstarted by the Behler-Parrinello Neural

Networks (NN) in 2007 [30]. They use an invariant description of every atom and its

environment and subsequently feed it to a NN of a single hidden layer to calculate

atomic contributions to the total potential energy.

The initial target systems were simple and small, such as silicon crystals and
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water molecules. Over time, increasingly complex systems were tackled through

systematic advancements in the MLFF architectures. For example, new descriptors

were developed, such as the Smooth Overlap of Atomic Positions (SOAP) [47],

Atom-centered symmetry functions [48] and Many-Body Tensor Representations

(MBTR) [49]. Alternatively, kernel methods, such as the Gaussian Approximation

Potential (GAP) [50] and Gradient Domain Machine Learning (GDML) [51], were

proposed alongside NNs. In 2017, SchNet [40, 52, 53] presented itself as a novel

NN architecture with defining features that are still present in many modern

MLFFs [54]. Rather than relying on a predefined descriptor, SchNet iteratively

learns the system representation through several interaction layers that update

atomic embeddings in relation to their environment. This feature, coupled with the

pairwise nature of the interaction layers, allows SchNet models to be highly

accurate and transferable to different molecules.

Nowadays, many state-of-the-art MLFFs have adopted message-passing Graph

Neural Network (GNN) [55, 56] approaches as a successor to SchNet’s

convolutional interaction layers. Beyond this, current research directions include

the implementation of equivariant features [57–61] or the explicit inclusion of

physical interactions in the network to better account for e.g. atoms that are far

away from each other [62, 63]. All in all, the improvements made in the last decade

have resulted in the ability of MLFF to reproduce the interactions in medium and

even large-sized molecules and complex materials, raising atomistic simulations to

a qualitatively new level.

Increasing the size and complexity of the systems available for MLFF comes

with additional challenges. One of them is the models’ quality measures. When

systems are small, simple overall error metrics such as mean average errors (MAE)

or root mean square errors (RMSE) are sufficient to determine a model’s accuracy.

The same is not true for highly flexible molecules (or similarly complex systems)

with diverse states in Configurational Space (CS). MLFF stability and reliability are

not guaranteed from small MAE and RMSE values, partly because single atoms or
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configurations have no tangible influence on overall metrics. Generally, performant

ML models can easily lead to unphysical behaviors in practice when faced with

out-of-equilibrium structures, rare events, or outliers in prediction accuracy

profiles. This is especially relevant when using MLFFs to run dynamics for

extended time scales: a high accuracy over a series of configurations is only

relevant if a single, poorly predicted configuration in the past has not led the entire

dynamics off course. One can thus compare an MLFF trajectory to the utilization of

a self-driving car, where the car’s ability to follow the road and speed limitations

perfectly is no consolation if it fails to recognize even a single stop sign along the

way.

Adoption of MLFFs at large hinges on models being trustable to adequately

replace ab initio calculations in practical applications. Thus, the tools that provide

the insight necessary to estimate MLFF reliability and stability must be as

developed as the models themselves. However, the established ways to find flaws

in ML models’ predictions are limited, with most practices revolving around

simple overall metrics such as MAE and RMSE on energies and forces. In this

work, we delve deeper into how to properly assess a model’s quality using various

methods. Some tools created for this purpose serve as a foundation for future

development in the field of analysis of MLFFs, mainly in the form of a novel

interactive software dubbed FFAST (Force Field Analysis Software and Tools) [64].

The latter combines many of this work’s elements into a user-friendly interface that

allows any user to delve deep into the performance of their MLFFs or FFs of any

kind.

The manuscript has the following structure. In chapter 2, the fundamental steps

involved in creating an MLFF are introduced. This includes the basics behind

energy calculations in electronic structure theory, a general overview of the

different options to generate reference data for the training of MLFFs, a summary

of the development of MLFFs over recent years, and a few examples of common FF

analysis methods. Chapter 3 introduces the software package FFAST and serves as
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a way to show how different types of prediction errors can manifest when

analyzing MLFFs in finer detail. Furthermore, it also suggests potential ways to

improve the models in question in the future. This section also introduces the

usage of clustering algorithms to analyze prediction errors across different CS

regions. Chapter 4 offers further details on the theory behind clustering as well as a

practical application on a handful of datasets of small organic molecules. It shows

that prediction errors for different types of configurations can drastically vary for

the same prediction model, sometimes leading to unreliable out-of-equilibrium

behavior. As a consequence of this finding, chapter 5 suggests a way to counteract

the inhomogeneous error distribution across clusters in CS through an iterative

training set selection scheme. This leads to models with a “flattened” error curve

that show better prediction errors for rare events and more reliable behavior in

extrapolation regions. Finally, chapter 6 offers a perspective and suggestions for

future work, followed by a summary of this work in chapter 7.
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Chapter 2

Life cycle of a Machine Learning Force

Field

2.1 Overview

A working MLFF model results from multiple interconnected steps such as data

generation, architecture adjusting, training, verification, and practical applications

to solve actual problems. Understanding the entire life cycle of an MLFF model is

essential to ensure that its quality, reliability, accuracy, etc., is up to the required

standards. It is useful to view the components involved in creating an MLFF — or

any ML model – as a cycle rather than a linear succession of steps, as depicted in

Figure 2.1. For MLFFs, we roughly identify four major ingredients: the choice of

the suitable ab initio method to perform reference calculations, the choice of the

sampling method to find representative data points across the CS of the system

under study, the choice of the regression model (MLFF architecture in other words)

to train on the data, and finally the analysis of the resulting model to determine its

features, pitfalls and potential areas of improvement. The insights gained from

analyzing the resulting model can lead to modification in previous steps to

improve the model performance in the next iteration.

The choice of the ab initio method to perform reference calculations depends on

many factors. A trivial consideration is that of computational costs, as there are
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FIGURE 2.1: Illustration of the life cycle of a MLFF. The cycle includes
roughly four components, the choice of ab initio methods, the choice of
sampling methods, the choice of regression algorithm and finally the
analysis. The last step enables identifying shortcomings in all previous

steps to make informed changes in the next iteration of the cycle.

significant differences in efficiency between different approaches. Beyond this, it is

vital to consider the physical and chemical phenomena essential for the particular

system at hand to make the right choice for the level of theory. For instance,

dispersion interactions are crucial for layered materials, as they govern the weak

interlayer binding and stacking and thus determine the material’s structural

stability and properties. As such, explicitly including van der Waals interactions in

the reference calculations is paramount for such systems. Another example is the

employment of multireference calculations when excited electronic states are of

interest.

Any MLFF can only learn the interactions reproduced by the reference ab initio

method and included in the training data. Whenever the training data are missing

some essential physics due to the wrong choice of the reference method, even the

most advanced MLFF architectures are doomed to fail in practical applications.
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Finding the right compromise between the required level of theory and acceptable

efficiency in generating the training data is often a challenge. Multiple solutions

have been proposed, including employing computationally cheap but less accurate

computational chemistry methods for the initial sampling followed by highly

accurate ab initio calculations for a selected subset of points, or iterative training of

MLFFs using active learning techniques. Ultimately, the goal is to bring the high

accuracy of reference quantum chemistry methods with minimal computational

costs.

Sampling methods aim to generate the geometries that will be fed to the ML

model during the training procedure. The best choices largely depend on the

intended applications. The purpose of MLFFs is often to act as surrogate models in

molecular dynamics to reduce computational cost and thus drastically increase

simulation times or system sizes. In this case, an appropriate possibility of

reference data generation is trajectories obtained by running a (short) molecular

dynamics with an ab initio method of choice. Analysis of the obtained trajectory

and/or the model trained on it can reveal flaws in the original data generation

scheme. For example, the model might fail to accurately reproduce a rare event,

such as an important reaction occurring in the long-time simulation. Another

typical issue arises when the system has multiple disconnected local minima on its

PES, but not all were sampled within the reference MD run. Multiple ways to

combat these flaws have been developed. In the case of rare events, one can

increase the prevalence of the particular reaction in the dataset by, e.g., sampling

additional data points along its pathway, using methods such as Nudged Elastic

Band or Umbrella Sampling [65–67]. For complex PESs, one can first employ a

conformer search and then generate short MD trajectories starting from all relevant

local PES minima.

Once the reference dataset is generated, one needs to decide on a regression

model capable of learning the PES as well as the forces of the given system. Once

again, the system in question can majorly affect the “best” choice. Here, the size,
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chemical composition, structural complexity, and importance of particular

interatomic interactions are all significant. For instance, while state-of-the-art ML

models based on message-passing algorithms demonstrate superior accuracy,

efficiency, and scalability for modeling a wide range of molecules and solids, they

might fail to describe an adsorption process whenever the surface-adsorbate

distance exceeds the cutoff radius (an intrinsic model parameter). Conversely,

global ML models — capable of reproducing all possible interactions without

cutoffs — have limits in target system size due to computational limitations. For

other applications such as periodic systems, the ML model needs to be capable of

taking the particular translational symmetries into account.

Thus, the detailed analysis of an MLFF performance is a necessary element to

enable an informed reconsideration and improvement of choices made in all

previous ML model life cycle steps. The changes can be small, such as increasing

the number of reference data in the training set or tuning the settings of the ab initio

method and regression model. On the other hand, detailed analysis can reveal

systematic errors requiring considerable modifications in the training

methodology. This might motivate a switch to a different level of ab initio method, a

revision of the ML architecture, or even a completely new direction for

development. All in all, detailed analyses of MLFF performance lead to lasting

advancements that expand the state-of-the-art and stimulate further research in the

field of atomistic simulations.

The following subsections explore the current methods for each life-cycle step in

more detail. As the main focus of this work, the development of regression models

is given an additional spotlight in section 2.4.

2.2 Ab initio methods

One can distinguish two major branches in ab initio methods: (post) HF methods

and DFT. The former describes electron interactions through a mean-field which is
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at the source of its main drawback: the inability to capture electron correlation, i.e.

the interplay between moving electrons due to their Coulomb repulsion. This

limitation is generally attenuated by additions such as MP2 or Coupled Cluster,

which recover some of the electron correlation through perturbation theory or

additional excitation operators respectively. A rough overview of the method and

its additions is described in section 2.2.1.

DFT instead rewrites Schrödinger’s equation in terms of electron density rather

than electron wavefunctions. This reduces complexity and while it includes

electron correlation in a so-called exchange-correlation functional, its exact form is

unknown and needs to be approximated. Approaches include expansions of the

electron density and gradient (e.g. BLYP [68] and PBE [69]) as well as hybrid

functionals that partially reinstate the HF exchange (e.g. B3LYP [68], PBE0 [70]).

Furthermore, it is often necessary to add an additional functional to explicitly

account for dispersion forces (e.g. vdW-DF [71, 72], D3/D4 [73, 74],TS [75],

MBD [76]). DFT and some of the ways to deal with the exchange-correlation

functional are briefly discussed in section 2.2.2.

Practically, many of these approaches are implemented and distributed in

various software packages, such as Gaussian [77], VASP [78–80], Quantum

Espresso [81, 82], ORCA [83–85], CP2K [86] and FHI-AIMS [87].

2.2.1 Hartree-Fock and Post Hartree-Fock

The complete Hamiltonian for an arbitrary system of nuclei and electrons can be

written as a sum of kinetic terms T and Coulomb potential terms U for nuclei n and

electrons e respectively:
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H =Tn(R) + Te(r) + Uen(r, R) + Uee(r) + Unn(R) (2.1)

=� Â
i

h̄2

2Mi
r2

Ri
� Â

i

h̄2

2me
r2

ri
� Â

i
Â

j

Zie2

4pe0|Ri � rj|

+
1
2 Â

i
Â
j 6=i

e2

4pe0|ri � rj|
+

1
2 Â

i
Â
j 6=i

ZiZje2

4pe0|Ri � Rj|
, (2.2)

where Mi is the mass of nucleus i, Zi is its atomic number, Ri its position, rj the

position of electron j and me its mass. In all applications, the Born-Oppenheimer

approximation is assumed: that is, the movement of nuclei is much slower than that

of electrons and so the electronic Hamiltonian can be solved while considering the

position of every nucleus as a fixed parameter. As such, the fundamental equation

to solve is:

EY(r; R) = (Te(r) + Uen(r; R) + Uee(r) + Unn(R))Y(r; R). (2.3)

In the HF theory, the proposed ansatz for the wavefunction Y is a Slater

determinant, which results in a linear combination of spin orbitals c that satisfies

the indistinguishability of electrons and the anti-symmetry of the wavefunction.

Y =
1p
N!

�������������

c1(x1) c2(x1) · · · cN(x1)

c1(x2) c2(x2) · · · cN(x2)
...

... . . . ...

c1(xN) c2(xN) · · · cN(xN)

�������������

, (2.4)

where N is the total number of electrons in the system. Every spin-orbital c depends

on a single independent electron, and as such, writing the wave function in this form

is equivalent to considering the Coulomb repulsion on every electron with respect

to the average position of all others. This is why the HF theory is often referred to

as a mean-field theory. In practice, these spin orbitals are approximated as a finite

set of fixed functions in order to be computationally manageable, usually a linear
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combination of Gaussians. The equations are solved using the variational principle:

since the ground state wavefunction is the one with the lowest energy, the latter can

be varied (in this case, the coefficients of the linear combination of fixed functions)

to minimize the energy and thus solve the system.

The Hartree-Fock (HF) method serves as a foundation for many other ab initio

methods but can also be used on its own as a first-order approximation to evaluate

the energies and forces of a molecular system. Due to its mean-field approach to

describing electrons, the method cannot capture electron correlation, i.e. the

interaction between moving electrons avoiding each other due to their Coulomb

repulsion. This limitation makes standard HF rarely useful for actual applications,

as the contribution of the electron correlation is too large to be ignored.

Finding ways to bypass this limitation within the same framework yields a

variety of approaches to tackle the electron correlation problem, collectively called

post Hartree-Fock methods. Those add a way to explicitly include electron

correlation effects. The most popular examples of such approaches are the

following:

• Configuration Interaction expresses the wavefunction of the system as a

linear combination of multiple electronic configurations as opposed to the

single determinant treated in the HF method, see Equation 2.5. Every term in

the sum Fa
i is a Slater determinant with spin-orbital i excited to orbital a and

is weighted by a coefficient ca
i . The more configurations are included in the

sum, the larger the proportion of the correlated electrons’ motion is captured.

However, the computational cost associated with this sum renders this

method usable for small systems only.

Y = c0F0 + Â ca
i Fa

i + Â cab
ij Fab

ij + ... . (2.5)

• MPN: In the Møller-Plesset Perturbation Theory, the electron correlation

effects are taken into account via a perturbation added to the Hamiltonian of
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the system. The perturbation is the difference between the exact Hamiltonian

and the HF Hamiltonian. The first term of the expansion is always zero;

hence, the expansion is most commonly stopped at order two (MP2) as the

best compromise between accuracy and efficiency.

• Coupled Cluster considers the true wavefunction to be the HF wavefunction

F0 (usually given by a Slater determinant) preceded by an exponential

operator, as shown in Equation 2.6. This is similar to configuration

interaction, with the exponent a sum of "cluster operators" Ti that correspond

to excitations of either single electrons, double excitations, triples, etc... One

of the most popular compromises is CCSD(T), which includes single (S) and

double (D) excitations and treats triple excitations perturbatively ((T)). This is

often used as the golden standard and reference value for other methods to

strive towards.

Y = eT1+T2+...F0. (2.6)

2.2.2 Density Functional Theory

Aside from the approaches based on HF, another way to solve Schrödinger’s

equation is by rewriting the Hamiltonian as a functional of the electron density

rather than the electron wavefunction. The core equation to solve is the same

Hamiltonian under the Born-Oppenheimer approximation as introduced in

Equation 2.3. However, it is rewritten to make the electron density r(r) the key

variable:

r(r) = N
Z

dr2...
Z

rNY⇤(r, r2, ..., rN)Y(r, r2, ..., rN) (2.7)

That is the core of DFT, tempering the complexity of the problem by reducing

the dimensionality of the object of interest (3 rather than 3N, where N is the
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number of electrons in the system). The equation above is — in principle — fully

reversible in that once the ground state density is found, the corresponding ground

state wavefunction can be determined. Thus, the expectation value of any

observable can equally be calculated using this formalism as with a

wavefunction-based description.

Most applications of DFT further alter the expression of the problem using the

Kohn-Sham equations. There, a fictitious system of non-interacting electrons is

introduced in such a way that it generates the same density as the full system of

interacting electrons. The non-interacting electrons are subject to an external

potential called the Kohn-Sham potential, which for molecular systems is at least

the electron-nucleus Coulomb interaction. Note that similarly to HF methods, the

Kohn-Sham wavefunction is assumed to be a Slater determinant of a set of orbitals

c, see Equation 2.4. Under this paradigm, the total energy can be expressed as:

E[r] = Ts[r] + Een[r] + J[r] + Exc[r], (2.8)

Ts[r] =
N

Â
i=1

Z
drc⇤

i (r)(�
h̄2

2me
r2)ci(r), (2.9)

Een[r] = Â
i

e2
Z Zir(r)

|Ri � r|dr, (2.10)

J[r] =
e2

2

Z Z
r(r)r(r0)
|r � r0| drdr0, (2.11)

where e is the charge of an electron and me its mass, Zi is the atomic number of

nucleur i, r is the electron density of the system, Ts is the Kohn-Sham kinetic energy,

Een is the electron interaction with the external potential from the nuclei, J[r] is the

Coulomb energy of the electrons and Exc is the exchange-correlation potential.

The latter accounts for the quantum mechanical effects not captured by the

other terms of the Kohn-Sham formulation. It is often split into two terms: first, the

exchange part Ex takes into account the effects due to the exchange symmetry of a

wavefunction of indistinguishable particles. In this case, the particles in question
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are electrons and as such this interaction is often referred to as the Pauli repulsion.

Secondly, the correlation part Ec accounts for the influence that electrons have on

the movement of other electrons.

Unfortunately, the exact form of Exc is unknown and as such needs to be

approximated. Popular approaches include the following:

• Local Density Approximation (LDA) approximates exchange-correlation as

a function of only the local electron density. In large, the most successful

approximations following this idea are based on the homogeneous electron

gas. For the exchange part, this leads to the analytically simple expression

found in Equation 2.12. The correlation part is usually only available at the

limits of low or high densities. Ultimately, this is an inexpensive method but

it also proves insufficient to accurately describe most systems.

ELDA
x [r] = �3

4

✓
3
p

◆1/3 Z
r(r)4/3dr. (2.12)

• Generalized Gradient Approximation goes beyond LDA by taking into

account non-uniformities in the electron gas. This is done by expanding Exc

in terms of the electron density and its gradient. These functionals are

generally more complex, but they correct some of LDA’s tendency to

underestimate the exchange energy and overestimate the correlation energy.

Popular examples of GGA functionals include BLYP (Becke-Lee-Yang-Parr)

and PBE (Perdew-Burke-Ernzerhof).

• Hybrid functionals are, as the name indicates, a mixture of functionals. It

takes advantage of the fact that HF methods have an explicit expression for the

exchange interaction and utilises it in the DFT formalism. The correlation part

Ec is then taken from a different source such as GGA approaches. Examples

include B3LYP (Becke, 3-parameter, Lee-Yang-Parr) and PBE0, the latter of
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which combines the HF exchange term with the PBE functional mentioned

above:

EPBE0
xc =

1
4

EHF
x +

3
4

EPBE
x + EPBE

c . (2.13)

Additionally to approximations for Exc, dispersion interactions also need to be

explicitly accounted for. Dispersion arises from instantaneous fluctuations in the

electron distribution around an atom which in turn induces a complementary

fluctuation around neighbouring atoms. While this interaction is comparatively

weak, it becomes particularly relevant over longer distances such as for large

molecules, layered materials or molecular complexes. Thus, the consideration of

Van der Waals functionals is necessary to properly account for dispersion forces.

These terms are additional corrections to the energy calculated by DFT: popular

choices include Grimme’s DFT-D series [73], the Tkatchenko-Scheffler method [75]

or Many-Body Dispersion (MBD) [76].

Similarly to HF, the Kohn-Sham equations are also solved self-consistently by

varying parameters such as to minimize the total energy. The procedure includes

initialization, calculating the effective potential using the guessed electron density,

solving the equations — which give a new guess for the electron density — and

repeating the process. Convergence is reached when the updates in the electron

density are lower than a given threshold.

2.3 Sampling

Creating a reference dataset for ML potentials requires a meticulous exploration of

the system’s configurational space, which entails choosing specific molecular

configurations or atomic geometries to represent the myriad of conditions the

potential may face in real applications. This sampling process is pivotal, as the
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quality and diversity of the chosen configurations directly influence the trained

model’s versatility and efficacy in handling real-world scenarios.

A primary approach to this sampling is to select a set of configurations from

available molecular dynamics (MD) trajectories. MD simulations track the

time-evolution of atoms and molecules as they interact, based on the principles of

classical mechanics combined with the accuracy of previously mentioned ab initio

methods for energy and force calculations. By simulating the motion of atoms over

time, MDs provide a window into the dynamical properties and behaviour of

chemical systems at the atomic scale, making them rich sources of data. This

dynamic nature means that MD trajectories can inherently capture a wide range of

molecular configurations, spanning from stable to transition states. Therefore,

extracting configurations from MD trajectories for a dataset offers a robust and

diverse foundation, ensuring that the machine learning potential is trained on a set

that reflects the true dynamical nature of molecular systems.

However, molecular dynamics also come with inherent limitations. First, MD

inherently explores thermodynamically accessible states, which means rare but

crucial configurations might be underrepresented or entirely missed. Furthermore,

long-timescale events or slow dynamics, often critical in processes like protein

folding or material phase transitions, might be computationally prohibitive to

simulate directly with MD. Hence, relying solely on MD could lead to gaps in the

dataset, potentially compromising the comprehensiveness of the trained machine

learning model.

This section briefly explores the basics of molecular dynamics in the context of

reference data creation as well as popular additions or alternatives when more

sophisticated approaches are needed.
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2.3.1 Basics of molecular dynamics

At the most basic level, a molecular system can be described by the positions of all

N atoms of the system [88]:

R = (r1, ..., rN). (2.14)

Simply using Newton’s equations of motion, we can determine that for every

atom i:

ai =
Fi
mi

= � 1
mi

∂E
∂ri

, (2.15)

where ai is the acceleration of the atom, mi its mass, Fi the forces acting on it and

E the total potential energy of the system. From this, one can evolve the system

iteratively through numeric integration. The two most commonly used integrators

are Velocity Verlet and the Leapfrog method. The former is shown below:

x(t + dt) = x(t) + v(t)dt +
1
2

a(t)dt2, (2.16)

v(t + dt) = v(t) +
a(t) + a(t + dt)

2
dt, (2.17)

where x(t), v(t) and a(t) are the position, velocity and acceleration vectors at time t

and dt is a finite timestep. Performing multiple iterations of this sort (usually until

the forces are below a given threshold) results in the minimization of the potential

energy and thus a geometry optimization. This is usually the first step towards the

creation of a dataset, as it creates a starting configuration of the system that is stable

and at a (local) minimum.
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2.3.2 Thermostat and Barostat

To extract thermodynamical properties from a system, the latter needs to be

simulated within a given ensemble. This is also needed if we want to go beyond

simple geometry optimization and push the system to explore CS.

The two important ensembles are the canonical ensemble (NVT), where the

number of atoms, the volume and the temperature are kept constant, and the

isothermal-isobaric ensemble (NPT) where the pressure is kept constant instead of

the volume.

Keeping the temperature constant requires the introduction of a thermostat.

Simply put, the thermostat defines the temperature as the time-averaged kinetic

energy K, where K = 1
2 Âi v2

i and hKi = 3
2 NkBT. In its most simple form, the

thermostat takes form as a simple scaling factor l on the amplitude of the velocities

of the system:

vnew
i = vold

i · l. (2.18)

At each time step, the average kinetic energy hKi and its associated temperature

T is calculated over a given period and compared to the target temperature Tt. The

scaling factor l is adjusted such as to equalise the temperature:

l =

r
Tt
T

. (2.19)

In practice, this simple thermostat is unable to properly reproduce the

dynamics inside of a canonical ensemble as the kinetic energy is not allowed to

fluctuate. There are better alternatives such as the stochastic Andersen

thermostat [89] where random collisions act on the atoms of the systems to regulate

the temperature. Another viable method is the Nosé-Hoover thermostat which

incorporates a heat bath directly into the system. Finally, one of the most widely

used approaches is the Langevin thermostat, where the equations of motions are
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directly altered to maintain the temperature:

ai =
Fi
mi

� givi +
fi

mi
. (2.20)

Here gi is a friction coefficient and fi is a stochastic force that simulates thermal kicks

or collisions from the environment. In the Langevin framework, the environment is

assumed to be a continuum of small particles that our (large) particles of interest are

surrounded by.

Note that the NPT ensemble requires a barostat as well as a thermostat.

Barostats work very similarly to the above, with the total pressure being kept

constant (as opposed to the temperature) by varying the total volume (as opposed

to the velocities).

2.3.3 Best practices and advanced sampling techniques

Simple molecular dynamics such as those described above tend to stay in or near

equilibrium throughout the entirety of its runtime. This is natural, as the only effect

counterbalancing energy minimization efforts are the thermostat and barostat.

Thus, uncommon or even rare events are unlikely to be visited unless the dynamics

run for prohibitively long times. Given the aforementioned computational costs

attributed to our chosen ab initio methods that calculate the potential energy, this is

not ideal.

Thus, especially for large and/or flexible molecules, it is often necessary to bias

the dynamics such that they are more likely to move out of equilibrium states. One

of the simplest methods is running temperature accelerated dynamics, where the

temperature of the thermostat is raised significantly. This allows rare events such as

overcoming energy barriers to occur more frequently, thus hastening the exploration

of CS.

Another way to accomplish this goal is by performing adaptive umbrella

sampling. The basic idea is to add an external bias B to the system resulting in a
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new, modified potential E0:

E0(R) = E(R) + B(R). (2.21)

Every few timesteps, the external potential B is adjusted such as to make the

states already visited less likely. It typically accomplishes this by calculating a

histogram over the visited states and adding its logarithm as an additional term to

the potential.

This method is very similar to that of metadynmics, where histograms are

skipped but every (nth) visited timestep leads to the creation of an additional

Gaussian term to the potential. This Gaussian is centred at the visited state R itself,

thereby pushing the system away from it. Note that both umbrella sampling and

metadynamics often act on collective variables rather than the atomic coordinates

themselves, i.e. the external potential is given by B = B(CV(R)), where CV(R) is a

collection of characteristic variables for the system (angles, dihedrals, distances...).

More specialized methods are available when dealing with specific systems,

such as the Nudged Elastic Band [65] method for datasets containing the reaction

path between two configurations of interest, or Steered Molecular Dynamics [90,

91] when dealing with e.g. the manual stretching of a molecule. Furthermore,

machine learning approaches can be applied here as well through the usage of

active learning [92, 93]. However, a complete discussion of the different methods is

beyond the scope of this work.

2.4 Regression

Due to the high computational costs associated with ab initio methods, the idea of

bypassing them through cheaper means is of high interest. ML provides one such

way and its application in the space of chemical compounds has gained traction

over the years. This new field of Quantum Machine Learning (QML) deals with
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building statistical relations between molecules (often in particular configurations)

and corresponding properties of interest. These can include thermodynamic

properties such as atomization energies or dipole moments [94–96], as well as

directly the PES or FF of the system. In this work, the prediction of the latter is the

focus.

Thus, the problem boils down to building a regression model capable of

associating molecular geometries and their respective potential energy and/or

atomic forces. These relations are learned by parametrizing regression models such

as NNs to closely imitate the behaviour of given reference data. However, this is a

highly non-trivial task in large due to the complexity of chemical interactions, as

illustrated by the ongoing research on electronic structure theory and beyond.

Furthermore, as the cost of creating reference data is high, the models utilised in

this field have to be both accurate and data-efficient.

This section provides a short overview of the developments made in pursuit of

these goals over the last decades. While not an extensive deep dive, it provides

the necessary minimum to understand the main challenges as well as the major

breakthroughs and ideas that defined the field throughout the years.

2.4.1 Early Neural Network Potentials

Some of the earliest applications of NNs on molecular systems trace back to around

1995 [97, 98]. The networks of that time were limited to shallow architectures of 1-2

hidden layers. The inputs consisted of one or a few internal coordinates

representing a relevant part of the system. For example, the potential energy of

medium-sized organic molecules (Tetrahydrobiopterin, 32 total atoms) with respect

to two chosen torsional angles was learned using a small neural network with a

topology of 2-3-3-1 [99].

In all cases, the input describing the molecular system provided to the

early-generation neural network was simple representative variables such as
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specific distances, angles, dihedrals, etc. Notably, all those descriptors are

rotationally and translationally invariant. That is, if the entire system is translated by

an arbitrary vector or rotated in any direction, the input variables — and thus the

predicted energy — do not change. Including these physical symmetries in the

regression models is paramount, and as such, it is present in all models discussed

in this chapter. On the other hand, permutational symmetry, which ensures that the

potential energy does not change when swapping the order of two identical atoms,

was not preserved with networks of that type. Furthermore, the reliance on

handpicked internal coordinates means the networks were tailored to specific

systems without any transferability.

To preserve the permutational symmetries of the original system, it is necessary

to consider every atom equivalently. For instance, the total potential energy E

computed for a system of N atoms can be given by E = ÂN
i=1 Ei where Ei is the

contribution to the total energy of atom i. Each atomic contribution Ei = NNi(xi) is

calculated based on a descriptor of the atom’s environment xi, where the neural

network NN is shared across the same atomic species. Moreover, the network itself

must be permutationally invariant, i.e. NNi(xi) = NNi(P̂xi), where P̂ are relevant

permutations of atoms. This, along with the commutative nature of the summation

over atomic contributions, satisfies the desired permutational invariance. One of

the earliest implementations of this scheme is the Behler-Parrinello Neural

Networks (BPNN) in 2007 [30], depicted in Figure 2.2.

As BPNNs are shallow and thus contain a limited amount of parameters

compared to modern architectures, the energetic contribution Ei of an atom i can be

expressed in a simple analytical formula:

Ei = f 2
a [w

2
01 +

3

Â
j=1

w2
j1 f 1

a (w
1
0j +

2

Â
µ=1

w1
µjG

µ
i )], (2.22)

where wk
ij is the linear weight connecting the jth node in layer k with the ith node

in layer k � 1, wk
0j is the bias and f k

a is a non-linear activation function. As bare
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FIGURE 2.2: (Left) Illustration of a Behler-Parrinello Neural Network
(BPNN) acting on a system composed of 3 atoms. Every atom’s
environment is expressed in terms of symmetry functions and fed to a
subnet S. (Right) Structure of the atomic subnets S. Figures taken from

their original publication [30].

NNs are fundamentally just sequences of linear combinations, non-linear activation

functions are needed to allow NNs to fit non-linear functions of input variables.

These functions are applied element-wise to a layer after the linear combination

step. In the case of BPNNs, f 1
a (the activation function of the hidden layer) is a

hyperbolic tangent while f 2
a (the activation function of the last layer) defaults to a

linear function.

The descriptor Gµ
i of atom i and its environment are modelled by radial

symmetry functions. They consists of one radial contribution G1
i and one angular

contribution G2
i :

G1
i =

all

Â
j 6=i

e�h(Rij�Rs)2
fc(Rij), (2.23)

G2
i = 21�z

all

Â
j,k 6=i

(1 + lcosqijk)
ze�h(R2

ij+R2
ik+R2

jk) fc(Rij) fc(Rik) fc(Rjk), (2.24)

fc =

8
>><

>>:

0.5
⇣

cospRij
Rc

+ 1
⌘

, if Rij  Rc

0, if Rij � Rc.
(2.25)

Here, Rij is the distance between atoms i and j while qijk is the angle between
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atoms i, j and k respectively. l 2 {�1, 1}, h, z and Rc are all hyperparameters chosen

before training. Rc in particular, denotes a cutoff distance (set to 6 Å in the original

paper) after which contributions of the environment are neglected. The descriptor

once again satisfies rotational and translational invariance as well as permutational

invariance due to it being applied equivalently to all atoms independently.

2.4.2 Kernel methods

In developing statistical methods to infer potential energies given molecular

structures, one of the most complex and time-intensive tasks is the judicious

construction of the descriptor. This is particularly important for shallow NNs (such

as BPNN), where only a handful of parameters are dedicated to tuning the

representation of the atomic environment before the output layer. Kernel Ridge

Regression (KRR) or Gaussian Processes (GP) work very similarly to shallow NNs.

In fact, they can equivalently be represented as a single-layer NN architecture. In

this framework, predictions of the atomic energy contributions are given as a linear

combination over all training points n:

Ei = Â
n

ank(xi, xn). (2.26)

Here, k(xi, xn) is the kernel function providing the similarity between the

representation of atoms i and n, and an is the linear weight that is optimized

during the learning process.

In particular, as GPs provide a closed-form analytical solution, the weights a =

{an} do not need to be trained iteratively like in NNs but are instead given as a

function of the covariance matrix C of the training data:

a = K�1y. (2.27)

Here, y = {yn} is the set of reference values as calculated by the chosen ab initio
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method, d and s are model hyperparameters. The kernel matrix K (or covariance

matrix) is a symmetric matrix representing the similarity between every point in a

given training set, calculated using the kernel function k.

One of the earliest and most prominent implementations of this scheme on the

prediction of PES is the Gaussian Approximation Potentials (GAP) method in

2010 [50]. In the equation above, xi once again represents the descriptor of atom i in

its environment: the most popular choice to be used with GAP is the Smooth

Overlap of Atomic Positions (SOAP) [47]. The fundamental idea of the latter is to

represent an atomic density neighbourhood function for each atom:

r(r) = Â
i

wZi d(r � ri), (2.28)

where Âi is the summation over all neighbours (usually within a cutoff distance)

and wZi is a weight factor dependent on the atomic species Zi of atom i. Then, this

atomic density is expanded into a set of radial basis functions and spherical

harmonics. The former provides radial information, while the latter describes

angular information:

r(r) = Â
n

Â
l

l

Â
m=�1

cnlmgn(r)Ylm(r̂), (2.29)

cnlm = hgn(r)Ylm|ri, (2.30)

where gn(r) is a set of radial basis functions (assumed to be orthogonal) and Ylm is

the set of spherical harmonics. Typically, the suggested choice of gn(r) is cubic and

higher order polynomials, though other choices have also been used [100, 101]. The

radial part depends only on the distance between pairs of atoms and is, as such,

rotationally and translationally invariant. The spherical harmonics, on the other

hand, generally depend on the orientation of the reference frame. However,

rotational invariance can be achieved by integrating the kernel over all possible

rotations [102].
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Another noteworthy kernel method in the space of learning molecular

interactions is the Gradient Domain Machine Learning (GDML) model in 2016 [51].

The motivation behind this work is the potential a directly learning the forces as

the primary observable. In previous ML potentials, the observable that is directly

predicted is the energy, while the forces have to be analytically derived or

numerically computed. While this satisfies energy conservation, there is a

compromise between optimising the energy and force predictions of the model.

However for applications in molecular dynamics, the forces are the fundamental

property used to evolve the system and, as such, are arguably more important than

the energy.

The GDML’s paradigm revolves around learning the forces directly instead of

energy contributions. It does so with an extended KRR model that computes all

forces of the entire system in one go:

KHess(k) + lIa = rE = �F. (2.31)

Here, KHess(k) is the Kernel matrix where every element is a Hessian (matrix) of

the similarity between two points, as given by the kernel function k. Once again, l

is a regularization hyperparameter and a is the set of learnable parameters. Under

this scheme, a trained model predicts the forces for a given configuration as:

f (x) =
M

Â
i=1

3N

Â
j=1

(ai)j
∂

∂xj
rk(x, xi). (2.32)

Energies can be reconstructed (up to a constant) by integrating the expression

above. Through learning forces directly, GDML can substantially increase accuracy,

making it more appropriate for running dynamics than if it instead only learned the

PES.

GDML is an atomistic model and treats the system as a whole in a single pass.

In particular, the descriptor used is the set of inverse pairwise distances between

all unique pairs of atoms. As no cutoff function is used, the descriptor is global
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and has — in principle — all the information needed to reproduce even long-range

interactions. However, while the translational and rotational invariances are still

maintained, GDML is not permutationally invariant. Indeed, the ordering of the

descriptor changes upon swapping the position of two atoms.

This issue can be alleviated by manually reintroducing symmetries into the

model’s predictions. In an extension to the model called symmetric GDML

(sGDML) [43, 44], the descriptor for every geometry is effectively expanded into its

set of all permutations. However, for the sake of computational speed, the

permutations are limited to those statistically found to be present in the provided

dataset. Nevertheless, the inclusion of permutational symmetries increases the

performance of the model significantly for any system for which permutational

symmetries are relevant.

Another consequence of the architecture of GDML is its lack of transferability. As

the system is treated as a single object, a GDML model can only be used for systems

with the same number of atoms as the original dataset. Otherwise, the descriptor

size does not match the shape of the kernel matrix and the learned parameters a.

Furthermore, the GDML approach has also been extended to periodic systems

with the introduction of Bravais-Inspiried GDML (BIGDML) [45]. There, the

descriptor was altered to be suitable for periodic systems by making use of

periodic boundary conditions, and the translational as well as Bravais symmetry

groups in materials were explicitly leveraged. This modification to the framework

led to accurate dynamics of the interaction of a molecular benzene with a 2D

graphene layer as well as interstitial hydrogen diffusion in bulk Pd.

2.4.3 Deep Neural Networks

To overcome the mentioned limitations of the kernel models and early-generation

NNs, most modern ML architectures to learn the PES or FF are deep neural

networks (DNN). The idea of using more hidden layers was largely popularised
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after 2012 from the work done on image recognition [103]. This, along with

continuous upgrades in both available software and hardware, led to the majority

of modern NNs in cutting-edge applications involving deep architectures.

The main implication of MLFFs is that DNNs can learn the descriptor during

the training process. While shallow networks or even kernel methods are very

heavily dependent on the descriptor of choice, DNNs can allocate a large part of

their learnable parameters to fine-tune the descriptor to more accurately represent

the system and thus aid the final predictions.

The Deep Tensor Neural Network (DTNN) [104] was one of the first to

implement this methodology on MLFFs, which was later refined by models such as

SchNet [52, 53]. Its network, depicted in Figure 2.3, was influential in the field and

motivated many future developments. First, it contains a substantial amount of

hidden layers, including 3 interaction layers. The interaction layers are the

fundamental building blocks of the network that allow the descriptor of the system

to be learned.

FIGURE 2.3: Illustration of the SchNet architecture and its three
blocks (from left to right): an overview of the complete network, the
interaction block, and the continuous-filter convolution block. The

figure is taken from its original publication [52].

Secondly, the atom-wise layers within those interaction layers transform the
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representations x of every atom independently and allow the descriptor to be

iteratively refined per atom. The representation of each atom is altered as a

function of learnable parameters that are shared across atoms, thereby maintaining

permutational invariance. Note that the interaction layer also features a skip

connection, adding the original atomic representations to the transformed ones.

This is a trick inspired by ResNet [105] and serves to stabilize the gradients during

training.

Thirdly, the interaction layer includes a so-called continuous-filter convolution.

This enables the atoms to interact with one another in a pairwise way by feeding in

a rotationally and translationally invariant description of the original atom

environments. The output of the layer is a filter that emphasizes the important

parts of the radial environment for each atom, reminiscent of attention mechanisms

in other fields of ML [106].

Note that SchNet provides a single scalar representing the total energy; forces

are obtained by differentiating the entire network with respect to the input atomic

positions. This feature requires all layers to be at least twice differentiable, putting

some constraints on the choice of architecture and activation functions.

All in all, SchNet showcased remarkable accuracy while retaining all the

required invariances. This was largely made possible by treating the entire network

in an atom-wise manner, as was previously established by e.g. BPNN. Note that

this also allows SchNet to be transferable: a network trained on any system can, in

principle, be applied to any other system of arbitrary size, though the similarity of

the systems largely determines the model’s accuracy in such a scenario.

2.4.4 Message Passing Neural Networks

While SchNet did not qualify itself as a Graph Neural Network (GNN) at the time

of its creation, its architecture can be viewed as such. Many modern MLFFs have

adopted the GNN architecture and, more specifically, the message-passing kind. In
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essence, every atom is represented as a node in a graph connected to other nodes in

their neighbourhood via edges (usually within a given cutoff distance).

Every node v is associated with its node attributes (or embedding) hv. In the

simile with SchNet, this is equivalent to the atomic representations within each

layer. Furthermore, edges can also have their own attributes he, though this will

not be discussed here for the sake of simplicity. Together, these attributes constitute

the representation of the system and in principle include all the information

necessary to properly predict the PES.

In the message-passing phase, information is exchanged between connected

nodes and the embedding of each node is updated based on all the incoming

messages. As multiple passes of this phase are done, long-range interactions can,

in principle, be modelled despite the distance cutoff for edges. The network can be

summarized by three learnable functions, which are each intrinsically independent

networks. They are Mt for generating messages from embeddings, Ut for updating

node embeddings and R for pooling the entire graph into a single output (such as

the energy). In mathematical terms, a message passing pass evolving the system

from step t to step t + 1 can be summarized as follows:

mt+1
v = Â

w2N(v)
Mt(ht

v, ht
w, he,vw), (2.33)

ht+1
v = Ut(ht

v, mt+1
v ), (2.34)

with v a node and N(v) all its neighbouring nodes. The final aggregate value y after

K message passes is given by:

y = R(hK
v |v in G), (2.35)

where G is the entire graph. A schematic depiction of this process for both

molecules and crystalline materials can be found in Figure 2.4 [107]. Continuing

the comparison with SchNet, Ut is the equivalent of the interaction layer, Mt is the
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convolution layer, and there are a total of 3 message passes (i.e. interaction blocks).

FIGURE 2.4: Schematic depiction of a message passing operation for
both molecules (top) and crystalline materials (bottom). Figure taken

from its original publication [107].

These GNNs provide a general framework for building MLFFs that allow atom

descriptors to be learned through successive interactions with their environment.

The efficacy and efficiency of these networks have made them ubiquitous in the field

and allow for great flexibility when modelling interactions between atoms in the

message-passing phase. Many models have been proposed within this paradigm,

including GemNet [29], ForceNet [108], SphereNet [109] and more [28, 110–116].

2.4.5 Equivariant representations

Up to now, every feature, descriptor and interaction of atoms were invariant with

respect to the symmetries of the original system, as is the potential energy that is

ultimately predicted. However, considering only invariant features makes
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abstraction of the orientation between atoms. Including directional information in

the modelling of atomic interactions inside the NN was shown to be more

beneficial than increasing the depth of an invariant network [117].

Thus, equivariant representations to describe atomic features and interactions

have been proposed recently alongside their invariant counterparts. That is, the

equivariant features of the GNN undergo the same transformations as those

applied to the original system used as input. An example of such an operation is

the equivariant convolution as implemented in the e3nn package [61]:

ht+1
v =

1p
z Â

w2N(v)
hw ⌦ MLP(||dvw||)Y(dvw/||dvw||), (2.36)

where z is the average degree of nodes, dvw is the distance vector between node v

and node w, Y is their spherical harmonics and ⌦ is a tensor product with learnable

parameters. Modern MLFFs utilise this feature to further enhance the accuracy of

their predictions, such as Nequip [60], PaiNN [118], MACE [58, 59] and

more [119–121]. The performance and data efficiency of these GNNs combined

with equivariant representations make them the current state-of-the-art

architectures for most ML applications in the field, be it for learning a PES, forces,

or other properties.

2.4.6 Explicit physical interactions

Most architectures seen so far circumvent the scalability issues that arise from an

increasing number of atoms by considering local neighbourhoods, usually within

a given cutoff distance (5 – 6 Å). Beyond the cutoff, GNNs can theoretically model

long-range interactions through successive messages from atom to atom. In practice,

unless the cutoff distance is sufficiently large, there is no guarantee that long-range

interactions are properly accounted for.

To bypass this, some architectures opt to include explicit physics, such as

Coulomb interactions between atoms at large distances. One such example is
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PhysNet [62], where the total potential energy prediction is given by the sum of

atomic contributions plus a Coulomb term and a dispersion correction term.

E =
N

Â
i=1

Ei + ke

N

Â
i=1

N

Â
j>1

q̃i q̃jc(rij) + ED3. (2.37)

Here, ke is Coulomb’s constant, ED3 is a dispersion correction term calculated

according to DFT-D3 [73], and c(rij) is a function the smoothly interpolates the long-

range 1/rij behaviour of Coulomb’s law but damps short-range to avoid the rij = 0

singularity. q̃i and q̃j respectively are so-called corrected partial charges:

q̃i = qi �
1
N
(

N

Â
j=1

qj � Q), (2.38)

where Q is the total charge of the entire system and qi is the partial charge of atom

i as predicted by the NN (additionally to its energy contribution). This correction

ensures the conservation of the total charge.

Similarly, SpookyNet [63] adds a nuclear repulsion, an electronic, and a

dispersion term to the total potential energy:

E =
N

Â
i=1

Ei + Erep + Eele + Evdw. (2.39)

The nuclear repulsion is based on the Ziegler-Biersach-Littmark stopping

potential [122, 123] and acts as a correction to short-range electrostatics which

roughly follows a 1/r trend with a parametrized factor. The electronic term models

long-range electrostatics using atomic partial charges predicted from atomic

features by the network. The final term introduces van der Waals interactions using

the two-body term of the D4 dispersion correction [124].

Furthermore, it considers additional degrees of freedom, such as the total

charge or spin state of the system, to better model nonlocal effects (i.e. effects

beyond a given cutoff). This is done by considering an additional layer in parallel

to the local interaction layer during the message-passing phase. This layer models
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the nonlocal interactions using a self-attention mechanism, which gets added to the

atomic embedding.

With these additions, both PhysNet and SpookyNet can predict long-range

interactions beyond the cutoff radius involved in the message-passing steps and

reproduce correct asymptotic behaviour. For instance, dissociation curves of a

handful of diatomic molecules were computed by SpookyNet models with and

without nonlocal interactions. Notable differences were found between the two

predictions, with the nonlocal model showcasing long-range behaviour more

consistent with reference calculations [add refs].

The evolution of ML architectures demonstrates that the most advanced ML

approaches alone cannot reliably mimic ab initio calculations without extensive

reference datasets unfeasible in practice. One needs to synergize ML models with

physical laws and chemical intuition to achieve reliable performance with ML

models.

2.5 Analysis

The development of MLFFs has reached a point where many systems that were

recently thought out-of-reach for computational chemistry are now feasible to be

learned by ML models. When new milestones are reached, the tools to analyse the

new systems must be equally adequate. This is a notion that applies to MLFFs as

well as other ML fields: with the advent of the new generation of large language

models such as GPT4 [125], the number of papers dedicated to the evaluation of

those models increased tenfold across the first half of 2023 [126]. Similarly, the

evaluation and analysis of ML models applied to chemical systems need further

development to support the new level that has been reached over the years.

In its simplest form, the base analysis of an MLFF model boils down to

comparing its predictive outputs to the already existing reference dataset. That is,
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for a given configuration x and its corresponding forces F, we compute the

prediction F0 = h(x) to compare against.

The most commonly used metrics are the Mean Average Error (MAE) and the

Root Mean Squared Error (RMSE), shown below:

MAE =
1

3N

N

Â
i=1

3

Â
a=1

| f 0i,a � fi,a|, (2.40)

RMSE =

vuut 1
3N

N

Â
i=1

3

Â
a=1

( f 0i,a � fi,a)2, (2.41)

where fi,a is the force component of atom i and direction a. The same expressions

can be used for the energy, where an MAE of less than 1 kcal/mol is said to be

of “chemical accuracy”, i.e. where the prediction errors of the ML model itself is

smaller than those of the reference dataset itself.

One substantial advantage to kernel methods is their innate ability to analytically

compute the variance of their prediction and thus the degree of certainty at a given

point. With K(X, X) = XTX the kernel matrix for a given training set X and X⇤ a new

test point, the variance of the prediction y⇤ is given as [127]:

var(y⇤) = K(X⇤, X⇤)� K(X⇤, X)K(X, X)�1K(X, X⇤). (2.42)

For NNs, such a variance is not intrinsically available. However, one can use

the variance produced by a committee of models. In other words, rather than

training a single model on a specific training set, one instead trains multiple

models on different subsets of the reference dataset. This way, multiple

independent predictions can be made with which to approximate a variance.

var(y⇤) =
1
n

n

Â
i=1

(y⇤i � µ⇤), (2.43)

µ⇤ =
1
n

n

Â
i=1

y⇤i , (2.44)
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where n is the number of independent models created.

Other traditional methods to assess the quality of an ML model are also present

in the field, such as cross-validation or learning curves to ensure the convergence

of the model. Missing from the approaches above, however, is the physicality of

the original problem. More sophisticated methods of analysis include reproducing

properties or general behaviours when running a dynamic with the trained model.

All in all, the ultimate test of stability and reliability is to use the model in its

intended deployment environment. It is very common for MLFFs trained on

molecular trajectories generated from molecular dynamics to rapidly break down

when directly used in said dynamics. However, this is not always feasible and

while a botched simulation indicates the existence of instability, finding its root

cause is not trivial. Even the uncertainty measures described above are not always

reliable: indeed, the fact that an ML model or a set of models is confident in its

predictions does not mean that the predictions are correct. For instance,

message-passing NNs without explicit long-range corrections cannot describe an

adsorption process when the distance between the adsorbate and the substrate

exceeds the cutoff radius. At the same time, such models would be confident that

the adsorbate-substrate interaction is zero in such a case.

This work’s main goal is to fill in some of the gaps in the current analysis tools

to facilitate the task of finding out the quality and applicability of trained ML

models. This is done via new methods and baseline tools for future model quality

assessment which are explained, implemented and discussed throughout the

following chapters.
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Chapter 3

Force Fields under the Microscope

with FFAST

Mastery of physico-chemical understanding at a molecular level is necessary for

stimulating industrial and technological advancements, be it for creating novel

materials, designing new drugs, and more. In these fields, computer simulations

have already taken root as an indispensable tool for fast and competitive research

and development. The popularity of MLFFs is steadily rising intending to extend

the applicability of existing computational tools to larger systems and more

accurate simulations. Pushing towards accurate modelling of complex systems,

such as large peptides and proteins, requires us to bring the accuracy of ab initio

methods to areas previously only accessible to classical FFs. While MLFFs have

shown impressive predictive accuracy [19–47, 50, 52–54, 57–60, 62, 63] for various

systems across many benchmark datasets [51, 128–133], there is much work to be

done before one can trust MLFFs to reliably substitute ab initio calculations in any

practical application of interest.

The previous section showed that MLFFs are born from many different,

interlinked processes that each bear their own complexities. In particular, the

common ways to analyse the performance of a model were touched on. It was

highlighted that overall error metrics such as MAEs or RMSEs are particularly

commonplace as a way to assess model quality. However, it is clear that for a

model that relies on so many complex steps, from electronic structure theory to
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architectural choices, a single error value cannot fully describe the details of a

model’s predictive capabilities.

It only takes a single particularly problematic configuration for the model to

cast the entire system into improbable or unphysical states, drastically affecting

many if not all following simulation steps. This can occur even if the overall

prediction error on said configuration is low, but a single atom’s force calculations

stray far from the ground truth. The larger the system at hand, the more likely that

regions of extrapolations will be reached even in low-temperature simulations,

thereby constantly putting the model at risk of breaking down if it is not stable as

well as accurate.

For these reasons, the adoption of MLFFs in widespread industrial applications

and development requires the ability to convincingly assess a model’s applicability

beyond simple numerical accuracies. There are, of course, no silver bullets to

creating perfectly reliable ML models or even defining the applicability region of a

model. Note that this problem is not unique to FFs, the quest for interpretability

and transparency in neural networks for better assessment of real-world

performance is a hot topic in the field of ML as a whole [134, 135]. Nevertheless,

shedding light on MLFFs to avoid potential pitfalls and limitations requires us to

look beyond usual error metrics [136, 137]. To take one major step towards this

goal, we developed FFAST (Force Field Analysis Software and Tools) [64]: a

cross-platform software package whose entire purpose is to delve deep into a

model’s performance and limitations. In particular, it focuses on gaining detailed

insights at a glance through an easy-to-use graphical interface complete with

intuitive 3D visualisations. Note that the focus of the software is MLFFs, but all the

tools are generally applicable to molecular FFs of any kind (e.g. empirical

mechanistic force fields).
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3.1 Software overview

The analysis starts with the loading of a dataset (currently .xyz, .npz, and .db are

supported). The software already offers ways to gain insights on the dataset itself,

usual applications also involve loading an MLFF model of choice (currently

sGDML, SchNet, Nequip, MACE, SpookyNet, and pre-predicted datasets are

supported). For all supported models, energy and force predictions can be

generated on the fly, though for larger datasets a headless mode (i.e. no graphical

user interface) is provided to avoid excessive loading times by pre-computing

predictions externally (e.g. on a high-performance computer).

Once loaded, here are some of the tools the interface makes available to the user:

• Error timelines showing the MAE throughout the dataset, useful for

analysing time-ordered datasets such as trajectories. An adjustable

smoothing factor allows one to remove noise and visualise general trends.

• Error distributions visualise energy and force predictions of any

dataset/model combination of choice.

• Cluster errors as explored in section 4.4.

• Error scatter plots allow finding energy and force outliers quickly.

• Atomic error distributions allow visualising force prediction errors per atom

type.

All plots can be interacted with: in particular, most plots allow the creation of

sub-datasets through zooming. Those are subsets of loaded datasets that can be

used independently in the software to focus on particular areas of a model and/or

dataset. They can also be saved in any format supported by the software for external

use.

One of the major advantages of using FFAST is the inbuilt 3D visualisation

tool. Any dataset or subset can have its molecules visualised on the fly in one or
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more interactive windows. The visualiser itself comes with a handful of features

such as easier visualisation of flexible molecules through dynamic alignment of

geometries along a chosen plane, manual choosing of bonds to be displayed and

of course animation of a given trajectory. It also provides rudimentary information

about a target geometry, such as atomic distances, angles or dihedrals. While by

default each atom is coloured according to its element, this can be changed to show

atomic force prediction errors or displacement either at a given timeframe or as

an average throughout a dataset/subset. Finally, if a specific set of atoms is of

particular interest, atom-filtered sub-datasets can also be created in this interface.

Note that all features above can also be used on the underlying reference dataset

via a dummy model. With that, FFAST acts on reference energies and forces rather

than ML model predictions.

All components of the software are modular. Users comfortable with Python can

add features and adjust existing ones to their workflow. The goal is to reduce the

need to swap between software and specialised analysis scripts as much as possible.

Note that while FFAST itself only depends on readily available Python packages,

installation of ML models is subject to their own installation process. With all the

tools combined, FFAST operates as a one-stop shop for beginners and experts alike

who want to asses their MLFF performance with any desired level of detail.

3.2 Typical workflow

To showcase FFAST’s features beyond a simple collection of analytical tools, this

section presents what a typical use case of the software might look like. This does

not serve as an all-inclusive exposition of features, but rather a map to guide the user

through options available to them when starting to analyse a new dataset and/or

model.

The first step is the loading of one or multiple ML models as well as a dataset of

interest (often the respective reference dataset). In the case of a large dataset, all force



3.2. Typical workflow 43

and energy predictions would preferably be pre-computed on a supercomputer in

headless mode, thus avoiding prolonged loading times during the utilisation of the

software. As an expository example, this section uses a Nequip model trained on

a stachyose dataset from the MD22 database. The Nequip model was trained on

a total of 1000 training points and all hyperparameters were left unchanged from

those recommended in the original paper and official documentation.

3.2.1 Prediction error overview

FIGURE 3.1: Example of a basic error screen in FFAST, showcasing
timelines and distributions for energy and force prediction MAEs.
Predictions performed by a Nequip model trained on 1000 points on

a dataset of a stachyose trajectory.

The very first screen to greet the user when opening FFAST is a general

overview of a model’s performance through the visualisation of basic information,

as shown in Figure 3.1. This includes a table of MAEs and RMSEs, MAE
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distributions and MAE timelines for both energies and forces. A glance at the

distributions gives the user an immediate idea of the model’s general performance.

They provide a rough estimate of accuracy across the entire dataset along with

rudimentary expectations for the variance within. One can also infer information

from the shape of the distributions, such as deviations from a normal curve

potentially indicating systematic errors on particular subsets.

The error timelines at the bottom show the prediction errors in the same order

as the reference dataset. This is useful for time-ordered datasets such as trajectories

taken from molecular dynamics, facilitating the observation of general trends or

time snippets during which a given MLFF performed particularly poorly. These

particular plots also provide a smoothing factor to separate general behaviour and

noise: it does so by performing a sliding average of a given window size over the

timeline.

Note that most plots here can be the source of sub-datasets. Practically, a user

can toggle the respective button (yellow icon on the toolbar) and a new dataset will

automatically be created that dynamically filters out all points not currently present

in the zoomed-in area of the original plot. This can be particularly useful to analyse

e.g. peaks in the error timeline.

3.2.2 Outlier detection

Finding outliers in a dataset is a difficult and loosely defined task. Average errors

over entire datasets are helpful, but they don’t provide real indications of the types

of configurations an FF fails at. Yet this is important information to gather, as the

dataset might contain vastly different geometries and perhaps even unphysical

outliers that need to be identified. FFAST provides a series of tools to help with

that, this section concentrating on two specific ones.

Correlation scatter plots like the one showcased in Figure 3.2 are a simple way

to visualise large deviations from the norm on a point-by-point basis. This is done
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FIGURE 3.2: Example of a scatter plot in FFAST, showcasing predicted
forces against their true value. Predictions performed by a Nequip

model trained on 1000 points on a dataset of a stachyose trajectory.

by plotting predicted values against the real reference. In the case of forces, every

dimension of every atomic force is treated as an independent point. For a perfect

model, a linear correlation is expected. Thus, the width of the distributions gives a

general indication of the stability of the model while points with strong deviations

from the gross behaviour encourage further investigation.

An alternative way to visualise deviations from normal behaviour is through the

cluster errors already introduced in section 4.4. In contrast to the scatter plots, the

error distribution across clusters describes the performance of representative groups

of configurations as opposed to singular points. In essence, these plots provide a

middle-ground between error distributions and error scatters. The resolution is finer

than that of error distributions by giving more weight to rarer types of geometries,

yet broader than correlation scatters by forcing configurations into groups. The user

can use this tool along with intuition on the chemistry of the system at hand to try

and infer why certain clusters fail more than others as well as what this means for

the applicability of the model.
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FIGURE 3.3: Example of a cluster error plot in FFAST, showcasing
force prediction MAEs on different clusters. Predictions performed
by a Nequip model trained on 1000 points on a dataset of a stachyose

trajectory.

3.2.3 Atomic errors

The outlier detection methods described above focus on individual points or

groups of points inside a dataset. Here, we instead turn our attention back to

metrics spanning the entire dataset but we distinguish between different atom

types. This becomes particularly important as chemical compositions and

structural complexities of the system grow, as interactions between atoms strongly

depend on atom environments.

For most ML model applications, predictions will vary across atom types. As

such, FFAST provides a way to plot error distributions per atom type, with the user

being able to select which elements to include as well as compare them to the

overall error distribution. An example is given in Figure 3.4. This particular

analysis can provide a window into the inner workings of the ML models, as

various architectures treat the inclusion of atom types differently. As such, two

models with similar overall performances can easily show noticeably different

error distribution curves over atomic types. Furthermore, datasets might contain

mechanisms with a distinct effect on atomic error distributions that are otherwise
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FIGURE 3.4: Example of an atomic error distribution plot in FFAST,
showcasing force predictions for different atom types: Hydrogen
(white), Oxygen (red), and Carbon (grey). Predictions performed by
a Nequip model trained on 1000 points on a dataset of a stachyose

trajectory.

overshadowed in the overall plot.

3.2.4 3D Visualisation

A large part of human intuition comes from abstracting concepts in physical space.

Chemistry is a pioneer of this effect as notions like atoms and bonds themselves are

an example of this. As such, it is no surprise that chemical intuition in large relies

on the visualisation of the molecules in 3D space. FFAST allows any dataset and

sub-dataset to be visualised in a separate window to accompany all analysis on the

go. Furthermore, as most plots can generate subplots, the 3D visualiser can be used

to qualitatively identify subregions such as problematic clusters and correlation plot

outliers.

The visualiser comes with its own set of features, namely the ability to colour

every atom by its respective force prediction error, see Figure 3.5 (right). When

viewing small subsets, e.g. encompassing a reaction or pathway of interest, it

might also be useful to colour the atoms by their displacement. This quality of life
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FIGURE 3.5: Example of a stachyose molecule in FFAST’s 3D visualiser.
Atoms are coloured by element (left) or mean average atomic force
error (right). Predictions performed by a Nequip model trained on 1000

points on a dataset of a stachyose trajectory.

feature makes it easier to identify which atoms contribute to a movement without

the need to watch the transformation. Furthermore, a vector field corresponding to

the instantaneous forces applied to each atom can also be visualised to provide

more insight into what is driving the movement at each timestep. Finally, if a

particular set of atoms stood out in any of the previous analyses, the interface

allows the user to select them in the 3D visualiser to create a sub-dataset containing

these atoms only.

3.3 Applications

After demonstrating most of the main features present in FFAST, the following

section will shift towards real applications to two state-of-the-art ML models:

Nequip and MACE. To showcase the level of detail that FFAST is capable of, we

analyse the ability of the models to reproduce the PESs and FFs of two flexible

molecules from the MD22 dataset: stachyose and docosahexaenoic acid (DHA).

Both architectures here are easily capable of reaching chemical accuracy on a test

dataset for both molecules, but that does not guarantee stable long-time dynamics.
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Thus, understanding the origins of the prediction errors in detail is paramount for

future applications and improvements.

3.3.1 Stachyose

Stachyose (C24H42O21) consists of a total of 87 atoms and appears as one of the

most common tetrasaccharides in plants and as is such an important sugar [138].

This section focuses on the performance of a Nequip model on the dataset first

introduced in section 3.2. Unlike the latter section, the focus here is on the analysis

of the dataset and model at hand, as opposed to a general overview of a typical

FFAST workflow.

First, there are noteworthy trends revealed by the basic error screen in

Figure 3.1. According to the energy MAE distribution, the chosen model predicts

almost all of the configurations inside the dataset with chemical accuracy

(1 kcal/mol) or better. The table reveals that the overall energy MAE hovers around

0.89 kcal/mol. This behaviour is mimicked by the force MAE distribution and the

corresponding overall MAE of 0.58 kcal/(molÅ). Unlike its energy counterpart, the

force MAE distribution demonstrates a secondary peak, generally indicative that

some distinct system components are not equally well reconstructed.

The force and energy MAE timelines show an oscillatory movement. This hints

at the existence of a distinct set of visited configurations, meaning that the molecular

dynamics at the heart of the dataset did not simply stay at a single equilibrium state

but rather explored qualitatively different regions of CS.

We now shift our focus back to finding the source of the secondary peak in the

error distribution. To this end, the atomic error plot in Figure 3.4 is particularly

useful as it shows a clear difference between hydrogen and other elements.

Naturally, as hydrogens make up almost half of the entire molecule, overall metrics

such as the force distribution are highly impacted by this deceptively good
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accuracy. While this explains to a large extent the double-peak behaviour, this does

not explain why the same trend is seen for carbon and oxygen to a lesser extent.

Stachyose is composed of a total of four carbohydrate rings: three 6-membered

ones (pyranoses) and one 5-membered (furanose). Figure 3.5 shows the molecular

structure of stachyose, with atom colours indicating the chemical element (left) or

the respective atomic force prediction error averaged over all reference

configurations (right). From the latter visualisation, one can derive that not all

carbons are created equal: those involved in or neighbour to a glycosidic bond

(connecting two rings) are notably more difficult for the model to predict than the

others (by a factor of 18%). Similarly, oxygens inside those bonds also demonstrate

a higher error than e.g. oxygens on side chains (by a factor of 56%). Table 3.1

summarises the prediction errors by atom types. In practice, a model’s

performance is largely tied to its weakest link rather than its average accuracy. As

such, one could argue that this model’s MAE and RMSE are closer to those

presented by the worst predicted atoms: no longer chemical accuracy. This

reflection warrants the consideration to differentiate not simply between atomic

elements, but also include information on their local chemical environment, as has

been done for employing empirical force fields on chemically diverse

systems [139].

H C Cb Cr Cs O Ob Or Os All
MAE 0.40 0.83 0.92 0.78 0.77 0.66 0.89 0.82 0.57 0.58
RMSE 0.55 1.10 1.23 1.04 1.02 0.90 1.20 1.10 0.76 0.82

TABLE 3.1: Overall force MAE and RMSE in kcal/(mol Å) for different
atom types in the stachyose dataset. Subscripts b, r, and s correspond
to atoms touching a glycosidic bond, inside the rest of the ring, or in
a side chain, respectively. Predictions performed by a Nequip model

trained on 1000 points on a dataset of a stachyose trajectory.

Finally, the above process can be repeated for a different model, e.g. a MACE

model trained on the same training set. However, almost equivalent trends are

observed for this model as well, reinforcing the idea that the variance between
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atom types is a consequence of the different chemical environments rather than an

artefact due to the choice of model. Nevertheless, Figure 3.6 shows the atomic force

distributions as computed by the MACE model. Note that here, the different types

of carbon atoms are more finely visible in the distribution.

FIGURE 3.6: Atomic error distribution of force prediction for different
atom types: Hydrogen (white), Oxygen (red), and Carbon (grey).
Predictions performed by a MACE model trained on 1000 points on

a dataset of a stachyose trajectory.

3.3.2 Docosahexaenoic acid

In this section, we pivot to a different molecule from the MD22 dataset: that of

docosahexaenoic acid (DHA, C22H32O2). This molecule is a fatty acid with a total

of 56 atoms and includes a long, flexible hydrocarbon tail of 22 atoms connected to

a carboxylic head. Due to its flexibility, it is natural to expect that many different

states exist from unfolded to folded even at ambient conditions. In order to trust

an MLFF to handle such a molecule well in practice, it is crucial to verify how it

handles the various geometries.

FFAST provides a simple but effective tool to help track folding and unfolding

processes inside of a dataset. This does not require the loading of any ML model
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but simply computes the gyration radius (gyradius) as shown in Figure 3.7. We

can conclude that throughout the trajectory, the molecule goes through a total of

six extended and compact states. The figure also conveniently shows the potential

energy at every step, allowing us to assess that it correlates well with the gyradius

past an equilibration period of 10k simulation steps.

However, the correlation is imperfect at a few particular places (e.g. at 40k

steps). Despite the molecule’s compact state, the potential energy is increased. This

is a non-trivial effect demanding further investigation. Interestingly, it will later be

seen that these particular sets of configurations also tend to demonstrate the largest

energy MAE as well as sizeable force MAEs for both ML models used in this

subsection.

FIGURE 3.7: Gyradius (white) and potential energy (orange)
throughout the DHA dataset. All values are averaged over 2500

neighbouring points to smooth out noise.

Before moving to the ML model performances, it is fruitful to ensure the chosen

training sets are adequate. This is particularly important due to the flexibility of the

molecule. A swift analysis can be done using FFAST: in particular, we compare the

distributions of gyradius, forces and potential energies of the full dataset to those

of the training set (1000 points). Figure 3.8 reveals that the training set is

well-representative of the dataset in all three cases. While this does not ensure the
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training set is perfectly adequate (see chapter 5), it still reveals that there are no

glaring pitfalls.

FIGURE 3.8: Force distribution (left), energy distribution (middle) and
gyradius distribution (right) comparing an entire DHA dataset (white)
to a selected training subset of 1000 points (cyan). Training set selection

performed using the sGDML package.

With preliminary trust in the training set, two state-of-the-art models (Nequip

and MACE) were trained and compared. Below, a comparison of the performance

of both models is done. First and foremost, Figure 3.9 shows the basic error analysis

for both models at the same time. It is immediately clear that the Nequip model

(orange) has worse overall accuracy than the MACE model (red), with respective

force prediction MAEs of 0.20 kcal/(mol Å) and 0.33 kcal/(mol Å).

Beyond overall errors, one can observe that the error distribution peaks for the

MACE model are narrower, both for forces and energies. A quick look at atomic

errors (not shown here, see Figure 3.4 for an example on stachyose) reveals that this

decrease in prediction error does not depend on atomic types: MACE performs

about 50% better for hydrogens, oxygens and carbons alike. Thus, one can

conclude that the MACE architecture is indeed better able to reconstruct the PES of

this particular molecule.

Nevertheless, both models show synchronised peaks at key points of the

trajectory. As both models present the same qualitative behaviour, it is unlikely

that this effect is caused by artefacts of the models themselves but is rather due to

fundamental changes in geometrical composition. The peaks show a loosely
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FIGURE 3.9: Basic error screen in FFAST, showcasing timelines and
distributions for energy and force prediction MAEs. Predictions
performed by a Nequip model (orange) and MACE model (red) trained

on 1000 identical points of a DHA dataset.

periodic behaviour and upon further inspection using the 3D visualiser, it is

revealed that the valleys (low error) contain extended geometries while the peaks

(high error) correspond to folded geometries. An example for each configuration is

shown in Figure 3.10.

Similarly, the force prediction cluster errors tell a similar story. Overall, the

curves are relatively flat: there is less than a factor of 2 difference between the

worst and best cluster, see Figure 3.11. Nevertheless, the trend that associates high

errors with coiled configurations continues as indicated by the 3D visualisation of

an example taken from the lowest-error cluster and highest-error cluster

respectively, see Figure 3.10.

Additional information can be extracted from the 3D visualiser when showing

the average force prediction error per atom, see Figure 3.12. Unsurprisingly, it is
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FIGURE 3.10: Example of an extended DHA molecule (left) and a
folded DHA molecule (right), found in low-error valleys and high-error
peaks respectively. Extended geometry picked from the lowest force
prediction error cluster and folded geometry picked from the highest

error cluster.

clear the hydrogens are very well predicted compared to the rest of the chain. Thus,

as was the case for the stachyose molecule in section 3.3.1, a large merit of the low

overall prediction errors is attributed solely to 32 hydrogen atoms in the molecule.

Beyond the hydrogen, there is also a notable difference between carbons near the

carboxylic head (left side of the figure) and carbons in the middle of the chain or at

the tail end of it. Note that while the figure below shows errors as predicted by the

MACE model, the same behaviour is observed for Nequip.

The above observations of non-uniform force reconstruction throughout the

chain can easily be explained by applying physical and ML intuition to the results

shown in FFAST. Any carbon atom involved in or touching the carboxylic head is

exposed to a significantly more complex chemical local environment. The

descriptor space for a more complex neighbourhood is likely to have more varying

possible states, which is exasperated in coiled-up configurations. This makes the

task of learning this part of the molecule a lot more challenging for our ML models,

thus the larger prediction errors.

Once again, it is worth pointing out a possible future direction to combat this

issue. The carbons near the carboxylic head and inside the main chain are wildly
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FIGURE 3.11: Force prediction MAEs on different clusters of
DHA.Predictions performed by a Nequip model (orange) and MACE

model (red) trained on 1000 identical points of a DHA dataset.

different and could benefit from being treated as different atom “types”. The

usefulness of decomposing a molecule into atomic environments rather than

elements would likely also rise for larger, more challenging systems.

FIGURE 3.12: 3D visualisation of DHA with atoms coloured by mean
average atomic force error. Predictions performed by a MACE model

trained on 1000 points on a dataset of a DHA trajectory.

All things considered, the analysis performed in this section leads one to believe

that both the Nequip and MACE models would perform very similarly in practical

applications. All general trends were identical and the models mostly differed in

the scale of the errors, with a difference of less than 0.25 kcal/mol in energies and

0.20 kcal/(mol Å) in forces.
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3.4 Conclusion

As more and more complex systems are tackled by the MLFF community, it

becomes a necessity to develop tools able to provide insightful analysis of the

created models. Even highly effective MLFF models can easily present

unexpectedly high levels of heterogeneity in predictions across CS. This effect is

further explored in the following section (4), where clustering algorithms are used

to separate different regions of CS. This serves to both analyse models but also

re-emphasise the necessity of such analytical tools by studying the similarly

skewed prediction patterns of a variety of state-of-the-art MLFF models.

These inhomogeneities are easily missed when only looking at overall error

metrics such as MAE and RMSE and instead require the systematic analysis of

predictive behaviour across various parts of CS. In this chapter, FFAST was

introduced as a way to break the ice in this domain and provide experts and

non-experts with a baseline of tools to gain in-depth insight into the performance

of an FF. Many of the features were showcased in the example of two

medium-sized flexible organic molecules: DHA and stachyose.

This section covered the detailed analysis of the prediction of two

state-of-the-art models (Nequip and MACE), though FFAST supports many more

modern MLFFs. Throughout the showcase of a general FFAST workflow, it was

found that hydrogens are (numerically) much better predicted than other atoms.

This has a large influence on the overall MAEs and RMSEs due to both molecules

being hydrogen-rich systems. On the other hand, forces on carbons and oxygens

are unevenly reproduced, with atoms surrounded by chemically or structurally

complex environments presenting a notable increase in prediction error. For DHA,

the prediction errors of the main chain steadily rise as the molecule undergoes

folding, with the largest source of errors found in the carboxylic head.

FFAST was also shown to provide a way to analyse reference data. It was used

to quickly find the number of folding and unfolding processes in the DHA
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trajectory and it was found that these processes generally correlate with the

molecule’s potential energy. Overall, FFAST offers a detailed analysis of both the

dataset as well as the model, allowing field-specific knowledge of the system at

hand to be used to both assess the model’s quality and enhance it after

identification of the main pitfalls.
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Chapter 4

Study of inhomogeneous predictions

across configurational space

More and more branches of science increasingly incorporate a computational side

to their workflow, from simple scripting and analysis to wide-scale simulations

generating copious amounts of data, ripe for interpretation. The field of

computational chemistry is one of the many fields to have become a

data-generating behemoth. As computational resources grow, so do the durations

of molecular dynamics and their system sizes. The advent of powerful statistical

models further pushes it further by leveraging large amounts of generated

information to train data-hungry predictive models.

The usefulness of data, however, is limited by its interpretability. Before using

the bounteous heaps of information provided by e.g. a molecular dynamic, one

first needs to inquire about the content of the data, what it is potentially missing

and whether it is representative of all prospective use cases. For small simulations

and systems, intuition tends to be a powerful tool to answer those very questions.

Such trajectories can be viewed in real time and a scientist with enough chemical

knowledge can quickly assess quality, scope and limitations.

Long simulations or simulations of large/flexible systems tend to be

significantly more challenging to analyse. Besides, it is often necessary to know in

advance what mechanisms or configurations one is looking for to find them.

However, identifying unexpected chemical phenomena or outright mistakes
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hidden in millions of rows of data is not feasible without additional help. Prior

knowledge of the system at hand and the smart identification of the important

collective variables is often an effective way to start gaining insight into a dataset

and the model trained on it. This allows visualising prediction errors for

qualitatively different parts of e.g. a transition between states, thereby revealing

inhomogeneities in the predictive power of a model.

However, many systems are too complex to be reasonably summarised by a few

collective variables. Furthermore, the identification of such parameters can often be

highly non-trivial. Clustering is one of the tools one can utilise when faced with

this challenge. Its primary task is breaking down a large corpus of data into smaller,

digestible groups without knowing in advance what those groups should look like.

In principle, this does not require any prior knowledge of the system at hand or

even the content of the dataset, thus being a much simpler and more “automatic”

procedure with a large number of potential applications.

In this chapter, the idea of identifying different regions of CS and their

considerations for analysing the performance of MLFFs is explored. In section 4.1

we introduce the basics of clustering before showing instances of specific

implementations in section 4.4.1. This is followed up by a brief discussion of

descriptors and metrics in section 4.3 before arriving at the work done on MLFFs

using clustering methods (section 4.4). Finally, section 4.5 discusses more

chemically inspired ways to split up a dataset when prior knowledge about the

system is available.

4.1 Basics

The fundamental idea of clustering algorithms is to group unlabelled data points

such that similarity between points of the same group is maximised. The concept of

similarity is broad and necessitates additional definitions, but in most cases, it boils

down to choosing a distance d in a given space. More specifically, we are given a
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dataset X = xi with i 2 [1, N] comprising a total of N samples xi. We want to find a

mapping ci = f (xi) where ci 2 [1, K] are the cluster labels with K the total number

of clusters. The function f is chosen such that it minimises the total intra-cluster

distances across an entire dataset:

Minimise:
1
2

N

Â
i=1

N

Â
j 6=i

d( f (xi)� f (xj))d(xi, xj). (4.1)

This expression is never solved analytically, instead, cluster algorithms rely on

heuristic approaches that simplify the problem in various ways. In this work, every

data point xi represents a molecular configuration. The specific implementation of

how to represent molecular configurations (a.k.a. the descriptor) is its own can of

worms and will be touched on in section 4.3. For now, we simply assume that

every data point xi = [xi1, xi2, . . . , xiM] where M is the total number of features.

This set of features, combined with an appropriate distance in the descriptor space,

should enable the clustering method to clump all configurations with qualitatively

similar geometries together. If successful, the dataset X, originally a sea of

uncategorised molecules, will now be organised into smaller, more interpretable

chunks as depicted in Figure 4.1.

4.2 Clustering methods

4.2.1 KMeans

KMeans is by far one of the most popular clustering algorithms, largely owed to

its efficiency and simplicity. The algorithm requires the user to define the number

of clusters K in advance. Once chosen, the dataset will iteratively create K disjoint

clusters Ca, each defined by their respective cluster centroid µa. The metric that is

minimised is the overall intra-cluster sum of distances f:
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FIGURE 4.1: Illustration of a clustering algorithm applied on a set of
unlabelled molecular configurations (left). Resulting clusters represent

groups of similar configurations (right).

f =
N

Â
i=1

min
a2[1,K]

(|xi � µa|2). (4.2)

In this scheme, every point x is attributed to the cluster Ca whose centroid µa is

the closest. KMeans uses an iterative approach to reach convergence. Below we

outline the most common implementation, known as Lloyd’s algorithm, though

others also exist [140, 141].

1. Choose initial centroids µa in the same space as the data points

2. Associate each point to its closest centroid

3. Recalculate centroid positions as the centre of mass of all its associated points

4. Repeat steps 2 and 3 until convergence
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KMeans is guaranteed to converge since every step reduces f (or keeps it the

same). If the cluster labels don’t change after a step or a maximum amount of steps

is reached, the algorithm is stopped.

The outcome of KMeans is highly dependent on the chosen parameter K but also

the initial centroid positions µa. This is particularly important because KMeans is

prone to falling into local minima during its minimisation process. Hence, it is not

unusual to do multiple runs with different initialisations to ensure the results are

consistent. Furthermore, smart initialisation procedures are often used such as k-

means++ [142]. There, the centroids are chosen to ensure faster convergence with

better results:

1. Set centroid µ1 to be equal to a random point xi in the dataset

2. For an unchosen xj, calculate its distance D(xj) to the nearest already chosen

centroid µa

3. Choose a new centroid µb at a data point xj randomly, but with a probability

distribution proportional to D(xj)2

4. Repeat steps 2 and 3 until K centroids are chosen

Finally, it is important to note that the minimisation of a criterion such as

intra-cluster distances inherently favours the creation of similarly sized clusters. In

other words, KMeans is well-suited for approximately homogeneous data but

suboptimal for identifying rare features or finding outliers in a varied dataset. This

point is especially important for applications in the molecular field, as datasets

tend to be highly inhomogeneous. Moreover, part of the motivation for using

clustering methods in the first place is to spot rare chemical phenomena or

configurations. If the latter is of high priority, it is likely other clustering algorithms

are more appropriate.
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4.2.2 Agglomerative clustering

Unlike KMeans and other similar algorithms, agglomerative clustering does not rely

on centroids to define a cluster. Instead, it is entirely described by its members. The

base algorithm is very straightforward and intuitive: at first, every single data point

is considered to be its own independent cluster. Then, an iterative process starts

where the two “most similar” clusters are merged at every step. The final number

of clusters K is once again predetermined and the iterations are stopped once only K

clusters are left. A schematic representation of the algorithm is shown in Figure 4.2.

FIGURE 4.2: Schematic representation of the agglomerative clustering
algorithm.

The key notion that needs to be defined is the “similarity” between clusters

which is given by the linkage l(Ca, Cb) where a, b 2 [1, K]. For a given set of

pairwise distances between every pair of points between two clusters, given by the

metric d(xi, xj), the linkage provides the distance between these two clusters. The
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metric itself is a simple distance between two points, usually chosen to be the

Euclidean distance d(xi, xj) = ||xi � xj||2. The linkage has a variety of options:

• Single linkage: l(Ca, Cb) = mini,j d(xi, xj), with i 2 Ca and j 2 Cb.

Here, the cluster distance is given by the pairwise distance of the closest pair of

points from respective clusters. This performs well when non-elliptical cluster

shapes are desired but struggles with noisy data or outliers.

• Complete linkage: l(Ca, Cb) = maxi,j d(xi, xj), with i 2 Ca and j 2 Cb.

Here, the cluster distance is given by the pairwise distance of the furthest pair

of points from respective clusters. The tendency here is the creation of compact

clusters and as such it favours well-separated data.

• Average linkage: l(Ca, Cb) = 2/(|Ca| ⇤ (|Cb|� 1))Âi2Ca Âj2Cb
d(xi, xj),

with |Ca| the number of points in cluster Ca. Here, the cluster distance is given

by the average pairwise distance of all pairs of points from respective clusters.

This choice tends to produce more evenly sized clusters.

• Ward linkage

Ward linkage chooses the pair of clusters to merge such that it minimises the

total within-cluster variance. Just like average linkage, it tends to create evenly

sized clusters that are compact. Note that this method assumes equal variances

across clusters and suffers if this assumption is very wrong.

With the right choice of metric and linkage, agglomerative clustering is not

bound to create clusters of similar sizes, as is the case with KMeans. For

applications in molecular datasets, this can be a great advantage as it allows the

creation of small, independent clusters containing rare events or outliers in the

dataset. However, this does come at the price of higher computational times and

higher sensitivity to noise.
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4.2.3 DBScan

DBScan (Density-Based Spatial Clustering of Applications with Noise) is a popular

density-based clustering algorithm. Unlike KMeans, it does not utilise centroids

to define clusters but instead relies on detecting regions of high and low density.

In essence, the method creates clusters that encompass an area of high density, all

separated by regions of low density.

DBScan requires the user to predefine two main parameters: the maximum

distance e and the minimum number of samples m. The former dictates how far

two points can be while remaining part of the same cluster and the latter

determines the minimum amount of points that need to exist inside a region of

radius e to be considered a cluster. Every point is determined to be one of three

types, see Figure 4.3:

• Core points are those that have at least m � 1 other points in a region of radius

e around them

• Border points are those that fall within the region of a core point (same cluster)

but are not core points themselves

• Noise points don’t fall into either category above and remain unlabelled

(outliers/noise)

Like most clustering algorithms, the implementation is iterative. One starts by

selecting a random point and identifying it as core, border or noise. Then, a new

point within the neighbourhood is selected and identified and the loop continues.

This repeats until no unassigned points remain within e of any already-assigned

point: this completes the creation of the first cluster (so long as it includes at least m

points). Then, the algorithm jumps to another random unassigned point and begins

anew. The algorithm stops when all points have been visited once.

Unlike KMeans, DBScan does not care about the shape of the cluster and can

easily deal with non-elliptical data. It can be closely compared to agglomerative
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FIGURE 4.3: Schematic representation of the DBScan algorithm,
including maximum distance e and an example of a core point, border

point and noise point. The drawing uses m = 3 minimum samples.

clustering with the single linkage but is better able to separate noise and outliers

from main clusters. On the downside, the results are highly dependent on the choice

of parameters e and m which can require meticulous tuning to get expected results.

4.3 Descriptors

For all clustering applications, it is assumed that every point in the dataset is

represented as a single vector of a given size. However, as we are dealing with

molecular configurations, our dataset originally is a tensor of size (NxMx3), where

N is the number of samples or configurations and M is the number of atoms.

Furthermore, we also know the chemical element of every atom. This section deals

with finding a function f to convert the Mx3 Cartesian matrix representing atomic

positions P = [p1, p2, ..., pM] into a single representative vector x:

x = f (P). (4.3)

The importance of choosing function f wisely is not to be underestimated, as

different representations can lead to wildly different results both in clustering and
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prediction tasks for MLFFs. The descriptor should encompass changes in local

atomic environments along with long-range changes in molecular configurations.

As such, changes in bond distances, angles and dihedrals should have a noticeable

effect on the representation as well as global changes in geometry.

One could technically flatten the matrix P into a vector of length M ⇤ 3, though

this runs into the first immediately obvious problem: a translation or rotation of the

molecule entirely changes the descriptor x. Naturally, this is undesirable as neither

of these transformations change the configuration of the molecule nor does it have

any influence on its energy. In other words, our function f has to be invariant with

respect to any arbitrary rotation R and translation T in R3:

f (RP + T) = f (P) = x. (4.4)

The most obvious way to comply with these demands is to rely on distances. For

example, for a given distance metric d (usually Euclidean), the descriptor could be

given as a set of pairwise distances between atoms. Generally, information about the

atoms’ elements is also taken into consideration, which then results in descriptors

such as the widely used Coulomb matrix:

MCoulomb
ij =

8
>><

>>:

Z2.4
i for i = j

ZiZj/Rij for i 6= j,
(4.5)

where Zi is the nuclear charge of atom i. Usually, the lower or upper triangular

part of this MxM matrix is flattened to a translationally and rotationally invariant

vector describing a molecular structure. Interatomic distances do not change under

any translation or rotation of the original space, and they don’t cause any loss of

information. On the contrary, this description is over-complete, as can easily be seen

when observing the dimensionality of the vector x. The problem originally started

with 3M � 6 degrees of freedom when accounting for symmetries. However, there

are a total of M(M � 1)/2 unique pairs of atoms that constitute the new descriptor
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x.

In other words, the size of the descriptor scales rapidly with the number of

atoms, even when just using distances. This problem is further exasperated when

three-body (angles) or four-body (dihedrals) components need to be explicitly

added for accurate representations, which quickly results in unmanageable sizes

leading to a common problem dubbed the curse of dimensionality [143]. For our

clustering purposes, where distances between points (each described by a

descriptor xi) is the fundamental metric everything is based on. One of the direct

consequences of high dimensional space is the reduction in information that

distances contain. As the number of dimensions grows, pairwise distances

between points tend to increase and present a much narrower distribution relative

to the breadth of possible values. This effect is showcased in Figure 4.4 using a toy

model. In other words, distances tend to become less descriptive for large

descriptor sizes, and thus, the quality of clustering algorithms suffers. Note that

this applies to Euclidean distances as well as most other common choices.

FIGURE 4.4: Probability distribution of pairwise distances of 1000
random points in an n dimensional box, for n = 2 (blue), n = 10

(green), n = 50 (red), n = 100 (purple)

Another noteworthy downside of the Coulomb matrix is that —on its own— it
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is not permutationally invariant. That is, while swapping the order of two atoms of

the same element leaves the structure and energy of a system untouched,

exchanging two rows (and columns) of the Coulomb matrix has a significant

impact on this descriptor. In general, this permutational invariance is a desired

trait that the remaining descriptors in this section all maintain. For this particular

descriptor, this feature can be re-introduced e.g. by sorting the values or by using

the (sorted) eigenvalues of the matrix instead.

Here, we want to recall a discussion in section 2.4 outlining the particular need

for intricate descriptors, especially when the goal is to train a shallow NN or kernel

method. Clustering algorithms share the same line of thought: the descriptor is not

learned or refined by the model and as such its original choice is paramount. If a

descriptor doesn’t fully describe the system and its symmetries — or is too large

and redundant — it will have direct negative consequences on the quality of the

resulting clusters.

Among others, the section introduces SOAP as an example of an elaborate

descriptor tailored towards the extensive description of molecular systems, see

Equation 2.29. The idea revolved around local atomic neighbourhoods, split into a

radial part (containing pairwise information) and a many-body part. The former

was represented using a predefined set of radial basis functions such as high-order

polynomials while the latter was expanded into a set of spherical harmonics.

Importantly, all the choices kept the final symmetries of the original system in

mind.

More descriptors have been added over time, such as the Many-Body Tensor

Representation (MBTR) [49]. MBTR builds on the idea of many-body expansion and

the final vector describing the system is a concatenation of k = 1, 2, 3, 4 subvectors

representing k-body terms. Each subvector is a sum of histograms running over a

pre-defined grid of a relevant metric, see Equation 4.6. For example, the pairwise

k = 2 terms can be represented by the distribution over possible distances x from

0.5 Å to 10 Å.
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fk(x, z) =
Na

Â
i=1

wk(i)D(x, gk(i))
k

’
j=1

Czj,Zi . (4.6)

Here, x is the value of the relevant metric gk at which the distribution function

fk is calculated. The metric gk depends on the chosen parameter k, where typical

choices for k = 1, 2, 3, 4 are atomic numbers, (inverse) distances, angles and

dihedrals respectively. Furthermore, fk is calculated separately for every unique set

of chemical elements z of size k. The weighting factor wk(i) ensures convergence of

the sum, e.g. for pairwise terms it is usually an exponential decay over distances.

The probability distribution D is a smoothing factor (akin to SOAP) to make the

descriptor differentiable and less sparse, often chosen to be Gaussian. Finally, Na is

the total number of atoms in the system, Zi is the element of atom i in the system

and Ci,j is an element correlation matrix describing the "likeness" of chemical

elements. By default, Ci,j = d(Zi, Zj).

MBTR is translationally and rotationally invariant thanks to its choices of metrics

gk, each individually invariant. Permutational invariance is achieved by summing

over atomic contributions and the separation of the terms based on unique sets of

chemical elements z treated.

The list of descriptors presented here as well as section 2.4 are not exhaustive

and represent a fraction of the work done in the field. Moreover, new descriptors

will assuredly be developed in the future, as the growing system sizes and

complexity that modern MLFFs are treating will likely necessitate it. Any

application in unsupervised learning approaches, such as clustering, will naturally

benefit from these developments as well.

4.4 Cluster errors in MLFF

It has been made clear over the recent years that MLFFs are indeed able to capture

molecular interactions for a large variety of systems. Amidst those successes, it is
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important to be reminded of the inescapable downside of ML: the quality of the

result is entirely at the mercy of the availability of prime data. Human intuition and

reasoning are necessary to understand what is otherwise a meaningless series of

numbers, and as such it is up to that human input to distinguish between relevant

data, noise, outliers and downright mistakes. In the field of empirical force fields, all

parameters are tuned such as to fit what is known or believed to be true intuitively

and experimentally. In the domain of MLFF, some of this insight can be injected

into e.g. the architecture of the model itself and its parameters, but that is highly

dependent on the method at hand.

For instance, many datasets are born from simple molecular dynamic

simulations. A trajectory is extracted from that simulation representing a series of

data points, each associating a set of Cartesian coordinates for every atom to

energy and forces. Due to how these dynamics operate, the majority of the points

sampled should be found in or near equilibrium, as represented in Figure 4.5. As

statistical models try to minimize an overall error, rare (out-of-equilibrium)

configurations can be very poorly predicted without impacting the training

significantly. Hence, one can expect such ML models to be unreliable or

unpredictable for deployment in any MD simulation where out-of-equilibrium

configurations are deemed important. This effect will always have to be considered

when the data distributions in the reference dataset differ from those of the target

simulation. Examples include studying phase transitions and reaction rates based

on data generated from stable phases, studying quantum effects (such as proton

transport) while learning on classically generated trajectories, etc.

This section focuses on the aforementioned “unevenness” of machine learning

models across configurational space. First, a method based on clustering

algorithms is explored to detect this effect without the need to run dynamics. As

opposed to most standard approaches, where only average errors across entire

datasets are calculated, we instead compute the prediction error of a model on

separate regions of the reference data. This approach allows delving into what
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types of configurations are problematic as well as which are potentially

overtrained. Furthermore, this can simultaneously act as a way to detect outliers

inside of the dataset itself, discovering e.g. rare events our out-of-equilibrium

processes inside a trajectory.

FIGURE 4.5: Hypothetical potential of a salicylic acid molecule
presenting two stable energy minima for isomers trans and cis
respectively. Configuration in red are naturally poorly sampled
whereas those in green are found in abundance, thereby biasing

MLFFs.

4.4.1 Methods

This section provides an in-depth view of the error analysis method proposed here.

This method’s goal is to provide a way to assess an MLFF model’s ability to

produce equally reliable predictions across all parts of CS of a given dataset, as well

as serving as an outlier detection tool. Note that while we apply this method for

MLFFs, this method can in principle, easily be extended to any regression problem

of choice. A visual representation of the method can be found in Figure 4.6

As a first step, the molecular configurations inside the dataset of interest are

represented using a translationally and rotationally invariant descriptor. The

choice throughout this section is a pairwise inverse distance descriptor. The

reasoning behind this choice lies in the primary application of the method:

analysing the error curves of sGDML models. Using the same descriptor as the
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FIGURE 4.6: Overview of the cluster error method. Clusters of a given
dataset are generated and prediction errors on MLFFs are calculated on

each of them separately.

MLFF to be analysed ensures that configurations with widely different inputs for

the model are also well separated in our clustering methods.

Once the descriptor is generated, the clustering step can begin. In this section,

we limit the choice of clustering to a single, generally effective method. It consists

of first separating the entire dataset into 10 clusters based on the descriptor of

geometrical information. This initial step roughly distinguishes between varying

configurations throughout the dataset and is in particular meant to identify

geometrical outliers. As such, an agglomerative approach is chosen for its ability to

create clusters of different sizes. This avoids merging rare but geometrically unique

points with otherwise commonly found samples. However, agglomerative

clustering is computationally taxing particularly due to the memory requirement

that scales as O(n3), with n the number of samples. As such, for large datasets,

only a “small” amount of initial points were able to be fed to the algorithm (usually

at least 20000) and unlabelled points were afterwards assigned to their respective

closest existing cluster (using the same metric and linkage). To make this step more

reliable and less likely to misclassify points, it is preferable if the initial clusters are

at least somewhat compact. Thus, a complete linkage was chosen despite it

lessening the ability to detect outlier clusters of arbitrary shape.
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The metric of choice is Euclidean, which is not a natural choice for the

descriptor space. This, combined with the fact that the descriptor space is

overcomplete, means that clusters produced based on those choices are prone to

containing large variations in potential energy. We bypass this problem with a

second round of clustering, this time distinguishing between different energy

levels using KMeans with kmeans++ initialisation. Since the potential energy is a

simple one-dimensional value, KMeans performs well without any concern for

computational costs. In practice, all of the 10 clusters created above are further split

into 5 smaller clusters using this method, for a total of 50 final clusters.

Once the splitting of the dataset through geometrical and energetical

considerations is complete, one can select an MLFF model of choice and compute

its prediction error on each individual cluster. Here, the RMSE was chosen due to

its ability to emphasise large differences. When lining up the clusters in ascending

order, we can identify outliers and provide the general geometries associated with

them.

Note that all methods explained in this section are available in the open-source

MLFF software package developed for this purpose [144]. This comes with a slew

of options, such as changing the clustering sequences and parameters and more.

4.4.2 Practical application of the cluster error on salicylic acid

This section describes a practical use-case of the outlier detection using an example

of a salicylic acid molecule. The dataset in question contains 320000 configurations

and is part of the MD17 collection [51]. The level of theory of the reference

calculation is done using PBE+TS.

The clustering procedure was performed as outlined in section 4.4.1 resulting in

a total of 50 distinct clusters containing qualitatively different configurations.

Performing this step using the MLFF software boils down to:

python run.py cluster -d <dataset_file>
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This command provides the cluster indices but a MLFF model is required to

perform a proper analysis. For this tutorial, we use an sGDML model trained on

1000 points of this reference dataset using the default training scheme

implemented in the package. All 320000 configurations have their forces predicted

and grouped by cluster before the cluster force prediction RMSEs are calculated.

The simple command to perform this analysis using our package is found below

and the resulting image can be seen in Figure 4.7:

python run.py cluster_error -d <dataset_file> -i <model_file>

FIGURE 4.7: Force Prediction RMSE (coloured bars) on a total of 50
clusters of an sGDML model trained on 1000 reference data points of a
salicylic acid dataset. Clusters are ordered by ascending error. Relative
cluster sizes are indicated (solid blue line, arbitrary units). A single
representative structure of the worst predicted cluster is shown (red

box).

Here, it is important to emphasise that every single cluster corresponds to a set

of configurations that are qualitatively different to that of other clusters. In other

words, a cluster is a look into a limited region of CS. The poorly predicted clusters

thus represent general types of geometry that the model struggles with in

particular. One example of such a geometry is shown in Figure 4.7 (red box): one

can observe that this particular geometry clearly involves the sharing of a

hydrogen atom between the hydroxyl and carboxyl groups of the molecule. This
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event is quite rare inside of the dataset and it is not obvious that this type of

exchange would be included in a trajectory generated this way. While simple

visualisation or human analysis of the trajectory might easily miss the inclusion of

such an appearance, this method makes it significantly easier to detect interesting

phenomena. Note that all the geometries inside of the last cluster presented a

similarly shared hydrogen, hence its small population due to the scarcity of this

attribute in the dataset (a few hundred among 320000 configurations).

4.4.3 Application on a variety of small organic molecules

A procedure equivalent to the one explored in section 4.4.2 was applied to a variety

of state-of-the-art MLFF models as well as small-to-medium-sized datasets of

organic molecules. The models in question were sGDML, GAP along with its

SOAP descriptor, and SchNet. All of the reference datasets used are part of the

MD17 collection, namely uracil, salicylic acid, toluene and ethanol. All MLFF

models used identical training datasets generated by the sGDML training set

selection scheme. The clustering procedure was performed identically to the

previous sections for all four datasets, thus resulting in 50 uniquely different set of

configurations per trajectory. The cluster errors are shown in Figure 4.8.

One can immediately see that for all model and dataset combinations, a

significant disparity between high error clusters and overall RMSE (black line) is

present. In the more extreme cases, this disparity is a factor of up to 3. As such, a

single overall error is a very insignificant metric to properly quantify how well an

ML model might perform in real tasks since out-of-equilibrium configurations are

substantially less stable than “trivial” equilibrium ones. This goes against the idea

of replacing ab initio calculations with equivalent machine-learned forces,

considering potentially important regions of CS present accuracies that seriously

differ from reference calculations.

We identify two main possible reasons to explain this occurrence. As a first,
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FIGURE 4.8: Force Prediction RMSE (coloured bars) on a total of
50 clusters of sGDML, SchNet and GAP/SOAP models trained on
identical 1000 reference data points of uracil, salicylic acid, toluene and
ethanol datasets. Clusters are ordered by ascending error. Relative
cluster sizes are indicated (solid blue line, arbitrary units). Overall

RMSE is also shown (black horizontal line).

clusters with high prediction errors might correspond to regions with large

fluctuations in geometry. Those are naturally less well represented in a training set,

thus impeding accurate learning through sheer lack of information. Of course,

many simple applications might remain unaffected by a poor performance on these

outliers due to being constrained to given regions of CS. However, such

unpredictable fluctuations in target configurations can greatly affect final results

when studying e.g. chemical reactions, configurational changes or stabilities.
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A less trivial reason considers the nature of the configurations contained in

those clusters. As showcased in the example of section 4.4.2, where the most poorly

predicted cluster involved a shared proton between the hydroxyl and carboxyl

group, some regions of CS might represent physically or chemically relevant

phenomena otherwise missing in the majority of the sampled dataset. In the case of

the shared proton, the reference dynamics would require proper accounting of

nuclear quantum effects to produce adequate sampling of this effect. Thus, in our

case, this exchange happens in a minuscule portion of the entire trajectory (a few

hundred out of 320000).

Overall, this points towards the fact that none of the models above would be

capable of properly describing a proton-sharing effect. Naturally, this is simply

representative of a larger problem not just limited to this particular chemical

phenomenon, dataset or choice of models. It is non-trivial to know which

configurations of a given molecule can stump the MLFF model in real applications,

hence the necessity to automate the process of finding weak points. Furthermore, it

is fruitful to consider ways to circumvent this issue, a territory that is explored in

chapter 5.

4.5 Challenges for reproducing potential energy

surfaces of flexible molecules

The previous chapters focused on the usage of clustering algorithms to separate

predictive patterns across different regions of CS and/or different mechanisms

inside of a dataset. The key idea was that proper separation of the system’s CS

provides information that is otherwise hidden in average metrics or distributions.

In this section, which is a brief run-down of a collaborative paper of the same

name [145], ML models are also analysed based on their abilities to accurately

reproduce different areas of CS. However, the techniques used to segregate said
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areas do not rely on clustering algorithms but are instead a result of prior

knowledge of the system at hand as well as the construction of the datasets

themselves. This allows chemical insight and intuition to guide the analysis when

the relevant configurational states and/or the transitions between them are known

beforehand.

FIGURE 4.9: Optimized geometries at the minima of both isomeric
states for glycine and azobenzene. The main degrees of freedom are
also shown. For azobenzene, they are the bonds a and b as well as
the corresponding bending angles q and q0 and torsional angle f. For

glycine, they are the torsional angles t1 and t2 [145].

The target datasets of this section are of two molecules — glycine and

azobenzene — presenting two distinct isomeric states as shown in Figure 4.9. As

both isomeric states are known a priori, the datasets in this section were created to

include ample information about both states as well as their transition.

Furthermore, as the mechanisms are known, it is clear which states represent

equilibrium configurations and which ones are part of a transition, thereby

providing “clusters” from the get-go.

For glycine, a transition was created using the string [146] and Nudged Elastic

Band (NEB) [65] method providing similar pathways. The mechanism can be

described by almost equal rotations of torsional angles t1 and t2. As the minimum

energy path was less than 3 kcal/mol the transformation could be observed in

standard constant-temperature MD simulations of 500 K with a timestep of 1 fs
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using the PBE+TS method. Thus, the dataset is a total of 5000 configurations

directly sampled from the MD simulation.

For azobenzene, neither NEB nor the string methods can converge to reasonable

transition paths between cis and trans. Thus, the transition pathway was instead

constructed manually through a combination of a rotation path (via torsional angle

f), an inversion path (via bending of q and q0) and a path combining both rotation

and inversion. Every path was manually constructed via linear interpolation of the

relevant angles and consisted of 15 intermediate geometries linking the starting

and ending minima. For each intermediate geometry, separate MD simulations

were run (using PBE+TS) to provide sufficient sampling of the transition paths.

First, this includes a long run at 300 K and a time step of 1 fs to provide a basis for

the dataset. Then, an additional high-temperature (750 K) run simulates the

cooling-down process of the respective transition states back to equilibrium states,

which requires high kinetic energies. Finally, a low-temperature (50 K) simulation

with a short time step (0.025 fs) starting from configurations at the middle of both

transitions was run to include slow changes of the relevant degrees of freedom. All

in all, the rotation and inversion datasets contain 26455 and 25528 data points

respectively.

4.5.1 MLFF accuracy on transition paths

A variety of ML models were trained on the reference datasets of both glycine and

azobenzene, namely BPNN, SchNet, GAP/SOAP and sGDML. All the models were

trained on up to 1000 points chosen by the sGDML training point selection method.

In all cases, models were created using a 5-fold cross-validation task on a subset

consisting 5 times larger than the final training set size (i.e. 5000 configurations for

a model training set size of 1000). Thus, for each training set size, 5 different models

were trained on different training points. The respective training sets were selected

such as to preserve the energy distribution of the whole dataset. For each model,
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the remaining 4 folds of the subset were used as a test set.

The performance of the different models on the various transition paths can be

seen in Figure 4.10. Note that only the best model out of the aforementioned cross-

validation task is shown. For sGDML, two different descriptors were considered:

the default inverse pairwise distances [1/r] as well as an extended descriptor that

also takes into account bonded angles and dihedrals in the form DQ = (1 � e�Q)2

and DF = 1 + cosF respectively. Only the best of both descriptors is shown for

every figure.

FIGURE 4.10: RMSE of energy kcal/mol and force kcal/(mol Å)
predictions as a function of training set size for a) glycine, b)
azobenzene inversion and c) azobenzene rotation datasets. For
rotation, an extended sGDML descriptor [1/r+ang] is shown along the
default descriptor [1/r]. Models with errors above 5.0 kcal/(mol Å) or

3.0 kcal/mol are omitted [145].
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One observes that for glycine, all models besides BPNN obtain chemical

accuracy. For sGDML and SchNet, errors below 1 kcal/mol and 1 kcal/(mol Å) are

reached at 300 and 400 training points respectively. For GAP/SOAP, the force

errors remain at around 1.5 kcal/(mol Å) even at 1000 training points, though the

energy is equally well predicted.

For azobenzene, the different models show very different behaviour. BPNN is

not able to meaningfully reproduce this dataset and GAP/SOAP reaches chemical

accuracy in energies at 400 training points for the rotation mechanism but only 200

training points for the inversion mechanism. Force prediction accuracies are

significantly worse, with the rotation mechanism in particular remaining above 2.4

kcal/(mol Å) at 1000 training points.

Both transition mechanisms are very well predicted by both sGDML and

SchNet. One can however notice that sGDML is more reliable at predicting forces

(force RMSE of 1.1 kcal/(mol Å) as opposed to 1.4 kcal/(mol Å) at 1000 training

points). On the flip side, SchNet can reproduce inversion and rotation equally well

with a single descriptor, as opposed to sGDML where significant differences can be

found when using either descriptor for the respective mechanisms.

In part, the different predictions across models and mechanisms can be

attributed to different long-range interactions. For example, SOAP largely learns

local information (within a given cutoff radius). While this is efficient, it is unable

to reproduce long-range interactions, unlike the global descriptor of sGDML or the

self-interaction layers of SchNet. Thus, it particularly fails to accurately reproduce

the forces in the inversion mechanism.

4.5.2 Challenges for ML models in flexible molecules

While it is clear that GAP/SOAP, sGDML and SchNet are viable methods to learn

the PES of azobenzene at chemical accuracy, the variance between their predictions

concerning the specific mechanism deserves further thought. Below we briefly
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discuss the two main sources of this effect: imperfections of the training set

selection and intrinsic limitations of the descriptors.

FIGURE 4.11: RMSE of energy (kcal/mol) and force (kcal/(mol Å))
predictions as a function of training set size for azobenzene inversion
and rotation datasets. An extended sGDML descriptor [1/r+ang] is

shown along the default descriptor [1/r] [145].

Figure 4.11 shows the force and energy prediction error curves as a function of

training set size on the inversion and rotation mechanisms of azobenzene. The

model of choice is sGDML, showcasing both the default and the extended

descriptor for both mechanisms. One can indeed see that while the inversion

mechanism is much better predicted using the default sGDML descriptor, an

extension using angles and dihedrals is beneficial for the rotation mechanism.

One can also notice that there are considerable oscillations in the energy

prediction errors, namely for the inversion mechanism using the extended

descriptor and the rotation mechanism using the default descriptor. This is a

crucial point, as it shows the potential sensitivity of a model to the particular

selection of training points. Note that this effect would be even more noticeable if

the training points were selected randomly, if cross-validation had not been

performed, or if the molecule was larger and more flexible (thereby increasing the

size of CS).

The training set dependency is further influenced by how sGDML specifically

treats energy calculations. Regularization of the model is done via two

hyperparameters, with the main one being the width of the kernel function which

is optimised during the validation phase of the model training. As sGDML directly
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learns forces, energies are recovered up to a constant and thus a second

hyperparameter is required to learn the optimal energy shift. However, energies of

flexible molecules such as azobenzene are highly degenerate. Thus, although our

training set follows the general energy distribution, different parts of the PES are

unequally represented. As such, the particular selection of training points often

results in an energy shift that is suboptimal for the dataset as a whole. This is why,

when comparing the best and the worst models of the rotation mechanisms using

the extended descriptor, the average difference in energy RMSE is 0.7 kcal/mol

while that of the forces is only 0.2 kcal/(mol Å).

Finally, it is interesting to subdivide the pathway of a mechanism into different

phases or clusters. In figure 4.12, the inversion mechanism is subdivided into 17

different clusters, each corresponding to a different value of the dihedral angle F.

Specifically, cluster index 0 corresponds to an interval between 0� and 10� and

cluster index 17 corresponds to an interval between 170� and 180�.

Two SchNet models were trained for this purpose, the first one consisting of 1000

training points of the rotation dataset and the second one of 4000 training points of

the combination of rotation and inversion datasets. One can see that the prediction

errors on close-to-equilibrium configurations (left and right) are up to four times

larger than the in-between states. This effect is observed for both training set sizes

and is thus unlikely to be due to insufficient sampling, but rather due to intrinsically

more complex interactions in those geometries.

4.6 Conclusions

In this chapter, we delved into the inhomogeneities of prediction accuracies when

analysed on different regions of CS. Specifically, we leveraged unsupervised ML

techniques as well as chemical insights to create different clusters of a given dataset,

each representing a group of qualitatively different configurations or mechanisms.

The clustering procedures presented are general enough to automatically extract
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FIGURE 4.12: RMSE of energy (kcal/mol) and force (kcal/(mol Å))
predictions for different clusters of the azobenzene inversion dataset.
In a) the best SchNet model trained on 1000 points of the rotation
dataset and b) the best Schnet model trained on 4000 points of
the rotation and inversion dataset. Clusters correspond to different
intervals of the dihedral angle F (e.g. cluster 0 includes angles F from
0� to 10�). Relative population of each cluster is indicated (orange,

arbitrary units).

small subsets of geometries representing nontrivial mechanisms from a large pool

of data, even when no prior knowledge of the latter is available.

It was found that state-of-the-art models applied to small to medium-sized

organic molecules present non-uniform error distributions across the different

regions of CS created through the clustering methods. This confirms that analytical

tools such as this one are required to properly assess a model’s performance, as

overall error metrics are unable to capture these nuances. In practice, these

inhomogeneities are linked to instabilities in e.g. molecular dynamics, where the

inaccurate reproduction of key mechanisms or geometries can lead to very

erroneous results.

A similar story is told when observing the prediction accuracies for different

mechanisms of transition paths of flexible molecules, as was done for glycine and

azobenzene in this work. This study showed that not only do the prediction errors
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vary highly from mechanism to mechanism (and model to model), but that different

descriptor choices can have varying efficacy for different parts of CS. In particular, it

was found that an extension of the default inverse distances descriptor using angles

and dihedrals is beneficial for predicting the rotation mechanism with an sGDML

model.

Finally, it was highlighted that the choice of training points is crucial to the final

performance of a given model. For azobenzene, sGDML models showed oscillatory

prediction errors across growing training set sizes. It was also found that for many

organic molecules observed in this chapter, some important clusters represent rare

configurations that are unlikely to be well represented in a training set, even when

the latter reproduces the overall energy distribution. Thus, this work motivates

giving the training set selection further thought to potentially enhance a model’s

stability and prediction errors curve across CS. This idea is further explored in the

next chapter.
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Chapter 5

Improving model predictions across

configurational space

The analyses performed in the previous chapter showed that despite MLFFs’

remarkable accuracy, there are tangible downsides to the data-driven nature of the

models. Ensuring stability, performance and efficiency hinges on the ability to first

provide adequate initial data. While ML approaches themselves are unbiased by

nature, the ways to generate reference data highly influence what is ultimately

learned. For example, a lot of training data is extracted from molecular dynamics

trajectories. An ML model of choice is then trained to reproduce this data

accurately: in particular, they minimise the overall prediction error across a (usually

random) selection of points. This however teaches the model to focus on the

common configurations (i.e. close-to-equilibrium) at the expense of rarer

configurations (out-of-equilibrium) that don’t majorly impact overall error metrics.

A major bias towards well-frequented regions of CS renders ML models

unreliable and unpredictable in long or out-of-equilibrium simulations.

Specifically, a single mispredicted configuration can send the trajectory into

unrecoverable extrapolation regions. This becomes likely to occur for long

simulations or examples such as computing reaction rates, exploring nuclear

quantum effects such as proton transports or simulating phase transitions. In all

those specialised cases, it is important to not only sample pivotal configurations

but also ensure they have a meaningful contribution to the model’s loss function.
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An overall error across a randomly selected training set does not fulfil those

conditions.

This chapter largely focuses on the problems discussed above by flattening the

error curve across regions of CS. In other words, the goal is to make sure MLFFs

are equally reliable for common structures as well as rare (but important) events

regardless of their prevalence in the reference dataset. The methods proposed are

completely general and can be applied to any ML model of choice, thus enhancing

its stability for any use case.

5.1 Optimised training set selection

5.1.1 Method

In order to accomplish the goal of providing reliable MLFFs across all geometries

inside a dataset, we propose a novel method that optimises the training set of ML

models. With proper application, this leads to “fairer” FFs with significantly

reduced bias and thus a more constant accuracy across the reference dataset. The

method is available online as open-source software [144] focused on MLFFs, but

the approach is generally applicable to any ML model with uneven data

generation. A schematic overview of the procedure is given in Figure 5.1.

Section 5.1.2 covers practical procedures and implementation details at the hand of

an example of salicylic acid.

While standard training techniques simply calculate averages across batches of

an entire dataset, we follow the principles introduced in section 4.4.1 and introduce

prediction errors across different clusters (representing distinct areas of CS). In

particular, section 4.4.3 proposes two reasons to explain particularly high

prediction errors in specific clusters. First, the cluster might contain physical and

chemical properties that deviate from the norm. Secondly, the cluster might
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FIGURE 5.1: Overview of improved training set selection method.
Clusters of a given dataset are generated and prediction errors on
MLFFs are calculated on each of them separately. Problematic clusters
are re-clustered finely and problematic configurations are added to an

initial training set. The procedure repeats several times.

represent a region that is poorly represented in the dataset. The latter is what this

section aims to address.

To do that, a model with a reduced training set is trained and its cluster

prediction errors are computed. Then, all poorly predicted areas of a model are

merged for a larger amount of new clusters to be created. This essentially provides

a fine grid of problematic regions, enabling us to pick out well-predicted

configurations that the initial broader clustering scheme had mislabelled.

Furthermore, the poorly predicted clusters are represented on a fine scale, thereby
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minimising the risk of missing important nuances in out-of-equilibrium

configurations. From the numerous clusters, the most poorly predicted ones are

once again set aside and representative geometries are extracted from each. Every

extracted geometry is then added to the initial training set, thereby improving

performance specifically on the difficult sets of geometries. The process is repeated

with the new model until a final model is achieved with an optimised training set,

allowing the model to produce similarly accurate results across all data.

5.1.2 Implementation details

Below is a list of all the primary parameters of the improved training set selection

scheme:

1. The number of initial clusters and algorithm choices

2. The number of fine clusters and algorithm choices on the iterative step

3. The number of initial training points

4. The number of training points extracted and added at every step

5. The total number of iterations (or number of total training points)

The first set of parameters is implemented exactly as described in section 4.4.1:

10 agglomerative clusters on inverse distances followed up by 5 KMeans clusters on

energies for a total of 50 initial clusters. The number of fine clusters is purposely set

to a larger number (100 � 200), as the goal is to create a fine grid rather than general

configurations. Also, distinguishing between energies is unnecessary as clusters are

small enough for energetic values within single groups to be more consistent. In

general, it was empirically determined that a good number of fine clusters is twice

the number of training points extracted at every step (parameter 4).

Parameters 3-5 are largely interdependent, as the model’s planned final size

influences the number of initial training points as well as the number of iterations
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and step size. For the initial number of training points, the resulting model must be

at least marginally able to give acceptable predictions. If the initial model’s

predictions are too far from the truth, the prediction errors inside the clusters

cannot be trusted to be a relevant metric for determining valuable training points.

For our purposes, it was found that choosing an initial training set of around 20%

of the final model’s was high enough to provide adequate initial results while still

providing enough headroom for improvement. Similarly, a generally good number

of the steps was found to be 8 as it constitutes a good compromise: if the number is

too low, too many of the initial model’s problematic structures are added to the

training set, thereby preventing the addition of other problematic structures. If the

number is too high, the training time is significantly increased with diminishing

benefits. A rundown of some parameter choices and their effects on the final model

is explored at the end of section 5.5 with a salicylic acid example.

Specifically, for a run with an initial training set size of 200 with 8 steps of 100

points each, the simple command in the MLFF package boils down to (parameters

not present in the command are provided through a parameter file with argument

-p:

python run.py train -d <dataset_file> -n 8 -i 200 -s 100

5.2 Application to salicylic acid and a proton exchange

mechanism

5.2.1 Flattening the error curve

This procedure was applied on a salicylic acid dataset, as introduced in section 4.4.2.

The parameters were set to the defaults introduced above: 200 initial points with

iterative steps of 100 points each. In Figure 5.2, we show the cluster error for the

force predictions on the improved models for a total of 400, 700, and 1000 training
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points (i.e. 2, 5 and 8 iterative steps). This is compared to a model trained with the

default sGDML procedure to select training points.

FIGURE 5.2: Force prediction RMSE on the 50 initial clusters (x-
axis) of a salicylic acid dataset ordered by ascending error. Every
colour corresponds to a different final training set size (or number
of iterations) of an sGDML model. We compare two cases: default
sGDML training method (left) and the proposed improved training set

selection (right).

The differences between the default and improved models are clear to see

throughout the training curves: the right-side region (i.e. high-error clusters)

flattens significantly more for the improved models over time, indicating a greater

ability to ensure a more equally distributed accuracy throughout CS. Note that we

concentrate on the force predictions due to forces being a direct actor in the

equations of motion, as such their errors are directly tied to potential deviations

from an expected reference trajectory. If one were to compute e.g. mean energies at

low temperatures or similar properties that are well described by equilibrium

configurations, the default models would be expected to perform as well as the

improved ones. However, processes involving either broad regions of the PES or

underrepresented regions of CS would be noticeably better represented by the

models.
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5.2.2 Proton exchange

In order to illustrate this effect, we turn our attention to the mechanism pointed out

in section 4.4.2: the proton sharing between the carboxyl and hydroxyl group in

salicylic acid. The cluster errors determined some of the worst predicted clusters

involved almost exclusively in this very mechanism, leading us to conclude that

default models would be significantly less adequate at describing this effect. To

showcase this, we created an artificial dataset where the hydrogen in question was

linearly moved between the two chemical groups. The reference energies for this

new dataset were calculated and compared to predictions of four models of 1000

training points: a default and improved sGDML model (see Figure 5.2), and a

default and improved SchNet model. The parameters for the training of the models

are shown at the start of section 5.3. The settings for the calculations of the

reference energies were equivalent to those of the original dataset’s generation

(PBE+TS, light). The results are shown in Figure 5.3.

FIGURE 5.3: Energies (y-axis) of a salicylic acid molecule with a shared
hydrogen between the hydroxyl and carboxyl group (x-axis, 0 = on
hydroxyl oxygen, 1 = on carboxyl oxygen). The re-calculated reference
values (black, solid) are compared to a default sGDML model (blue,
dashed), an improved sGDML model (blue, solid), a default SchNet

model (red, dashed) and an improved SchNet model (red, solid).

It is important to know that all values beyond 0.45 are considered to be an
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extrapolation since a negligible amount of such data points are found inside the

reference dataset that all the models were trained on ( as well as values below 0.38).

As such, this plot is not a measure of accuracy as much as stability: a model’s

capacity to not stray too far from the truth when facing completely new

configurations is one of the necessary factors to ensure reliable results in

out-of-equilibrium situations.

We observe that the default SchNet model immediately deviates from the

expected behaviour. In order to move the hydrogen from the hydroxyl group to the

carboxyl group, the model’s predictions present a shallow second minimum,

followed by a weak energy barrier towards an unphysical steep descent in energy.

On the flip side, the improved SchNet model shows no shallow additional

minimum and the right-side energy barrier starts earlier and is more pronounced

than its default counterpart. On the side of the sGDML models, the default model

once again presents a second minimum, except significantly closer to the carboxyl

group. Conversely, the improved training set provides the other sGDML model

with enough information to qualitatively reproduce the reference energy curve,

albeit still with an appreciably delayed onset for the steep energy increase.

Nevertheless, in both cases, the improved models show more reasonable behaviour

across the extrapolation region. This could have a significant impact in real

applications, as both default models cause the existence of a metastable state with a

shared proton. This would, for example, lead to qualitatively wrong results from

imaginary time path-integral MD simulations, while the removal of this artefact by

improving the training set renders such simulations reliable.

5.3 Application to a variety of small organic molecules

In this section, the improved training method was applied to a variety of small

organic molecules from the MD17 dataset [51]. The default models and reference
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datasets are exactly the same as those already introduced in section 4.4.3. A

comparison of all the models to their improved counterparts is shown in Figure 5.4

FIGURE 5.4: Force Prediction RMSE on a total of 50 clusters of sGDML,
SchNet and GAP/SOAP models trained on identical 1000 reference
data points of uracil, salicylic acid, toluene and ethanol datasets.
Clusters are ordered by ascending error. The default models (orange
bars) are compared to the models with improved training sets (blue

bars).
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One can observe that for all combinations, there is a significant difference

between the improved and default learning curves. This highlights the generality

of the method, as it proves effective for various choices of datasets and models.

Here, we also want to highlight the stability of our method thanks to the reliance

on clusters. Being able to group up similar configurations allows us to asses

prediction errors fairly reliably without the need to compute every single point.

Indeed, the GAP/SOAP models in Figure 5.4 were trained in such a way that only

1% of every cluster’s points was predicted at every step. This applies both to initial

clusters as well as fine clusters. Nevertheless, there is still a distinct flattening of

prediction errors across the different regions.

Finally, it is important to be reminded this flattening and the resulting model

stability is the ultimate goal of the method. For a fixed number of training points,

this explicit inclusion of rarer configurations comes at the expense of common

configurations whose influence on overall metrics is greater. Thus, this work did

not aim to improve overall RMSE; on the contrary, one would be led to believe that

overall metrics should worsen after this procedure. Nevertheless, while the

differences are quite small, the overall RMSE actually sees a decrease for the

majority of the molecules in this study, see Table 5.1.

TABLE 5.1: Overall force prediction RMSE for sGDML, SchNet
and GAP/SOAP models, comparing default and improved training

methods. All numbers are given in kcal/(mol Å)

model uracil salicylic acid toluene ethanol
def. sGDML 0.38 0.44 0.21 0.51
imp. sGDML 0.32 0.39 0.20 0.50
def. SchNet 0.77 0.99 0.78 0.57
imp. SchNet 0.65 1.03 0.67 0.47

def. GAP/SOAP 2.71 1.80 1.32 1.62
imp. GAP/SOAP 2.17 1.54 1.09 1.36
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5.4 Application to dynamics of a flexible molecule

5.4.1 Flattening the error curve

Up to now, the scope of all applications was molecules of limited sizes. Here, we

want to extend the applicability and concentrate on a significantly larger molecule.

Specifically, the candidate molecule here is an alanine tetrapeptide, a molecule

large enough to start showing the beginning of secondary structure motifs

observed in peptides and proteins. The reference dataset is a trajectory born from

an ab initio molecular dynamics. Specifically, the FHI-aims [87] software was used

at a PBE+MBD level of theory. A timestep of 1 fs was used and a global Langevin

thermostat was set at 500 K and a friction coefficient of 2 fs. A total of 80k data

points were generated with a coverage of at least three energy minima throughout

the trajectory.

It is fruitful to recall that the improved training method relies on an initial

model with somewhat acceptable accuracy to base its first iteration process on.

Fulfilling this requirement on a larger, more flexible molecule such as this one

necessitates a higher number of initial training points (as well as final), as the PES

this time is higher-dimensional and markedly more complex. It is for this reason

that we exclude sGDML and GAP/SOAP for this subsection to instead solely focus

on SchNet, as neural networks can train on much larger datasets than kernel-based

methods. The initial training set size was set to 2000 for this system, accompanied

by 8 iterative steps with a step size of 500 points.

The comparative results between the default and improved models are once

again shown in the form of cluster errors, see Figure 5.5. It is important to keep in

mind that our training selection method only considers improvements in force

predictions. As such, the aim is to flatten the force prediction error curve, which

succeeds by lowering the error factor between the best and worst predicted clusters

from 2 to 1.1. Furthermore, this does not come at the cost of reduced accuracy on

common clusters as almost every single cluster sees an improvement. On the
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energy plot (left) one can see an unexpected consequence of the training method: a

small consistent improvement in energy predictions. The RMSE on energies only

drops from 0.54 to 0.49 kcal/mol (from 0.89 to 0.80 kcal/(molÅ) for forces), but the

flattening of the error curve can nonetheless have tangible benefits in real

applications. This will be further explored at the end of this section.

The energy prediction improvement, while small, merits further thought. In

order to reduce errors on energies and forces at the same time without altering the

model fundamentally or tweaking the dataset, one would be required to use a

mixed loss function, where both energies and forces have an impact on the

minimised error at the same time. Training on both energies and forces at the same

time is commonplace among NNs, but it comes with a downside: one can only

obtain an “optimal” model for either forces or energies. A mixed loss function is in

some ways less efficient due to splitting its focus into two competing functions

whose optimal set of parameters can wildly differ. Turning our focus instead on the

training points themselves does not introduce this dichotomy and exceptionally

allows the improvement of both metrics at the same time.

FIGURE 5.5: Prediction RMSE for energies (left) and forces (right)
of SchNet models on different clusters: comparing default models
(orange bars) and improved models (blue bars) of 6000 training points

each.

In order to put the all improvements into perspective, Figure 5.6 compares the
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improved model of 6000 training points to default models of varying training set

sizes: 3000, 6000, and 9000. Once again, both energies and forces are shown left

and right respectively. One can see that both in terms of general improvements and

flattening of the error curve, the improved model with 6000 training points seems

to mimic the behaviour one would expect from an increase in training set size. This

effect shows that the default training sets contain unnecessary redundancy, thereby

reducing their effective size compared to more carefully selected points.

FIGURE 5.6: Prediction RMSE for energies (left) and forces (right) of
SchNet models on different clusters: comparing a defaults models of
3000, 6000 and 9000 training points (red, orange and yellow solid line)

to an improved model of 6000 training points (solid blue line).

TABLE 5.2: Overall force and energy RMSEs for default SchNet models
of various training set sizes and an improved SchNet model of 6000

training points.

RMSE def. 3000 def. 6000 imp. 6000 def. 9000
Forces [kcal/(mol Å)] 1.34 0.89 0.79 0.71

Energy [kcal/mol] 0.70 0.54 0.48 0.46

Figure 5.6 also broadly highlights different model behaviours based on the

completeness of their training set. Roughly, we can identify three different states:

• (3000 points) The training set lacks information altogether and is unable to

reconstruct a reliable MLFF with good accuracy across the entire CS. Here,

selecting the same amount of training points with the iterative approach
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would likely not have a strong effect on the outcome, as the initial model

would struggle to identify problematic regions of CS

• (6000 points) The training set contains enough configurations to accurately

learn the PES. However, the forces still show high variance in their accuracy

across different clusters, hinting that a more suitable choice of training points

could be preferable. This is the case for all the previously seen cases (see

section 5.3) where a refocusing of the training set provides tangible benefits.

In the case of the tetrapeptide, the improved model seems to mimic the

expected performance of a model of 7.5-8k points, making it significantly

more data-efficient.

• (9000 points) The training set starts being overloaded with data. This leaves

little room for improvement as the training set likely contains most of the

relevant configurations needed to describe all of CS. As such, a meticulous

choice of training points becomes less impactful, although not necessarily

useless.

5.4.2 Dynamics of a flexible molecule

Finally, we want to compare the usability of the improved and default models by

running constant-temperature molecular dynamics simulations using those

models. We use a Langevin thermostat with a friction coefficient of 100 fs and a

time step of 0.5 fs. As the molecule at hand is both large and flexible, it is necessary

to generate long trajectories to obtain well-converged mean energies. As such, all

trajectories have a total runtime of 0.9 nanoseconds or almost 2 million steps.

Naturally, simulations of this size would be very difficult with ab initio methods

due to their prohibitive computational cost, so MLFFs are the only viable

alternative, making this a realistic practical application. Note that while the

improved training method comes with a slight computational overhead by training
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a model more than once, time spent running simulations easily overshadows the

time spent on training.

A first trajectory was generated at 300 K. There, both the default and improved

models converge without hiccups and the resulting average total energies differ by

only 0.5 kcal/mol. As this easily lies within the accuracy of the ML models

themselves, one can conclude that both simulations give effectively identical

results. In order to move the ML model outside its zone of comfort, a second set of

trajectories was computed at 400 K. This drastically changes the situation and the

average total energy curves over time present stark differences between models,

see Figure 5.7.

FIGURE 5.7: Average total energy over time throughout a molecular
dynamics simulation of alanine tetrapeptide. Three SchNet models
are compared: a default model of 6000 training points (red), a default
model of 9000 training points (purple) and an improved model of 6000
points (blue). All simulations were performed at 400 K with a timestep
of 0.5 fs. Energy zero-point selected as the lowest energy in the original

reference dataset.

The 6k default model is unable to reproduce the dynamics at 400 K. The

increase followed by a sudden monotonic decay hints that the model is unreliable

and its results untrustable. This is likely due to the model hitting one or more rare

configurations, or even reaching the model’s extrapolation regime at some point.

We have shown in section 5.2 that the default training sets do not provide enough
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context to qualitatively reproduce correct behaviour when deviating from the

dataset’s CS. Conversely, the improved 6k model has no stability issues and

behaves almost identically to the 9k model, despite having 50% fewer training

points.

In principle, the reference dataset should contain all information necessary to

simulate dynamics at 400 K, as it was generated at 500 K. Nevertheless, practical

applications using MLFFs need to remain at much lower temperatures due to the

dataset’s limited size and the inability of any sampling method to cover all of

available CS. As such, increasing the applicability range of a default ML model

would require creating larger reference datasets at potentially higher temperatures

(requiring even more data points). Instead, the developed training scheme

provides better predictions, boosted reliability and increased applicability range

with a comparatively negligible increase in computational cost.

5.5 Details of parameter tuning

5.5.1 Number of iterative steps

In section 5.1.2, parameter choices for the improved learning technique were

briefly summarised. In this section, we will touch on some of the parameters and

their effects on the resulting model. The most important parameter is the step size

(or the number of steps), assuming a fixed number of initial training points and a

fixed number of final training points. The effects of this parameter are the easiest to

understand, as a higher amount of steps leads to a better resolution on gradual

improvements for problematic configurations. In principle, a very large amount of

steps would be ideal, but this comes at the cost of significantly increasing the

training time. Thus, the choice of 8 as our number of steps throughout this work is

based on a realistic choice that minimises inconvenient (and expensive) training

durations while providing most of the benefits.
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Figure 5.8 shows the effect that the parameter has on the resulting model. Here,

the uracil dataset with an sGDML model was chosen because it highlights the effect

of the improved training method very well (see Figure 5.4). All sGDML models were

trained using a total of 1000 training points. It is clear to see that a higher number of

steps provides a strictly better model, with particularly increased performance on

the poorly predicted clusters. This makes sense, as large step sizes (low number of

steps) tend to overshoot and include too many instances of at-the-time problematic

configurations, thereby neglecting other regions of CS.

FIGURE 5.8: Force prediction RMSE across 50 clusters of a uracil
molecule for improved sGDML models of 1000 training points and a
varying number of iterative steps (coloured lines). A default sGDML

model of 1000 training points is shown for comparison (black line).

5.5.2 Number of fine clusters

The next parameter of interest is the number of fine clusters created during the

iterative step. We previously described this particular parameter as a way to

increase the fineness of the grid through which CS is filtered during the iterative
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process. To explore its influence, several improved sGDML models were trained on

uracil but for various amounts of fine clusters, see Figure 5.9. Note that the step

size is fixed at 100 and all models contain a total of 1000 training points.

FIGURE 5.9: Force prediction RMSE across 50 clusters of a uracil
molecule for improved sGDML models of 1000 training points and a
varying number of fine clusters (coloured lines). A default sGDML

model of 1000 training points is shown for comparison (black line).

Similarly to the number of steps, it is generally true that a higher number of

clusters provides better results, although the difference in performance is less

significant. Furthermore, there are much stronger diminishing returns on this

effect: there is practically no difference between the models using 200 and 400 fine

clusters. On the flip side, this particular parameter does not affect computational

time and thus, at first glance, has no downside to be increased.

As such, it is natural to question why the creation of fine clusters is necessary in

the first place: after all, this would maximise the resolution and thus (seemingly)

optimise the model even further. As a first, proceeding this way would render it

impossible to only predict a fraction of every cluster (by virtue of their inexistence),
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as was done for GAP/SOAP models in section 5.3. As a reminder, only 1% of every

cluster needed to be computed, hence reducing the computational cost by two

orders of magnitude.

Furthermore, the goal is not to minimise the prediction error on the worst

configurations, but rather the worst types of configurations. This distinction is

important because single configurations — or even a handful of them — can be

complex and rare and thus hard to predict without being significant for the dataset.

Singular outliers and anomalies should not be catered towards as they are a

“waste” of training points unless they are representative of a non-negligible region

of CS. This is what clusters allow us to extract: not singular points, but

representative groups. This last argument also explains why it is not advised to

increase the number of fine clusters past the point they offer noticeable

improvements, as it shifts more power towards singular configurations as opposed

to representative groups.

5.5.3 Number of initial training points

The last parameter this section will focus on is the number of initial training points.

Broadly speaking, this parameter allows the user to choose how many “usual”

training points to sacrifice to make room for targeted ones. To get a deeper look, we

created several improved sGDML models trained on uracil but for various

amounts of initial training points, see Figure 5.10. Note that the step size is fixed at

100(or close to it) and all models contain a total of 1000 training points.

On the left side of the plot, one can observe that increasing the number of initial

points shifts the curve closer to that of a default training scheme. This is of course

not surprising, as the parameter is essentially a measure of the mixing factor

between an improved and default training set. On the right side of the plot, a

similar story is observed. This time, however, the improvements associated with

optimising more points inside the training set hit heavily diminishing returns after
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FIGURE 5.10: Force prediction RMSE across 50 clusters of a uracil
molecule for improved sGDML models of 1000 training points and a
varying number of initial training points (coloured lines). A default
sGDML model of 1000 training points is shown for comparison (black

line).

about 200 initial training points. This indicates that while it is in general beneficial

for the flattening of the error curve to minimise the number of initial training

points, there is no reason to go below a certain threshold as it only makes the

model slightly less accurate on the common configurations.

The reason for this observation is that if the initial model is too unreliable, the

first few iterative steps are likely to select suboptimal points to add to the training

set. As such, the added benefit of having a couple more iterations is outweighed by

the fact that these iterations are largely ineffective. Note that this plot is limited to

the uracil molecule, which is a small, simple organic molecule that does not require

a lot of training points to predict accurately. All the effects observed here would be

exasperated for significantly larger or more complex systems, where a reasonable

amount of initial training points is required for the initial model to have any

worthwhile predictive qualities.



5.6. Conclusions 109

5.6 Conclusions

The analysis provided by FFAST — and in particular the analysis of prediction

errors across configurational clusters — showed that MLFFs tend to not equally

learn all of CS. In particular, small clusters or clusters representing rare

mechanisms inside of a large dataset need to be explicitly accounted for when

building a training set to ensure their adequate representation.

This section introduced an iterative approach to building such a training set,

providing the ML model with the data needed to learn all of CS equally well. The

method utilises several clustering methods, namely agglomerative clustering to

distinguish geometrical features and KMeans to separate different energy values.

Using this, representative configurations from all the important regions of CS are

added into the training set, thereby “flattening” the prediction error curve across

clusters of the resulting model.

This effect was showcased on a handful of small to medium-sized organic

molecules as well as three MLFFs of choice: sGDML, SchNet and GAP/SOAP. It

was shown that the models utilising the improved training point selection scheme

present more homogeneous error profiles across configurational clusters.

Furthermore, the improved models performed quantitatively and qualitatively

better in the extrapolation regime, as showcased with a proton exchange

mechanism in salicylic acid. There, the improved sGDML and SchNet models both

produced values closer to the reference calculations than their default counterparts.

Finally, SchNet models trained an alanine tetrapeptide molecule were used to run

molecular dynamics, which revealed that the improved training scheme boosted

the model’s stability to rival that of a default model up to 50% more training points.
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Chapter 6

Perspective

Over the years, many innovative changes have been brought to the field of MLFFs,

including deep NNs, kernel methods, message-passing architectures, equivariant

interactions between atomic environments, explicit physical correction terms, and

more. Altogether, MLFFs have been successfully applied to various systems of

ever-growing sizes. While in the beginning, only simple crystals and small organic

molecules were feasible, nanoscale systems such as molecular crystals, proteins,

crystals with defects, etc., are now within reach. The increasing size and

complexity of the systems under study bring new challenges and require

reconsidering some default approaches.

One of the challenges is the reliable measures of the quality of MLFF. As

demonstrated in this thesis, overall error metrics such as MAE and RMSE do not

fully reflect the ability of MLFFs to reconstruct the PES of large enough complex

systems. Moreover, the MLFF’s reliability for long-time simulations is

non-obvious, even in more sophisticated analyses. Yet, it can significantly impact

the outcome of ML simulations and their usage in practice (such as computing

thermodynamic properties, reaction rates, etc.). The toolbox developed in this

work aims to help resolve this issue and identify its roots, but new developments

are likely required, especially for transferable ML models aiming at large-scale

applications while trained on much smaller reference systems.

Importantly, ML potentials are uniquely positioned compared to many other

fields employing ML models, as the functions that create the training data are fully
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known. This enables the combining of ideas and solutions from the fields of ML

and quantum chemistry/physics, going beyond the limits of each particular area.

Steps in this direction have already been taken, and it has been shown that smartly

incorporating physical and chemical knowledge directly into the construction of

the ML model can positively affect both general accuracy and asymptotic

behaviour. Improvements such as those will continue to be important when facing

the challenging problems of multiscale modelling. Even for the current systems,

the error analyses provided within this work with the help of FFAST and error

flattening clearly show that all the current state-of-the-art MLFFs have flaws, which

can and should be addressed. We found a significant inhomogeneity in force

reconstruction, even for atoms of the same type (same chemical element) when the

system under study possesses chemically diverse atomic neighbourhoods.

In previous sections, the role of MLFFs in simulations was likened to the software

controlling a self-driving car. In both cases, the object in question (car or molecule)

is being moved to follow an expected path as closely as possible. For the car, it is

obvious that it needs to be equally reliable for all locations at any time of the day, as

a single accident is not excused by an otherwise accurate following of the road. For

molecular systems, “accidents” are instead the evolution into unstable or physically

incorrect states, such as hydrogens spontaneously breaking away from their bonded

pair or atoms closely overlapping. These cases mostly happen when the model

moves into a configuration too far from the reference dataset it was trained on, thus

entering an extrapolation regime. To minimise the chances of this happening, it is

crucial to ensure that none of the potentially visitable states of the system requires

sheer extrapolation.

This hints at the need to introduce a “divide and conquer” (DaC) approach

when building MLFF models. There, stabilization can be achieved by employing

elementary blocks to simplify the learning task at the cost of increasing the

structural complexity of the system. This idea is not new and has been used in

empirical force fields for decades: the limitations of employing specific functional
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forms result in the need to parametrize the same chemical elements differently

based on their local environment. The same reasoning applies to MLFFs. While

they can fit their functional forms in broad ranges, the growing requirements for

high accuracy, as well as the complexity of interactions featured in large-scale

systems with multiple chemical elements, might make the flexibility of ML

architectures insufficient when all atoms belonging to the same chemical elements

are considered as identical. For instance, the interaction partners for carbon atoms

forming a graphene substrate might significantly deviate from those for carbons in

molecules adsorbed on said substrate. Careful consideration of local environments

to distinguish between qualitatively different types of atoms (within the same

chemical element) could positively affect the accuracy and transferability of MLFF

models.

Another potential benefit from splitting up the training process is reaping

greater benefits from symmetries belonging to local PES minima. Symmetries are

paramount for ML models, simplifying the learning task and decreasing the

required number of training points. When the CS of the system under

consideration includes multiple local minima or even phase transitions, the total

number of symmetries is limited only to a subset shared by all the configurations at

once. On the contrary, if a model could instead focus on a single equilibrium state

and its surroundings, all the local symmetries present in this particular geometrical

composition could be utilized. Thus, splitting the learning task into regions with

similar local symmetries would lead to better accuracy, data efficiency, and

reliability.

The methods developed during this Ph.D. as well as the FFAST package provide

some basis for implementing a divide-and-conquer idea into new MLFF models.

For example, datasets in section 4.5 were split into different regions of CS using

chemical intuition of the system as well as knowledge about the dataset’s creation.

In particular for azobenzene, which can be found in two distinct isomeric states cis

and trans, it is straightforward to split the training task into two separate models to
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handle each isomeric state. As a proof of concept, this methodology was applied to

an azobenzene dataset containing 5000 cis and 5000 trans configurations, with both

subsets being trajectories of MD runs at the level of PBE+TS with a time step of 1

fs and a constant temperature of 300 K. Two separate models GDML (cis and trans)

models were trained on 500 points of their respective subset and tested on the 4500

remaining points each. It was found that the two 500-point models (henceforth the

DaC model) had a 15% lower force prediction MAE than a single model trained

on the same 1000 training points. More importantly, the cluster error curves (see

section 4.4.1) showed a more homogeneous distribution, hinting at an increase in

overall stability.

It is important to discuss the potential implementation difficulties of the

method above. In practical applications, the outlined DaC approach requires the

classification of a new configuration before assigning it for prediction to the

corresponding model. In the case of azobenzene, it is trivial to distinguish between

cis and trans by inspection of the central dihedral angle, but more complex systems

might produce more ambiguous cases. Furthermore, reproducing a transition from

cis and trans requires a swap from one model to the other. In an MD, this would

create a discontinuity in the forces and a possible jump in potential energy, which

is likely to become the cause of unstable behaviour. To address this in the simple

case of azobenzene, the predictions at a transition state can be given as a linear

combination of the two models that allows a continuous switch from one model to

the other as a function of the dihedral angle.

The same approach was attempted on other datasets, all small to large-sized

molecules taken from MD17 [43] or MD22 [132]. However, rather than relying on

chemical intuition, clustering algorithms were used to separate CS. Here,

agglomerative clustering on inverse pairwise distances with single linkage was

used. In the case of 2 clusters, the azobenzene dataset is perfectly split into cis and

trans using this approach as well, producing results identical to those above. For

small or rigid molecules, the two clusters are not different enough to benefit from
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the split and as such the DaC model provides significantly worse results than a

single model. On the large, flexible molecule of alanine tetrapeptide, the two

approaches performed very similarly: the force prediction MAE of a DaC model

composed of two 1000-point SchNet models was comparable to a single 2000-point

model. This is expected, as the method is only beneficial for molecules that are

large enough to be found in qualitatively different states with distinct behaviour. In

the case of the tetrapeptide, the two clusters largely distinguished between folded

and unfolded states, for which the atomic interactions are very dissimilar.

DaC models using a higher number of clusters all performed worse than their 2-

cluster counterparts (keeping the total number of training points constant). This is

because MLFFs are usually trained in a low-data regime, hence why data efficiency

holds such importance in the field. ML model accuracy as a function of the number

of training points is roughly an exponential decay, thus if the number of training

points grows to a certain size, this naive DaC might still outperform a single model.

A more sophisticated approach mimicking the iterative training process outlined in

section 5.1.2 was also attempted: first, the dataset is split into two clusters and one

model is trained for each, as outlined before. Then, the cluster whose respective

model shows the highest cluster force prediction MAE (weighted by the number

of configurations in the cluster) is further split into 2 sub-datasets and new models

are trained on each. For a given number of clusters, this method performed strictly

better than the previous approach for more than 3 clusters. However, this does come

with an increase in training time as every split results involves discarding one fully

trained model.

The classification of configurations during practical applications is more

difficult when the dataset was originally split using clustering rather than a priori

chemical knowledge. To this end, a classification model must be trained on the

cluster labels to accurately identify which model needs to be used for a new,

previously unseen configuration. For all cases tried in this work, this task proved

to be simple to achieve (with 98-99% accuracy) using a bare-bones modification of a
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PointNet architecture [112] to take into account chemical species. As PointNet is

designed to act on clouds of many thousands of points, this method is not expected

to be the limiting factor for DaC. Furthermore, ML classifiers provide probability

distributions over clusters, which can directly be used to create a linear

combination of models and largely alleviate the discontinuity problems.

Another useful addition to the DaC approaches outlined above is the sharing of

general training points. In this approach, each model is trained in part on

configurations of its respective clusters, but also on a general set of configurations

shared with other models. In principle, this greatly increases the data efficiency of

this particular DaC approach by making models “specialise” into a particular type

of configuration rather than learning it exclusively. However, when applied to the

small to medium-sized molecules in this work, this approach was found to have

negligible benefits. This is likely due to the clusters not being distinguishable

enough for molecules of this size, making the shared training points too similar to

those extracted from clusters. Additional work — in particular on large and

flexible molecules — needs to be done to assess the use cases of this method.

All in all, it was found that the simple DaC approach briefly explored in this

work favours large or flexible molecules, especially if a priori chemical knowledge

can be used to assist the clustering. This justifies the timely need to delve deeper

into this possible avenue, as the system sizes handled by MLFFs have reached a

state where the presence of many qualitatively different regions of CS is expected.

However, an increase in system size also limits the performance of the current

clustering algorithms. As outlined in section 4.3, clustering methods are highly

reliant on the choice of descriptor. In this preliminary work, a simple pairwise

inverse distance descriptor was used, but future applications will need to opt for

more elaborate descriptors. Large systems tend to need a large descriptor to be

fully represented, making distance metrics in this space unreliable due to the sheer

number of dimensions. As most clustering algorithms rely on a notion of distance

(or density), cluster quality is likely to decrease for larger systems.
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To guarantee that clustering-based DaC can practically be utilised on systems

large enough to benefit from the approach, new clustering approaches need to be

developed at the same level as MLFF architectures themselves. Using the

physically and chemically inspired methods explored in section 2.4 to enhance

modulable clustering methods such as self-organizing maps [147] or deep

clustering [148] is likely the key to the creation of meaningful subdivisions for any

dataset. Furthermore, incorporating symmetry considerations into these novel

architectures to ensure that the choice of clusters maximises the presence of local

symmetries would further enhance the DaC approach and widen its applicability.

Finally, it is worth noting that the DaC approach described in this work is fully

independent of the choice of MLFF. The many state-of-the-art architectures

developed in the field all provide their advantages and disadvantages as well as

unique parameters to tweak to increase the performance on a particular system. In

a DaC scheme, each of these considerations can be applied locally as well, thereby

optimising the choice of MLFF architecture and the varying of its hyperparameters

for each cluster rather than a whole system. This can be particularly useful for

models with explicit physical interactions incorporated into the network, as they

are likely to present a different set of optimal parameters for different regions of

CS, for instance in long-range interactions of folded or unfolded configurations.
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Chapter 7

Summary

MLFFs have continuously improved over the years, reaching remarkable accuracy

across various chemical systems of ever-increasing sizes. However, with great sizes

comes great complexity, which makes it harder to define and assess a given model’s

quality. Even a model with state-of-the-art overall accuracy can demonstrate highly

heterogeneous predictive capabilities across the CS of a single system. Furthermore,

the prediction error profile across different atoms equally needs to be assessed, as

even atoms of the same element can show notable differences if they are, e.g., in

different functional groups.

This work proposed to push current practices in MLFF analysis to a more

detailed and insightful standard. The novel Force Field Software and Analysis

Tools (FFAST) lies at the forefront of this effort, providing detailed breakdowns of

ML models’ performance. The tool is in active development and aims to be

accessible and flexible to provide the groundwork for future developments on top

of current capabilities. A large list of provided features was showcased using

practical examples.

To illustrate some of FFAST’s facets, two datasets of medium-sized organic

molecules were chosen: docosahexaenoic acid (DHA) and stachyose. Furthermore,

two state-of-the-art ML models were trained on the datasets to exemplify a general

FFAST workflow. Through FFAST’s interactive plots and 3D visualization tools, it

was quickly concluded that both models and datasets presented hydrogens with

noticeably lower prediction errors than any other atom type. As hydrogens are
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abundant in both systems, this has a large impact on the models’ overall MAE and

RMSE, which do not reflect the stability and performance in the main chain of the

molecules. Conversely, carbons and oxygens were tied to very uneven error

profiles, with individual atoms showing higher prediction errors than other atoms

of the same type if their environment was chemically or structurally more diverse.

For example, prediction errors on DHA were larger if the molecule was in a folded

state and the primary source of the errors was the atoms in the carboxylic group.

Beyond the analysis of MLFF predictions, FFAST was also shown to provide

insight into the reference data itself. In the case of DHA, the number of folding and

unfolding processes was easily found within its underlying MD trajectory and the

transformations were correlated with the system’s potential energy. Furthermore,

energy and force distributions for different subsets of the reference data were

independently analysed to e.g. ensure that the training set is representative of the

validation and test sets.

One particular analytical tool provided by FFAST is the visualisation of a cluster

prediction error curve. This is a new form of analysis developed for this work that

leverages unsupervised ML to split a dataset into qualitatively different regions of

CS. This procedure was shown to be able to extract small subsets of configurations

representing nontrivial mechanisms that could easily be overlooked inside a large

pool of data. These clusters were used to show that several state-of-the-art models

present non-uniform error distributions across CS. This further emphasises the need

for tools such as FFAST, as such nuances are not captured by overall error metrics

such as MAEs or error distributions.

Furthermore, similar splittings of a dataset were performed using chemical

intuition and prior knowledge of the system instead of clustering algorithms. It

was shown that in the case of ML models trained on an azobenzene dataset,

different parts of the transition from the molecule’s cis isomeric state to its trans

state are unequally well reproduced. It was also determined that the optimal

choice of descriptors varies throughout the mechanism. Finally, additional analysis
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revealed that the choice of training set had a substantial effect on the final models.

This is explained by the fact that rare mechanisms can easily be poorly represented

in a randomly selected training set, leading to inadequate prediction accuracy.

To address the aforementioned issue, this work suggested a novel training

points selection method. It relies on the clustering techniques previously explored

to create an approach that iteratively refines the training data to better incorporate

all regions of CS available in the reference dataset. It was shown that this approach

leads to a “flattening” of the prediction error curve across qualitatively different

types of configurations as represented by clusters, significantly reducing the

variance in prediction errors across different clusters.

To test the improvements provided by the new training method in extrapolation

regimes, a new dataset containing an extended version of the proton exchange

mechanism subtly contained within a salicylic acid dataset was created. The

improved SchNet and sGDML models trained on the original dataset were tested

and compared to the default training procedures. The improved models were

shown to have better asymptotic behaviour when leaving the regions contained in

their original reference dataset. Furthermore, improved models were also shown to

be more stable in dynamics as exemplified by a model trained on an alanine

tetrapeptide.

Overall, this work showcased that after many advances made in the field of

MLFF in recent years, there are still open problems to be addressed. Those require

improvements on existing methods and a particular emphasis on developing tools

to detect and understand the shortcomings of current MLFFs in practice. The

insight provided by a detailed understanding of the strengths, limitations, and

pitfalls of ML models, which can be obtained using FFAST or similar software

packages, is the key to pushing forward the state-of-the-art.





123

Bibliography

[1] Andy C. Lee, Janelle L. Harris, Kum K. Khanna, and Ji-Hong Hong. “A

Comprehensive Review on Current Advances in Peptide Drug

Development and Design”. In: Int. J. Mol. Sci. 20.10 (2019), p. 2383. ISSN:

1422-0067. DOI: 10.3390/ijms20102383.

[2] Saber Naserifar, Yalu Chen, Soonho Kwon, Hai Xiao, and

William A. Goddard III. “Artificial Intelligence and QM/MM with a

Polarizable Reactive Force Field for Next-Generation Electrocatalysts”. In:

Matter 4.1 (Jan. 2021), pp. 195–216. ISSN: 2590-2393. DOI:

10.1016/j.matt.2020.11.010.

[3] Tânia F. G. G. Cova and Alberto A. C. C. Pais. “Deep Learning for Deep

Chemistry: Optimizing the Prediction of Chemical Patterns”. In: Front. Chem.

7 (2019). ISSN: 2296-2646.

[4] Peter L. Freddolino, Anton S. Arkhipov, Steven B. Larson,

Alexander McPherson, and Klaus Schulten. “Molecular Dynamics

Simulations of the Complete Satellite Tobacco Mosaic Virus.” In: Struct. 14.3

(Mar. 2006), pp. 437–449. ISSN: 0969-2126. DOI:

10.1016/j.str.2005.11.014.

[5] Gongpu Zhao et al. “Mature HIV-1 Capsid Structure by Cryo-Electron

Microscopy and All-Atom Molecular Dynamics”. In: Nature 497.7451 (May

2013), pp. 643–646. ISSN: 1476-4687. DOI: 10.1038/nature12162.

[6] Robin Winter, Floriane Montanari, Andreas Steffen, Hans Briem, Frank Noé,

and Djork-Arné Clevert. “Efficient Multi-Objective Molecular Optimization

https://doi.org/10.3390/ijms20102383
https://doi.org/10.1016/j.matt.2020.11.010
https://doi.org/10.1016/j.str.2005.11.014
https://doi.org/10.1038/nature12162


124 Bibliography

in a Continuous Latent Space”. In: Chem. Sci. 10.34 (2019), pp. 8016–8024.

ISSN: 2041-6520. DOI: 10.1039/C9SC01928F.

[7] Joao Ramos, Jayaraman Muthukumaran, Filipe Freire, João Paquete-Ferreira,

Ana R. Otrelo-Cardoso, Dmitri Svergun, Alejandro Panjkovich, and Teresa

Santos-Silva. “Shedding Light on the Interaction of Human Anti-Apoptotic

Bcl-2 Protein with Ligands through Biophysical and in Silico Studies”. In: Int.

J. Mol. Sci. 20.4 (2019), p. 860. ISSN: 1422-0067. DOI: 10.3390/ijms20040860.

[8] Rachael A. Mansbach, Timothy Travers, Benjamin H. McMahon,

Jeanne M. Fair, and S. Gnanakaran. “Snails In Silico: A Review of

Computational Studies on the Conopeptides”. In: Mar. Drugs 17.3 (2019),

p. 145. ISSN: 1660-3397. DOI: 10.3390/md17030145.

[9] Zhifeng Jing, Chengwen Liu, Sara Y. Cheng, Rui Qi, Brandon D. Walker,

Jean-Philip Piquemal, and Pengyu Ren. “Polarizable Force Fields for

Biomolecular Simulations: Recent Advances and Applications”. In: Annu.

Rev. Biophys. 48.1 (2019), pp. 371–394. ISSN: 1936-122X. DOI:

10.1146/annurev-biophys-070317-033349.

[10] Sean Ekins. “The Next Era: Deep Learning in Pharmaceutical Research”. In:

Pharm. Res. 33.11 (Nov. 2016), pp. 2594–2603. ISSN: 1573-904X. DOI: 10.1007/

s11095-016-2029-7.

[11] Eric Smalley. “AI-powered Drug Discovery Captures Pharma Interest”. In:

Nat. Biotechnol. 35.7 (July 2017), pp. 604–605. ISSN: 1546-1696. DOI: 10.1038/

nbt0717-604.

[12] Daniel C. Elton, Zois Boukouvalas, Mark S. Butrico, Mark D. Fuge, and

Peter W. Chung. “Applying Machine Learning Techniques to Predict the

Properties of Energetic Materials”. In: Sci. Rep. 8.1 (June 2018), p. 9059. ISSN:

2045-2322. DOI: 10.1038/s41598-018-27344-x.

https://doi.org/10.1039/C9SC01928F
https://doi.org/10.3390/ijms20040860
https://doi.org/10.3390/md17030145
https://doi.org/10.1146/annurev-biophys-070317-033349
https://doi.org/10.1007/s11095-016-2029-7
https://doi.org/10.1007/s11095-016-2029-7
https://doi.org/10.1038/nbt0717-604
https://doi.org/10.1038/nbt0717-604
https://doi.org/10.1038/s41598-018-27344-x


Bibliography 125

[13] Daniel C. Elton, Zois Boukouvalas, Mark D. Fuge, and Peter W. Chung.

“Deep Learning for Molecular Design—a Review of the State of the Art”. In:

Mol. Syst. Des. Eng. 4.4 (2019), pp. 828–849. DOI: 10.1039/C9ME00039A.

[14] Felix A. Faber, Alexander Lindmaa, O. Anatole von Lilienfeld, and

Rickard Armiento. “Machine Learning Energies of 2 Million Elpasolite

$(AB{C}_{2}{D}_{6})$ Crystals”. In: Phys. Rev. Lett. 117.13 (Sept. 2016),

p. 135502. DOI: 10.1103/PhysRevLett.117.135502.

[15] David S. Sholl and Janice A. Steckel. Density Functional Theory: A Practical

Introduction. John Wiley & Sons, Inc., 2009. ISBN: 978-0-470-37317-0.

[16] R. O. Jones. “Density Functional Theory: Its Origins, Rise to Prominence, and

Future”. In: Rev. Mod. Phys. 87.3 (Aug. 2015), pp. 897–923. DOI: 10.1103/

RevModPhys.87.897.

[17] Herrman G. Kümmel. “A Biography of the Coupled Cluster Method”. In:

Int. J. Mod. Phys. B 17.28 (Nov. 2003), pp. 5311–5325. ISSN: 0217-9792. DOI:

10.1142/S0217979203020442.

[18] Isaiah Shavitt and Rodney J. Bartlett. Many-Body Methods in Chemistry and

Physics: MBPT and Coupled-Cluster Theory. Cambridge Molecular Science.

Cambridge: Cambridge University Press, 2009. ISBN: 978-0-521-81832-2.

DOI: 10.1017/CBO9780511596834.

[19] Jörg Behler. “Perspective: Machine Learning Potentials for Atomistic

Simulations”. In: J. Chem. Phys. 145.17 (Nov. 2016), p. 170901. ISSN:

0021-9606. DOI: 10.1063/1.4966192.

[20] J. S. Smith, O. Isayev, and A. E. Roitberg. “ANI-1: An Extensible Neural

Network Potential with DFT Accuracy at Force Field Computational Cost”.

In: Chem. Sci. 8.4 (2017), pp. 3192–3203. ISSN: 2041-6520. DOI:

10.1039/C6SC05720A.

https://doi.org/10.1039/C9ME00039A
https://doi.org/10.1103/PhysRevLett.117.135502
https://doi.org/10.1103/RevModPhys.87.897
https://doi.org/10.1103/RevModPhys.87.897
https://doi.org/10.1142/S0217979203020442
https://doi.org/10.1017/CBO9780511596834
https://doi.org/10.1063/1.4966192
https://doi.org/10.1039/C6SC05720A


126 Bibliography

[21] Christian Devereux, Justin S. Smith, Kate K. Huddleston, Kipton Barros,

Roman Zubatyuk, Olexandr Isayev, and Adrian E. Roitberg. “Extending the

Applicability of the ANI Deep Learning Molecular Potential to Sulfur and

Halogens”. In: J. Chem. Theory Comput. 16.7 (July 2020), pp. 4192–4202. ISSN:

1549-9618. DOI: 10.1021/acs.jctc.0c00121.

[22] Volker L. Deringer, Noam Bernstein, Albert P. Bartók, Matthew J. Cliffe,

Rachel N. Kerber, Lauren E. Marbella, Clare P. Grey, Stephen R. Elliott, and

Gábor Csányi. “Realistic Atomistic Structure of Amorphous Silicon from

Machine-Learning-Driven Molecular Dynamics”. In: J. Phys. Chem. Lett. 9.11

(June 2018), pp. 2879–2885. DOI: 10.1021/acs.jpclett.8b00902.

[23] Kevin Ryczko, Kyle Mills, Iryna Luchak, Christa Homenick, and

Isaac Tamblyn. “Convolutional Neural Networks for Atomistic Systems”.

In: Comput. Mater. Sci. 149 (June 2018), pp. 134–142. ISSN: 0927-0256. DOI:

10.1016/j.commatsci.2018.03.005.

[24] Anders S. Christensen, Lars A. Bratholm, Felix A. Faber, and O. Anatole von

Lilienfeld. “FCHL Revisited: Faster and More Accurate Quantum Machine

Learning”. In: J. Chem. Phys. 152.4 (Jan. 2020), p. 044107. ISSN: 0021-9606. DOI:

10.1063/1.5126701.

[25] Jiang Wang, Simon Olsson, Christoph Wehmeyer, Adrià Pérez,

Nicholas E. Charron, Gianni de Fabritiis, Frank Noé, and Cecilia Clementi.

“Machine Learning of Coarse-Grained Molecular Dynamics Force Fields”.

In: ACS Cent. Sci. 5.5 (May 2019), pp. 755–767. ISSN: 2374-7943. DOI:

10.1021/acscentsci.8b00913.

[26] Tsz Wai Ko, Jonas A. Finkler, Stefan Goedecker, and Jörg Behler. “General-

Purpose Machine Learning Potentials Capturing Nonlocal Charge Transfer”.

In: Acc. Chem. Res. 54.4 (Feb. 2021), pp. 808–817. ISSN: 0001-4842. DOI: 10.

1021/acs.accounts.0c00689.

https://doi.org/10.1021/acs.jctc.0c00121
https://doi.org/10.1021/acs.jpclett.8b00902
https://doi.org/10.1016/j.commatsci.2018.03.005
https://doi.org/10.1063/1.5126701
https://doi.org/10.1021/acscentsci.8b00913
https://doi.org/10.1021/acs.accounts.0c00689
https://doi.org/10.1021/acs.accounts.0c00689


Bibliography 127

[27] Emir Kocer, Tsz Wai Ko, and Jörg Behler. “Neural Network Potentials: A

Concise Overview of Methods”. In: Annu. Rev. Phys. Chem. 73.1 (Apr. 2022),

pp. 163–186. ISSN: 0066-426X. DOI: 10.1146/annurev- physchem- 082720-

034254.

[28] Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional

Message Passing for Molecular Graphs. 2022. arXiv: 2003.03123 [cs.LG].

[29] Johannes Gasteiger, Florian Becker, and Stephan Günnemann. GemNet:

Universal Directional Graph Neural Networks for Molecules. 2022. arXiv:

2106.08903 [physics.comp-ph].

[30] Jörg Behler and Michele Parrinello. “Generalized Neural-Network

Representation of High-Dimensional Potential-Energy Surfaces”. In: Phys.

Rev. Lett. 98.14 (Apr. 2007), p. 146401. DOI:

10.1103/PhysRevLett.98.146401.

[31] Volker L. Deringer, Albert P. Bartók, Noam Bernstein, David M. Wilkins,

Michele Ceriotti, and Gábor Csányi. “Gaussian Process Regression for

Materials and Molecules”. In: Chem. Rev. 121.16 (Aug. 2021),

pp. 10073–10141. ISSN: 0009-2665. DOI: 10.1021/acs.chemrev.1c00022.

[32] Albert P. Bartók, James Kermode, Noam Bernstein, and Gábor Csányi.

“Machine Learning a General-Purpose Interatomic Potential for Silicon”. In:

Phys. Rev. X 8.4 (Dec. 2018), p. 041048. DOI: 10.1103/PhysRevX.8.041048.

[33] Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li,

Kai Kohlhoff, and Patrick Riley. Tensor Field Networks: Rotation- and

Translation-Equivariant Neural Networks for 3D Point Clouds. 2018. arXiv:

1802.08219 [cs.LG].

[34] Alireza Khorshidi and Andrew A. Peterson. “Amp: A Modular Approach to

Machine Learning in Atomistic Simulations”. In: Comput. Phys. Commun. 207

(Oct. 2016), pp. 310–324. ISSN: 0010-4655. DOI: 10.1016/j.cpc.2016.05.010.

https://doi.org/10.1146/annurev-physchem-082720-034254
https://doi.org/10.1146/annurev-physchem-082720-034254
https://arxiv.org/abs/2003.03123
https://arxiv.org/abs/2106.08903
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1021/acs.chemrev.1c00022
https://doi.org/10.1103/PhysRevX.8.041048
https://arxiv.org/abs/1802.08219
https://doi.org/10.1016/j.cpc.2016.05.010


128 Bibliography

[35] Zhenwei Li, James R. Kermode, and Alessandro De Vita. “Molecular

Dynamics with On-the-Fly Machine Learning of Quantum-Mechanical

Forces”. In: Phys. Rev. Lett. 114.9 (Mar. 2015), p. 096405. DOI:

10.1103/PhysRevLett.114.096405.

[36] John A. Keith, Valentin Vassilev-Galindo, Bingqing Cheng, Stefan Chmiela,

Michael Gastegger, Klaus-Robert Müller, and Alexandre Tkatchenko.

“Combining Machine Learning and Computational Chemistry for

Predictive Insights Into Chemical Systems”. In: Chem. Rev. 121.16 (Aug.

2021), pp. 9816–9872. ISSN: 0009-2665. DOI: 10.1021/acs.chemrev.1c00107.

[37] Tsz Wai Ko, Jonas A. Finkler, Stefan Goedecker, and Jörg Behler. “A

Fourth-Generation High-Dimensional Neural Network Potential with

Accurate Electrostatics Including Non-Local Charge Transfer”. In: Nat.

Commun. 12.1 (Jan. 2021), p. 398. ISSN: 2041-1723. DOI:

10.1038/s41467-020-20427-2.

[38] Kun Yao, John E. Herr, David W. Toth, Ryker Mckintyre, and John Parkhill.

“The TensorMol-0.1 Model Chemistry: A Neural Network Augmented with

Long-Range Physics”. In: Chem. Sci. 9.8 (2018), pp. 2261–2269. ISSN: 2041-

6520. DOI: 10.1039/C7SC04934J.

[39] Andrea Grisafi and Michele Ceriotti. “Incorporating Long-Range Physics in

Atomic-Scale Machine Learning”. In: J. Chem. Phys. 151.20 (Nov. 2019),

p. 204105. ISSN: 0021-9606. DOI: 10.1063/1.5128375.

[40] K. T. Schütt, P. Kessel, M. Gastegger, K. A. Nicoli, A. Tkatchenko, and K.-

R. Müller. “SchNetPack: A Deep Learning Toolbox For Atomistic Systems”.

In: J. Chem. Theory Comput. 15.1 (Jan. 2019), pp. 448–455. ISSN: 1549-9618. DOI:

10.1021/acs.jctc.8b00908.

[41] Matthias Rupp, Alexandre Tkatchenko, Klaus-Robert Müller, and

O. Anatole von Lilienfeld. “Fast and Accurate Modeling of Molecular

https://doi.org/10.1103/PhysRevLett.114.096405
https://doi.org/10.1021/acs.chemrev.1c00107
https://doi.org/10.1038/s41467-020-20427-2
https://doi.org/10.1039/C7SC04934J
https://doi.org/10.1063/1.5128375
https://doi.org/10.1021/acs.jctc.8b00908


Bibliography 129

Atomization Energies with Machine Learning”. In: Phys. Rev. Lett. 108.5

(Jan. 2012), p. 058301. DOI: 10.1103/PhysRevLett.108.058301.

[42] Albert P. Bartók, Sandip De, Carl Poelking, Noam Bernstein,

James R. Kermode, Gábor Csányi, and Michele Ceriotti. “Machine Learning

Unifies the Modeling of Materials and Molecules”. In: Sci. Adv. 3.12 (2017),

p. 1701816. DOI: 10.1126/sciadv.1701816.

[43] Stefan Chmiela, Huziel E. Sauceda, Klaus-Robert Müller, and

Alexandre Tkatchenko. “Towards Exact Molecular Dynamics Simulations

with Machine-Learned Force Fields”. In: Nat. Commun. 9.1 (Sept. 2018),

p. 3887. ISSN: 2041-1723. DOI: 10.1038/s41467-018-06169-2.

[44] Stefan Chmiela, Huziel E. Sauceda, Igor Poltavsky, Klaus-Robert Müller, and

Alexandre Tkatchenko. “sGDML: Constructing Accurate and Data Efficient

Molecular Force Fields Using Machine Learning”. In: Comput. Phys. Commun.

240 (July 2019), pp. 38–45. ISSN: 0010-4655. DOI: 10.1016/j.cpc.2019.02.

007.

[45] Huziel E. Sauceda, Luis E. Gálvez-González, Stefan Chmiela,

Lauro Oliver Paz-Borbón, Klaus-Robert Müller, and Alexandre Tkatchenko.

“BIGDML—Towards Accurate Quantum Machine Learning Force Fields for

Materials”. In: Nat. Commun. 13.1 (June 2022), p. 3733. ISSN: 2041-1723. DOI:

10.1038/s41467-022-31093-x.

[46] Zhuoran Qiao, Matthew Welborn, Animashree Anandkumar,

Frederick R. Manby, and Thomas F. Miller III. “OrbNet: Deep Learning for

Quantum Chemistry Using Symmetry-Adapted Atomic-Orbital Features”.

In: J. Chem. Phys. 153.12 (Sept. 2020), p. 124111. ISSN: 0021-9606. DOI:

10.1063/5.0021955.

[47] Albert P. Bartók, Risi Kondor, and Gábor Csányi. “On Representing

Chemical Environments”. In: Phys. Rev. B 87.18 (May 2013), p. 184115. DOI:

10.1103/PhysRevB.87.184115.

https://doi.org/10.1103/PhysRevLett.108.058301
https://doi.org/10.1126/sciadv.1701816
https://doi.org/10.1038/s41467-018-06169-2
https://doi.org/10.1016/j.cpc.2019.02.007
https://doi.org/10.1016/j.cpc.2019.02.007
https://doi.org/10.1038/s41467-022-31093-x
https://doi.org/10.1063/5.0021955
https://doi.org/10.1103/PhysRevB.87.184115


130 Bibliography

[48] Jörg Behler. “Atom-Centered Symmetry Functions for Constructing High-

Dimensional Neural Network Potentials”. In: J. Chem. Phys. 134.7 (Feb. 2011),

p. 074106. ISSN: 0021-9606. DOI: 10.1063/1.3553717.

[49] Haoyan Huo and Matthias Rupp. “Unified Representation of Molecules and

Crystals for Machine Learning”. In: Mach. learn.: sci. technol. 3.4 (Nov. 2022),

p. 045017. DOI: 10.1088/2632-2153/aca005.

[50] Albert P. Bartók, Mike C. Payne, Risi Kondor, and Gábor Csányi. “Gaussian

Approximation Potentials: The Accuracy of Quantum Mechanics, without

the Electrons”. In: Phys. Rev. Lett. 104.13 (Apr. 2010), p. 136403. DOI: 10.1103/

PhysRevLett.104.136403.

[51] Stefan Chmiela, Alexandre Tkatchenko, Huziel E. Sauceda, Igor Poltavsky,

Kristof T. Schütt, and Klaus-Robert Müller. “Machine Learning of Accurate

Energy-Conserving Molecular Force Fields”. In: Sci. Adv. 3.5 (May 2017),

p. 1603015. DOI: 10.1126/sciadv.1603015.

[52] Kristof T. Schütt, Pieter-Jan Kindermans, Huziel E. Sauceda, Stefan Chmiela,

Alexandre Tkatchenko, and Klaus-Robert Müller. SchNet: A Continuous-Filter

Convolutional Neural Network for Modeling Quantum Interactions. 2017. arXiv:

1706.08566 [stat.ML].

[53] K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and

K.-R. Müller. “SchNet – A Deep Learning Architecture for Molecules and

Materials”. In: J. Chem. Phys. 148.24 (Mar. 2018), p. 241722. ISSN: 0021-9606.

DOI: 10.1063/1.5019779.

[54] Oliver T. Unke, Stefan Chmiela, Huziel E. Sauceda, Michael Gastegger,

Igor Poltavsky, Kristof T. Schütt, Alexandre Tkatchenko, and

Klaus-Robert Müller. “Machine Learning Force Fields”. In: Chem. Rev.

121.16 (Aug. 2021), pp. 10142–10186. ISSN: 0009-2665. DOI:

10.1021/acs.chemrev.0c01111.

https://doi.org/10.1063/1.3553717
https://doi.org/10.1088/2632-2153/aca005
https://doi.org/10.1103/PhysRevLett.104.136403
https://doi.org/10.1103/PhysRevLett.104.136403
https://doi.org/10.1126/sciadv.1603015
https://arxiv.org/abs/1706.08566
https://doi.org/10.1063/1.5019779
https://doi.org/10.1021/acs.chemrev.0c01111


Bibliography 131

[55] Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre

Vandergheynst. “Geometric Deep Learning: Going beyond Euclidean Data”.

In: IEEE Signal Process. Mag. 34.4 (July 2017), pp. 18–42. DOI: 10.1109/msp.

2017.2693418.

[56] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang,

Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph Neural

Networks: A Review of Methods and Applications. 2021. arXiv: 1812 . 08434

[cs.LG].

[57] J. Thorben Frank, Oliver T. Unke, and Klaus-Robert Müller. So3krates:

Equivariant Attention for Interactions on Arbitrary Length-Scales in Molecular

Systems. 2023. arXiv: 2205.14276 [cs.LG].

[58] Ilyes Batatia, David Peter Kovacs, Gregor N. C. Simm, Christoph Ortner, and

Gabor Csanyi. “MACE: Higher Order Equivariant Message Passing Neural

Networks for Fast and Accurate Force Fields”. In: NeurIPS. Ed. by Alice H.

Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho. 2022.

[59] Ilyes Batatia, Simon Batzner, Dávid Péter Kovács, Albert Musaelian,

Gregor N. C. Simm, Ralf Drautz, Christoph Ortner, Boris Kozinsky, and

Gábor Csányi. The Design Space of E(3)-Equivariant Atom-Centered Interatomic

Potentials. 2022. arXiv: 2205.06643 [stat.ML].

[60] Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger,

Jonathan P. Mailoa, Mordechai Kornbluth, Nicola Molinari, Tess E. Smidt,

and Boris Kozinsky. “E(3)-Equivariant Graph Neural Networks for

Data-Efficient and Accurate Interatomic Potentials”. In: Nat. Commun. 13.1

(May 2022), p. 2453. ISSN: 2041-1723. DOI: 10.1038/s41467-022-29939-5.

[61] Mario Geiger and Tess Smidt. E3nn: Euclidean Neural Networks. 2022. arXiv:

2207.09453 [cs.LG].

https://doi.org/10.1109/msp.2017.2693418
https://doi.org/10.1109/msp.2017.2693418
https://arxiv.org/abs/1812.08434
https://arxiv.org/abs/1812.08434
https://arxiv.org/abs/2205.14276
https://arxiv.org/abs/2205.06643
https://doi.org/10.1038/s41467-022-29939-5
https://arxiv.org/abs/2207.09453


132 Bibliography

[62] Oliver T. Unke and Markus Meuwly. “PhysNet: A Neural Network for

Predicting Energies, Forces, Dipole Moments, and Partial Charges”. In: J.

Chem. Theory Comput. 15.6 (June 2019), pp. 3678–3693. ISSN: 1549-9618. DOI:

10.1021/acs.jctc.9b00181.

[63] Oliver T. Unke, Stefan Chmiela, Michael Gastegger, Kristof T. Schütt,

Huziel E. Sauceda, and Klaus-Robert Müller. “SpookyNet: Learning Force

Fields with Electronic Degrees of Freedom and Nonlocal Effects”. In: Nat.

Commun. 12.1 (Dec. 2021), p. 7273. ISSN: 2041-1723. DOI:

10.1038/s41467-021-27504-0.

[64] Gregory Fonseca, Igor Poltavsky, and Alexandre Tkatchenko. Force Field

Analysis Software and Tools (FFAST): Assessing Machine Learning Force Fields

under the Microscope. 2023. arXiv: 2308.06871 [physics.chem-ph].

[65] Bruce J Berne, Giovanni Ciccotti, and David F Coker. Classical and Quantum

Dynamics in Condensed Phase Simulations. WORLD SCIENTIFIC, June 1998.

ISBN: 978-981-02-3498-0. DOI: 10.1142/3816.

[66] Johannes Kästner. “Umbrella Sampling”. In: WIREs Comput. Mol. Sci. 1.6

(Nov. 2011), pp. 932–942. ISSN: 1759-0876. DOI: 10.1002/wcms.66.

[67] Graeme Henkelman and Hannes Jónsson. “Improved Tangent Estimate in

the Nudged Elastic Band Method for Finding Minimum Energy Paths and

Saddle Points”. In: J. Chem. Phys. 113.22 (Dec. 2000), pp. 9978–9985. ISSN:

0021-9606. DOI: 10.1063/1.1323224.

[68] Julien Toulouse. Review of Approximations for the Exchange-Correlation Energy

in Density-Functional Theory. 2022. arXiv: 2103.02645 [physics.chem-ph].

[69] Matthias Ernzerhof and Gustavo E. Scuseria. “Assessment of the

Perdew–Burke–Ernzerhof Exchange-Correlation Functional”. In: J. Chem.

Phys. 110.11 (Mar. 1999), pp. 5029–5036. ISSN: 0021-9606. DOI:

10.1063/1.478401.

https://doi.org/10.1021/acs.jctc.9b00181
https://doi.org/10.1038/s41467-021-27504-0
https://arxiv.org/abs/2308.06871
https://doi.org/10.1142/3816
https://doi.org/10.1002/wcms.66
https://doi.org/10.1063/1.1323224
https://arxiv.org/abs/2103.02645
https://doi.org/10.1063/1.478401


Bibliography 133

[70] Jing Yang, Liang Z. Tan, and Andrew M. Rappe. “Hybrid Functional

Pseudopotentials”. In: Phys. Rev. B 97.8 (Feb. 2018), p. 085130. DOI:

10.1103/PhysRevB.97.085130.

[71] H. Rydberg, M. Dion, N. Jacobson, E. Schröder, P. Hyldgaard, S. I. Simak,

D. C. Langreth, and B. I. Lundqvist. “Van Der Waals Density Functional for

Layered Structures”. In: Phys. Rev. Lett. 91.12 (Sept. 2003), p. 126402. DOI:

10.1103/PhysRevLett.91.126402.

[72] M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist. “Van

Der Waals Density Functional for General Geometries”. In: Phys. Rev. Lett.

92.24 (June 2004), p. 246401. DOI: 10.1103/PhysRevLett.92.246401.

[73] Stefan Grimme, Jens Antony, Stephan Ehrlich, and Helge Krieg. “A

Consistent and Accurate Ab Initio Parametrization of Density Functional

Dispersion Correction (DFT-D) for the 94 Elements H-Pu”. In: J. Chem. Phys.

132.15 (Apr. 2010), p. 154104. ISSN: 0021-9606. DOI: 10.1063/1.3382344.

[74] Eike Caldeweyher, Christoph Bannwarth, and Stefan Grimme. “Extension

of the D3 Dispersion Coefficient Model”. In: J. Chem. Phys. 147.3 (July 2017),

p. 034112. ISSN: 0021-9606. DOI: 10.1063/1.4993215.

[75] Alexandre Tkatchenko and Matthias Scheffler. “Accurate Molecular Van

Der Waals Interactions from Ground-State Electron Density and Free-Atom

Reference Data”. In: Phys. Rev. Lett. 102.7 (Feb. 2009), p. 073005. DOI:

10.1103/PhysRevLett.102.073005.

[76] Alexandre Tkatchenko, Robert A. DiStasio, Roberto Car, and

Matthias Scheffler. “Accurate and Efficient Method for Many-Body van Der

Waals Interactions”. In: Phys. Rev. Lett. 108.23 (June 2012), p. 236402. DOI:

10.1103/PhysRevLett.108.236402.

[77] M. J. Frisch et al. Gaussian 16 Revision. 2016.

https://doi.org/10.1103/PhysRevB.97.085130
https://doi.org/10.1103/PhysRevLett.91.126402
https://doi.org/10.1103/PhysRevLett.92.246401
https://doi.org/10.1063/1.3382344
https://doi.org/10.1063/1.4993215
https://doi.org/10.1103/PhysRevLett.102.073005
https://doi.org/10.1103/PhysRevLett.108.236402


134 Bibliography

[78] G. Kresse and J. Hafner. “Ab Initio Molecular Dynamics for Liquid Metals”.

In: Phys. Rev. B 47.1 (Jan. 1993), pp. 558–561. DOI: 10.1103/PhysRevB.47.558.

[79] G. Kresse and J. Furthmüller. “Efficiency of Ab-Initio Total Energy

Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set”.

In: Comput. Mater. Sci. 6.1 (July 1996), pp. 15–50. ISSN: 0927-0256. DOI:

10.1016/0927-0256(96)00008-0.

[80] G. Kresse and J. Furthmüller. “Efficient Iterative Schemes for Ab Initio Total-

Energy Calculations Using a Plane-Wave Basis Set”. In: Phys. Rev. B 54.16

(Oct. 1996), pp. 11169–11186. DOI: 10.1103/PhysRevB.54.11169.

[81] Paolo Giannozzi et al. “QUANTUM ESPRESSO: A Modular and

Open-Source Software Project for Quantum Simulations of Materials.” In: J.

Condens. Matter Phys. 21.39 (Sept. 2009), p. 395502. ISSN: 1361-648X

0953-8984. DOI: 10.1088/0953-8984/21/39/395502.

[82] P. Giannozzi et al. “Advanced Capabilities for Materials Modelling with

Quantum ESPRESSO.” In: J. Condens. Matter Phys. 29.46 (Nov. 2017),

p. 465901. ISSN: 1361-648X 0953-8984. DOI: 10.1088/1361-648X/aa8f79.

[83] Frank Neese. “The ORCA Program System”. In: WIREs Comput. Mol. Sci. 2.1

(Jan. 2012), pp. 73–78. ISSN: 1759-0876. DOI: 10.1002/wcms.81.

[84] Frank Neese. “Software Update: The ORCA Program System, Version 4.0”.

In: WIREs Comput. Mol. Sci. 8.1 (Jan. 2018), e1327. ISSN: 1759-0876. DOI: 10.

1002/wcms.1327.

[85] Frank Neese. “Software Update: The ORCA Program System—Version 5.0”.

In: WIREs Comput. Mol. Sci. 12.5 (Sept. 2022), e1606. ISSN: 1759-0876. DOI:

10.1002/wcms.1606.

[86] Thomas D. Kühne et al. “CP2K: An Electronic Structure and Molecular

Dynamics Software Package - Quickstep: Efficient and Accurate Electronic

https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1002/wcms.81
https://doi.org/10.1002/wcms.1327
https://doi.org/10.1002/wcms.1327
https://doi.org/10.1002/wcms.1606


Bibliography 135

Structure Calculations”. In: J. Chem. Phys. 152.19 (May 2020), p. 194103. DOI:

10.1063/5.0007045.

[87] Who We Are - FHI-aims. https://fhi-aims.org/who-we-are.

[88] Scott A. Hollingsworth and Ron O. Dror. “Molecular Dynamics Simulation

for All.” In: Neuron 99.6 (Sept. 2018), pp. 1129–1143. ISSN: 1097-4199 0896-

6273. DOI: 10.1016/j.neuron.2018.08.011.

[89] Hans C. Andersen. “Molecular Dynamics Simulations at Constant Pressure

and/or Temperature”. In: J. Chem. Phys. 72.4 (July 2008), pp. 2384–2393. ISSN:

0021-9606. DOI: 10.1063/1.439486.

[90] Sergei Izrailev, Sergey Stepaniants, Barry Isralewitz, Dorina Kosztin,

Hui Lu, Ferenc Molnar, Willy Wriggers, and Klaus Schulten. “Steered

Molecular Dynamics”. In: Computational Molecular Dynamics: Challenges,

Methods, Ideas. Ed. by Peter Deuflhard, Jan Hermans, Benedict Leimkuhler,

Alan E. Mark, Sebastian Reich, and Robert D. Skeel. Berlin, Heidelberg:

Springer Berlin Heidelberg, 1999, pp. 39–65. ISBN: 978-3-642-58360-5.

[91] Jagdish Suresh Patel, Anna Berteotti, Simone Ronsisvalle, Walter Rocchia,

and Andrea Cavalli. “Steered Molecular Dynamics Simulations for

Studying Protein–Ligand Interaction in Cyclin-Dependent Kinase 5”. In: J.

Chem. Inf. Model. 54.2 (Feb. 2014), pp. 470–480. ISSN: 1549-9596. DOI:

10.1021/ci4003574.

[92] Justin S. Smith, Ben Nebgen, Nicholas Lubbers, Olexandr Isayev, and

Adrian E. Roitberg. “Less Is More: Sampling Chemical Space with Active

Learning”. In: J. Chem. Phys. 148.24 (May 2018), p. 241733. ISSN: 0021-9606.

DOI: 10.1063/1.5023802.

[93] Nicholas J. Browning, Raghunathan Ramakrishnan, O. Anatole von

Lilienfeld, and Ursula Roethlisberger. “Genetic Optimization of Training

Sets for Improved Machine Learning Models of Molecular Properties.” In: J.

https://doi.org/10.1063/5.0007045
https://doi.org/10.1016/j.neuron.2018.08.011
https://doi.org/10.1063/1.439486
https://doi.org/10.1021/ci4003574
https://doi.org/10.1063/1.5023802


136 Bibliography

Phys. Chem. Lett. 8.7 (Apr. 2017), pp. 1351–1359. ISSN: 1948-7185. DOI:

10.1021/acs.jpclett.7b00038.

[94] Logan Ward, Ben Blaiszik, Ian Foster, Rajeev S. Assary, Badri Narayanan,

and Larry Curtiss. “Machine Learning Prediction of Accurate Atomization

Energies of Organic Molecules from Low-Fidelity Quantum Chemical

Calculations”. In: MRS Commun. 9.3 (Sept. 2019), pp. 891–899. DOI:

10.1557/mrc.2019.107.

[95] Florbela Pereira and João Aires-de-Sousa. “Machine Learning for the

Prediction of Molecular Dipole Moments Obtained by Density Functional

Theory”. In: J. Cheminf. 10.1 (Aug. 2018), p. 43. ISSN: 1758-2946. DOI:

10.1186/s13321-018-0296-5.

[96] Meeri Kim. “A Machine Learning Model to Predict Molecular Dipole

Moments”. In: Scilight 2020.28 (July 2020), p. 281104. ISSN: 2572-7907. DOI:

10.1063/10.0001609.

[97] Thomas B. Blank, Steven D. Brown, August W. Calhoun, and

Douglas J. Doren. “Neural Network Models of Potential Energy Surfaces”.

In: J. Chem. Phys. 103.10 (Sept. 1995), pp. 4129–4137. ISSN: 0021-9606. DOI:

10.1063/1.469597.

[98] Frederico V. Prudente and J.J. Soares Neto. “The Fitting of Potential Energy

Surfaces Using Neural Networks. Application to the Study of the

Photodissociation Processes”. In: Chem. Phys. Lett. 287.5 (May 1998),

pp. 585–589. ISSN: 0009-2614. DOI: 10.1016/S0009-2614(98)00207-3.

[99] E. Tafeit, W. Estelberger, R. Horejsi, R. Moeller, K. Oettl, K. Vrecko, and G.

Reibnegger. “Neural Networks as a Tool for Compact Representation of Ab

Initio Molecular Potential Energy Surfaces.” In: J. Mol. Graph. 14.1 (Feb. 1996),

pp. 12–18. ISSN: 0263-7855. DOI: 10.1016/0263-7855(95)00087-9.

https://doi.org/10.1021/acs.jpclett.7b00038
https://doi.org/10.1557/mrc.2019.107
https://doi.org/10.1186/s13321-018-0296-5
https://doi.org/10.1063/10.0001609
https://doi.org/10.1063/1.469597
https://doi.org/10.1016/S0009-2614(98)00207-3
https://doi.org/10.1016/0263-7855(95)00087-9


Bibliography 137

[100] Lauri Himanen, Marc O. J. Jäger, Eiaki V. Morooka, Filippo Federici Canova,

Yashasvi S. Ranawat, David Z. Gao, Patrick Rinke, and Adam S. Foster.

“DScribe: Library of Descriptors for Machine Learning in Materials

Science”. In: Comput. Phys. Commun. 247 (2020), p. 106949. ISSN: 0010-4655.

DOI: 10.1016/j.cpc.2019.106949.

[101] Jarno Laakso, Lauri Himanen, Henrietta Homm, Eiaki V Morooka, Marc OJ
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