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Abstract

In the present work, the interactions between neutral molecular systems subject to

external static electric fields are studied. To comprehensively explore the effects of

external fields on intermolecular interactions, two most reliable frameworks in the

subject, namely molecular quantum mechanics and quantum electrodynamics are

employed while atomic and molecular responses are modeled using quantum Drude

oscillators (QDO). In the first part of the work, the focus is to understand the

interplay between dispersion and field-induced forces in two-body systems for both

nonretarded and retarded ranges of inter-species distances. To identify the origin and

the mechanism responsible for different field-induced interactions, a complementary

approach based on classical electrodynamics with a zero-point radiation field, namely

stochastic electrodynamics, is employed. The results show that neglecting higher-

order contributions coming from field-induced hyperpolarizabilities of atoms, the

dispersion interaction remains unchanged by the external uniform static field, for

both regimes. However, using an external static field one can control the magnitude

and characteristics of intermolecular interactions. The second part of the work is

devoted to the extension of the study to many-body interacting systems. There,

the total interaction energy in systems with many interacting atoms or molecules is

obtained by extending the well-established theory of many-body dispersion (MBD)

interactions to the presence of external static electric fields. Diagonalization of

the Hamiltonian of the system in the nonretarded regime and in the framework of

quantum mechanics, yields the total energy of the interacting system in terms of

the corresponding normal mode frequencies. Subtraction of the energy of the non-

interacting QDOs-in-fields from the total energy of the interacting system results

in the many-body interaction energy. The impact of the field-induced many-body

contributions are investigated for a benzene dimer as well as for two carbyne chains.

Varying the number of carbon atoms per chain demonstrates the significance of

the field-induced many-body terms in the interplay between dispersion and field-

induced interactions. Such contributions can be of great importance for controlling

delamination and self-assembly of materials in static electric fields.
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Chapter 1

Introduction

Molecular forces, stemming from noncovalent interactions between closed-shell atoms

or molecules, govern various physical properties of different states of matter. These

ubiquitous forces are widely present in systems throughout biology, chemistry, and

physics, with an extension to practical fields such as nanotechnology and pharmaceu-

ticals. For example, molecular forces play a major role in determining the structure,

stability, and function for molecules and materials including proteins, nanostruc-

tures, molecular solids, and crystalline surfaces [1–7]. In general, atoms in a given

molecule or material are subject to internal and external fields. These fields can be of

static and/or dynamic origins and can arise either from neighboring atoms carrying

effective partial charges within the same molecule or from external environments,

such as cell membranes, ionic channels, liquids, among other possibilities. From an

atom-wise perspective, the forces arising from the surrounding environment can be

effectively modeled by external fields acting on an atom from all other components

of the system. Hence, a complete theoretical description of interatomic interactions

necessitates the modeling of arbitrary internal and external fields that atoms can

experience.

The effect of static and dynamic electric fields on noncovalent interactions has

been studied using various theoretical frameworks applied to atomic and molecular

systems [8–34]. Such effects have been also explored extensively from the point of

view of the changes in the charge distribution and polarizability of interacting species

in the electric fields of external sources and/or other atoms and molecules [8–24].

It has been shown that by applying electromagnetic and thermal fields one can in-

fluence noncovalent interactions in several ways. Random and nonuniform fields

can affect the strength and distance scaling laws of the van der Waals (vdW)

dispersion interaction or even change its sign [25–30]. Application of weak static

(in)homogeneous fields to molecular dimers [31–33] modifies the dispersion interac-

tions in second and third orders of perturbation theory in the nonretarded regime,

while the retarded regime has not been addressed in the literature. The dispersion

interactions under weak static fields in retarded regime were recently studied by

1



Chapter 1. Introduction 2

Fiscelli et al. [34] using quantum electrodynamics (QED). They proposed a novel

contribution to the retarded dispersion energy between two interacting two-level hy-

drogen atoms, scaling as ∝ R−4 with respect to the interatomic distance. Despite

the relatively large number of studies on molecular interactions in electric fields, a

comprehensive understanding of this topic is still missing and some results remain

controversial. For instance, there is still an ongoing debate on the interpretation

of vdW interactions in spatially-confined systems as having either an electrostatic

or a quantum-mechanical origin [35–39]. The unusual R−4 scaling of dispersion in-

teractions in QED induced by an external field and recently presented in Ref. [34]

has also been debated as arising either from quantum effects or just classical elec-

trostatics [40, 41]. To resolve existing controversies and clarify discrepancies in the

literature, the present work aims to develop a comprehensive framework for model-

ing and understanding molecular interactions in the presence of electric fields. The

presented approach is firmly based on first principles of QM and QED and employs

an exactly solvable model for the atomic polarization, namely the quantum Drude

oscillator (QDO) model.

In the QM theory of intermolecular interactions, typically, second-order inter-

molecular perturbation theory is employed to distinguish between three types of

noncovalent molecular interactions: electrostatic interaction between permanent

multipoles, polarization (or induction) interaction between permanent and induced

multipoles, and vdW dispersion interaction between fluctuating multipoles. When

using higher orders of perturbation theory, the situation is somewhat obscured be-

cause the distinction between different types of multipoles (permanent, induced,

and fluctuating) becomes less obvious. The presence of electric fields, excitations,

or specific boundary conditions introduces additional complications. Many of such

field-induced phenomena are not yet part of textbook knowledge, even from the

point of view of standard QM. For example, the qualitative change of vdW disper-

sion interactions induced by confinement of molecules in nanostructures or under

inhomogeneous electric fields is a recent proposition [30,33,37].

QED provides a well-established general framework to study the interaction be-

tween atoms or small molecules and the electromagnetic radiation field [42–48]. The

recent developments of ab-initio and density functional theory methods in the frame-

work of QED have further extended the domain of QED computational considera-

tions to larger molecular systems [48–54]. There is a diversity of effects in QED that

transcend standard QM interpretation and stem from the zero-point fluctuations

of the electromagnetic radiation field. Such examples include vacuum polarization,

self-energy terms, Lamb shift, and even particle creation and annihilation in strong

fields [43, 47]. QED has also been widely used for studying vdW dispersion and

Casimir interactions between atoms and materials [44–46, 55, 56]. Owing to the

relative complexity of the QED terms compared to their QM counterparts, one is
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often constrained to using effective models for the atomic response and its coupling

to the quantum radiation field. Due to these reasons, the QED theory of molecular

forces requires further development to reach the sophisticated level achieved by its

QM analog. This fact is for example illustrated by the recent work of Fiscelli et

al. [34], which proposed the existence of a new QED dispersion energy term for two

hydrogen atoms subjected to an external electric field.

With the aim to bridge the QM and QED treatments of molecular forces, in this

work a comprehensive framework is developed and applied to study the effect of

a static electric field on noncovalent interactions between two atoms or molecules.

To achieve a comprehensive understanding, it was found necessary to employ three

different theories, given by molecular quantum mechanics, microscopic quantum

electrodynamics, and stochastic electrodynamics (SED). The three frameworks have

been widely used in different communities in order to explore various aspects of

intermolecular interactions. In contrast to QM and QED, the SED approach [57–

66] provides clear classical interpretations of different interaction terms for non-

relativistic quantum-mechanical problems. It has been already shown that SED

can successfully reproduce results of QED when studying vdW and Casimir-Polder

interactions in absence of external fields for a number of atomic and molecular

systems [67–72].

When studying the effect of external electric fields on interatomic interactions,

the two-level “hydrogen atom” is often employed as a model system for atomic

response. Unfortunately, this model system (two hydrogen-like atoms plus the ex-

ternal field) does not allow an analytical solution and this can lead to artifacts,

especially when applying QED. To avoid this problem and to enrich the concep-

tual understanding of the effect of external fields on intermolecular interactions, the

present study employs the QDO model [73–76] to describe atomic and molecular

responses within their linear range in closed-shell systems. The usage of QDOs to

accurately and efficiently model the (linear) response of valence electrons in atoms

and molecules is a critical aspect because coupled QDOs enable analytical solutions,

with and without electric field.

A further important step towards understanding the interactions between atomic

and molecular systems under the influence of an external field is to take into ac-

count the general non-additive characteristic of these interactions. It is known that,

in general, intermolecular interactions are non-pairwise additive which in the case of

nonpolar molecules is understandable due to the ever-present dispersion forces be-

tween the interacting species [3, 4,6,45]. When an external static field is applied to

molecular systems, they acquire static polarizations that manifest as static electric

dipole or multipole moments. The fields of such electric moments can further po-

larize nearby atoms and molecules and cause additional couplings between different

parts of the interacting system. Taking into account the mechanism behind the re-



Chapter 1. Introduction 4

sulting couplings, one expects a non-pairwise additive character for the field-induced

interactions.

Considering the key role of many-body dispersion [77–79] and induction inter-

actions [4, 45] in the assembly, stability, and structure of systems with many in-

teracting atoms, e.g. one- or two-dimensional nanostructures and macromolecules,

it is remarkably important to examine the significance of field-induced many-body

contributions to the intermolecular interactions. For that reason, the present work

extends the theory of many-body intermolecular interactions [80,81] to the presence

of external static electric fields, in order to accounts for all contributions to the non-

retarded dipolar interactions between many-body systems. Such an extension can

be of great interest as, for instance, static fields are widely employed as practical

tools in the fabrication methods of nano- to micro-scale materials [82,83].

The content of this thesis is laid out as follows: Chapter 2 gives a brief intro-

duction to the intermolecular interactions in the context of QM, QED, and SED

theories. Chapter 3 introduces the QDO model and its application to the calcula-

tions of interactions between closed-shell molecules. Chapter 4 is dedicated to the

study of interactions between two molecules in static electric fields in QM, QED,

and SED frameworks with application to two simple molecular systems, namely ar-

gon and benzene dimers. The many-body effects induced by external static fields

as well as the interplay between them and the dispersion interactions along with

the application of the developed theory to molecular systems and one-dimensional

nanostructures are discussed in Chapter 5. Finally, an overall conclusion together

with the outlook of the work is given in Chapter 6.



Chapter 2

Intermolecular Interactions

2.1 Introduction

The fact that matter is made of atoms and molecules has been known to us for a long

time. The existence of different states and phases of matter is an evidence for the

important role of intermolecular interactions in the formation of different types of

materials and determination of their physico-chemical properties. Molecular forces,

stemming from noncovalent interactions between closed-shell atoms or molecules,

govern various physical properties of different states of matter. These ubiquitous

forces are widely present in systems throughout biology, chemistry, and physics,

with an extension to practical fields such as nanotechnology and pharmaceuticals.

For example, molecular forces play a major role in determining the structure, sta-

bility, and function for molecules and materials including proteins, nanostructures,

molecular solids, and crystalline surfaces [1–7].

Various theories have been established based on physical principles to investi-

gate intermolecular interactions ranging from purely classical to more sophisticated

quantum-mechanical descriptions. Among all those theories, molecular quantum

mechanics (QM) and molecular quantum electrodynamics (QED) have been recog-

nized to provide the most reliable description of intermolecular interactions. The

QM theory describes molecular systems as quantum-mechanical objects obeying

the principles of quantum mechanics. The long-range interactions between these

objects are considered as couplings between their static and/or fluctuating polariza-

tions corresponding to their electronic (and nuclear) charge densities [3–7]. In the

QED theory, although molecules are similarly considered quantum-mechanically, the

interactions between them are treated from a field-theoretical point of view where

the fluctuating vacuum electromagnetic field mediates the intermolecular interac-

tions [42, 44,45,55,84,85].

In this chapter, the QM and QED theories of intermolecular interactions are

briefly introduced in Sections 2.2 and 2.3, respectively, and an overview of the basic

computational aspects of the interactions is presented in each framework. In Sec-

5
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tion 2.4, a complementary approach to intermolecular interactions based on classical

theory of electrodynamics is presented. In this approach, known as stochastic elec-

trodynamics (SED) [57–64, 66, 67, 71, 86–88], atoms and molecules are described

as classical dipole oscillators which under the influence of an ever-present random

zero-point electromagnetic field acquire random oscillations and subsequently emit

electromagnetic radiations with random phases, and thus mutually interact through

these classical radiation fields. The SED framework provides a transparent picture

of intermolecular interactions that is close the well-known concepts of interactions

in classical electrodynamics. Owing to the well-established classical concepts be-

hind the SED approach, it permits a straightforward identification of the different

interaction terms providing a minimal model to understand the origin of molecular

interactions with or without external fields.

2.2 Intermolecular Interactions in Molecular

Quantum Mechanics

The quantum-mechanical theory of intermolecular forces is a well established field,

with several seminal monographs covering this topic rather comprehensively [1–

6]. Long-range interactions between systems ranging from single atoms and small

molecules to large macromolecules and nanostructures have been studied extensively

in the nonretarded regime within the quantum-mechanical framework [80, 89–95].

In this framework, atoms and molecules are described by the Schrödinger equation

for their constituent particles and the Hamiltonian operators of atomic and molec-

ular systems are obtained by promoting their dynamical variables (position and

momentum) in the classical Hamiltonian functions to quantum operators subject to

the canonical commutation relations.

The Schrödinger equation for the total Hamiltonian of a system of interacting

atoms, separated by distances beyond the overlap of atomic electronic clouds, can

be solved by using a variety of approximations. For N interacting atoms the total

Hamiltonian is given by

Htotal =
N∑
ξ=1

H
(ξ)
atom +

N∑
ξ,ξ′=1

H
(ξ,ξ′)
int , (2.1)

where

H
(ξ)
atom = − ~2

2Mξ

∇2
ξ −

{el}∑
α

~2

2m
∇2

α +
1

2

{el+nuc}∑
α,β
α 6=β

q(rα)q(rβ)

4πε0 |rα − rβ|
(2.2)

is the Hamiltonian of an atom with n electrons—each with the electric charge

q(rα) = −e, mass m, and the position vector rα— that via Coulomb potentials

are bound to the nucleus ξ of the positive electric charge q(Rξ) = +ne and mass Mξ
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located at Rξ. The first and the second term of (2.2) are the kinetic energies of the

nucleus and the electrons, respectively, with the sum running over all electrons of the

atom. The third term represents Coulomb potentials between particles in the atom

and the sums run over the labels of the particles including all the electrons and the

nucleus of the atom. The interaction Hamiltonian that accounts for Coulomb cou-

plings between particles of different atoms can be specified as the potential energy

of atomic charge distributions in the electric potentials of other atoms,

Hint =
1

2

N∑
ξ,ξ′=1
ξ 6=ξ′

∑
α

φξ′(r
(ξ)
α ) q(r(ξ)α ) , (2.3)

where

φξ′(r
(ξ)
α ) =

∑
α′

q(r
(ξ′)
α′ )

|rα − rα′|
(2.4)

is the electric potential of the ξ′-th atom that a particle of an electric charge q(r
(ξ)
α )

located at r
(ξ)
α in the local coordinates of the ξ-th atom experiences. In equa-

tions (2.3) and (2.4) the sums over α and α′ run over all particles of the ξ-th

and ξ′-th atoms. The time-independent Schrödinger equation corresponding to the

Hamiltonians (2.1) and (2.2) is a rather complicated partial differential equation in

terms of coordinates of all nuclei and electrons of the atomic system that, apart

from hydrogen atom, are not analytically solvable. A considerable simplification to

these equations is suggested from the significant mass difference between nuclei and

electrons. Since the electrons are much less massive compared to nuclei one can as-

sume that the nuclei are stationary. As it was proposed by Born and Oppenheimer,

such an assumption makes it possible to separate electrons and nuclear motions and

have simpler Schrödinger equations. Consequently, nuclear and electronic parts of

a molecular system are described by separate wavefunctions each being solutions to

the corresponding Schrödinger equation while electronic energy contributions and

nuclear kinetic (translational, rotational and vibrational) energy contributions to

the total energy of the system are distinguished.

In the Born-Oppenheimer approximation kinetic energies of nuclei are neglected

in the electronic Schrödinger equation and coordinates of nuclei are considered as

classical parameters. Since an obtained energy eigenvalue from such an equation

depends on nuclear coordinates one can use it to determine the interaction energy

between the atoms constituting the molecular system (or between different molecules

similarly). The fact that the resulting energy eigenvalue for a many-body system

(with more than two atoms or molecules) does not simply relate to the sum of the

energy eigenvalues corresponding to two-body systems yields the non-additive nature

of intermolecular interactions. For instance, in a three-body problem, {A,B,C},
since the two-body interactions are modified by the presence of the third species,
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Figure 2.1: Two interacting atoms A and B separated by a distance R = |RB −RA|.

the total interaction energy includes a three–body term along with all the pairwise

interactions, i.e.,

Eint = EAB + EAC + EBC + EABC . (2.5)

For long separation distances there are different types of interactions contributing

to this energy. From a perturbative point of view one can partition the interaction

energy of ground-state atoms or molecules into three types [4, 45],

Eint = Ees + Epol + Edisp , (2.6)

where Ees , Epol , and Edisp are, respectively, electrostatic, polarization (or induc-

tion), and dispersion interactions. Considering all these different contributions, the

nonadditivity of the interaction energy (2.5) can be understood from the physical

mechanisms responsible for each of these interactions which will be explained later

in this chapter.

Despite the simplifications introduced by the Born-Oppenheimer approximation,

analytical solutions to the Schrödinger equation for a system of interacting atoms

are not available in general even for a two-body problem. One of the most widely

employed approximation methods for tackling this problem is to use perturbation

theory considering the isolated atoms as the unperturbed systems and obtaining en-

ergy shifts caused by the interaction Hamiltonian (2.3) from different orders of per-

turbation theory. To evaluate such energy shifts, first, the Coulomb coupling (2.3)

between the interacting atoms, separated by distances beyond any overlap between

their electronic ground states, is expanded in terms of electric multipole moments

of atoms. Then, energy shifts due to the couplings between these electric multipole

moments of different atoms are calculated.

For two atomic systems A and B respectively centered at RA and RB, and each

having a positively charged nucleus and several electrons, as depicted in Fig. 2.1,

the interaction Hamiltonian (2.3) can be written as

Hint(A,B)=
1

4πε0

{
qq′

R
+
∑
α,α′

e2

|R+ rα′ − rα|
−
∑
α′

eq

|R+ rα′|
−
∑
α

eq′

|R− rα|

}
, (2.7)

where R = RB −RA is the interatomic separation vector and positions of electrons

in A and B indicated by rα and rα′ , respectively, are measured with respect to the
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local coordinate systems of the atoms centered at the position of their nuclei. In

(2.7), q = q(RA) is the positive charge of atom A nucleus and q′ = q(RB) is its

counterpart in atom B. At long-range interatomic distances, where R� rα, r
′
α, one

can Taylor-expand each of the fractions inside the curly brackets in (2.7) around R

using the general formula [96],

f(r + x) =
∞∑
n=0

1

n!
(x ·∇)nf(r) , (2.8)

to obtain

Hint(A,B) =
1

4πε0

{
qq′

R

+
∑
α,α′

e2
[

1

R
+ (rα′ − rα)i∇i

1

R
+

1

2
(rα′ − rα)i(rα′ − rα)j∇i∇j

1

R
+ · · ·

]

−
∑
α′

eq

[
1

R
+ (rα′)i∇i

1

R
+

1

2
(rα′)i(rα′)j∇i∇j

1

R
+ · · ·

]

−
∑
α

eq′
[

1

R
− (rα )i∇i

1

R
+

1

2
(rα )i(rα )j∇i∇j

1

R
+ · · ·

]}
, (2.9)

where summations over repeated indices i and j are assumed and “· · · ” indicates

higher-order derivatives of R−1. Rewriting the interaction Hamiltonian (2.9) with

respect to the order of derivatives, one arrives at

Hint(A,B) =
1

4πε0

{ [
qq′ +

∑
α,α′

e2 −
∑
α′

eq −
∑
α

eq′
] 1

R

+
[∑
α,α′

e2(rα′ − rα)i −
∑
α′

eq(rα′)i +
∑
α

eq′(rα )i

]
∇i

1

R

+
1

2

[∑
α,α′

e2(rα′ − rα)i(rα′ − rα)j−
∑
α′

eq(rα′)i(rα′)j

−
∑
α

eq′(rα)i(rα)j

]
∇i∇j

1

R
+ · · ·

}
. (2.10)

For neutral atoms, coefficients of the zeroth and first derivatives of R−1, respectively

given by the expressions inside the square brackets on the first and second lines of

(2.10), sum up to zero and the interaction Hamiltonian reduces to

Hint(A,B) = − 1

4πε0

∑
α,α′

e2(rα)i(rα′)j∇i∇j
1

R
+ · · · (2.11)
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Thus, having the electric dipole moments of atoms defined as

µ(ξ) =
∑
α

e rα , ξ = A ,B , (2.12)

as well as the second-order derivative of R−1 as

∇i∇j
1

R
=

3R̂iR̂j − δij
R3

, with R̂ =
R

R
, (2.13)

and neglecting the higher-order derivatives with n ≥ 3 in the infinite expansion

(2.8), the interaction Hamiltonian (2.7) can be approximated by the dipole–dipole

coupling of atoms A and B,

Hint(A,B) ≈ −(3R̂iR̂j − δij)µi(A)µj(B)

4πε0R3
. (2.14)

The higher-order couplings, given by terms with n ≥ 3 neglected above, corre-

spond to interactions between higher multipoles of the two atoms. For example,

the next two terms after dipole–dipole coupling are dipole–quadrupole (n = 3) and

quadrupole–quadrupole (n = 4) interactions.

As mentioned above, in the quantum-mechanical theory of intermolecular inter-

actions, typically Rayleigh–Schrödinger perturbation theory is employed to evaluate

the three contributions to the long-range inter-atomic/molecular interaction. Within

this approach, the quantum states of a system of interacting atoms or molecules are

expanded in the basis of the states of the noninteracting system while coupling

of the atoms, described by the interaction Hamiltonian (2.14), is considered as a

perturbation. Thus the interaction energies between the atoms are obtained as cor-

rection to the total energy of noninteracting system. However, it is noteworthy to

mention that the application of perturbation theory requires the states of the un-

perturbed system to form a complete basis set. Returning to the two-body problem,

let the complete sets of atomic states of the unperturbed atoms A and B be denoted

by {|n(A)〉} and {|m(B)〉}, respectively, each of which are solutions to Schrödinger

equations corresponding to the electronic structures of the atoms given by

H
(A)
0 |n(A) 〉 = E(A)

n |n(A) 〉 , (2.15a)

H
(B)
0 |m(B)〉 = E(B)

m |m(B)〉 , (2.15b)

where H
(ξ)
0 is the Hamiltonian of the isolated atom ξ. Thus, for the total system of

the noninteracting atoms the unperturbed Hamiltonian can be expressed as

H0 = H
(A)
0 +H

(B)
0 , (2.16)

with the corresponding eigenstates defined as product of eigenstates of the noninter-

acting atoms, namely |n(A),m(B)〉 = |n(A)〉|m(B)〉. Having the unperturbed Hamil-

tonian and the corresponding quantum states defined, one can follow the standard

procedure of the perturbation theory to obtain the interaction energies.
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The first-order correction to the ground–state energy of the total unperturbed

system is obtained from the first order of perturbation theory,

∆E(1) = 〈0|Hint|0〉 , (2.17)

as the expectation value of the interaction Hamiltonian in the ground state of the

noninteracting system. Replacing expression (2.14) into equation (2.17) yields

∆E(1) = − 3R̂iR̂j − δij
4πε0R3

〈0(A)|µi(A) |0(A)〉〈0(B)|µj(B) |0(B)〉 . (2.18)

Equation (2.18) shows that the first-order energy shift caused by the Coulomb cou-

pling between two atoms in dipole approximation is nonvanishing only if both atoms

possess permanent electric dipole moments. Denoting these permanent dipole mo-

ments by

µ00(A) = 〈0(A)|µ(A) |0(A)〉 , (2.19a)

µ00(B) = 〈0(B)|µ(B) |0(B)〉 , (2.19b)

and using them in equation (2.18), one arrives at the energy shift

∆E(1) = Ees =
µ00(A) · µ00(B)− 3[µ00(A) · R̂)(µ00(B) · R̂ ]

4πε0R3
. (2.20)

which is the well-known electrostatic interaction between two permanent dipole mo-

ments. As known from electrostatics and classical electrodynamics [97], electrostatic

forces obey the superposition principle implying that they are pairwise additive.

Therefore, the non-additive characteristic of the long-range inter-atomic/molecular

interaction in (2.6) has to originate from the other contributions, i.e. dispersion

and/or polarization interactions that can be obtained from the second order of per-

turbation theory.

The second-order energy shift is calculated from the following expression,

∆E(2) = −
∑
I 6=0

〈0|Hint|I〉〈I|Hint|0〉
EI − E0

, (2.21)

where the intermediate state |I〉 can be any possible state of the total unperturbed

system except the ground state. Depending on the states of A and B in the inter-

mediate state |I〉 one can divide the sum over I into two cases: 1) when one of the

atoms is excited and the other one is in its ground state, and 2) when both atoms

are excited. Each of these cases results in different contributions to the second-order

energy shift that are explained separately in the following. In the first case, inserting

perturbation Hamiltonian (2.14) into equation (2.21) and using the aforementioned

product–state definitions of the ground and intermediate states, the second-order



Chapter 2. Intermolecular Interactions 12

expression (2.21) yields the interaction energy

∆E
(2)
1 =− 1

(4πε0)2R6

{∑
n6=0

[
(δij − 3R̂iR̂j)µ

0n
i (A)µ00

j (B)
][

(δkl − 3R̂kR̂l)µ
n0
k (A)µ00

l (B)
]

E
(A)
n − E(A)

0

+
∑
m6=0

[
(δij − 3R̂iR̂j)µ

00
i (A)µ0m

j (B)
][

(δkl − 3R̂kR̂l)µ
00
k (A)µm0

l (B)
]

E
(B)
m − E(B)

0

}
,

(2.22)

where

µηζi (ξ) = 〈η(ξ)|µi(ξ)|ζ(ξ)〉 (2.23)

is the ηζ matrix element of the ith component of the electric dipole operator of atom

ξ. As it is seen from the interaction energy (2.22), the polarization interaction is non-

vanishing only if at least one of the atoms has a permanent dipole moment. Pulling

out the constants from the sums in equation (2.22) one arrives at the polarization

interaction energy

∆E
(2)
1 =Epol = −

[
(δij − 3R̂iR̂j)µ

00
j (B)

4πε0R3

][
(δkl − 3R̂kR̂l)µ

00
l (B)

4πε0R3

]∑
n6=0

µ0n
i (A)µn0k (A)

E
(A)
n − E(A)

0

−
[

(δij − 3R̂iR̂j)µ
00
i (A)

4πε0R3

][
(δkl − 3R̂kR̂l)µ

00
k (A)

4πε0R3

]∑
m6=0

µ0m
j (B)µm0

l (B)

E
(B)
m − E(B)

0

= −1

2
αik(A)Ei(B;R)Ek(B;R)− 1

2
αjl(B)Ej(A;R)El(A;R) , (2.24)

where αij(ξ) is the ij element of the static dipole polarizability tensor of atom ξ

defined as

αij(ξ) = 2
∑
η 6=0

µ0η
i (ξ)µη0j (ξ)

E
(A)
η − E(A)

0

, (2.25)

and Ei(ξ;R) is the ith component of the electric field of the permanent dipole

moment of atom ξ at a distance R away from it, given by [97]

Ei(ξ;R) =
(δij − 3R̂iR̂j)µ

00
j (ξ)

4πε0R3
. (2.26)

The energy shift (2.24) is the energy of an induced electric dipole moment of one

atom in the electric field of a permanent electric dipole moment of another atom.

Since the dipole moment of the first atom is already induced by the same field

that is interacting with, the resulting interaction energy is also called induction

interaction. Due to the mechanism responsible for the induction interaction, i.e.

inducing a dipole moment then interacting with the induced moment, this type of
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intermolecular interactions are not additive. For example, in a two-body problem

only a permanent dipole moment of one atom causes an induced dipole moment of

another atom while in a three-body problem the induced dipole moment is caused

by two permanent dipole moments of two other atoms. The interaction energies

between the induced dipole with the inducing dipoles in the three-body case cannot

be reproduced as a sum of distinct two-body interactions.

The second case of atomic states in the intermediate state |I〉, in which both

atoms A and B are excited, yields the interaction energy

∆E
(2)
2 =− 1

(4πε0)2R6

∑
n,m 6=0

[
(δij − 3R̂iR̂j)µ

0n
i (A)µ0m

j (B)
][
(δkl − 3R̂kR̂l)µ

n0
k (A)µm0

l (B)
]

(E
(A)
n − E(A)

0 ) + (E
(B)
m − E(B)

0 )
.

(2.27)

Using the integral identity,

1

a+ b
=

2

π

∫ ∞
0

a b

(a2 + u2)(b2 + u2)
du , (2.28)

one can separate A− and B−related terms in the denominator of (2.27) and rewrite

it as a multiplication of two terms to have

∆E
(2)
2 = −(δij − 3R̂iR̂j)(δkl − 3R̂kR̂l)

(4πε0)2R6

× 2

π

∫ ∞
0

[∑
n6=0

µ0n
i (A)µn0k (A)ωn0
~(ω2

n0 + ω2)

][∑
m 6=0

µ0m
j (B)µm0

l (B)ωm0

~(ω2
m0 + ω2)

]
~ dω , (2.29)

where ~ωn0 = E
(A)
n − E(A)

0 and ~ωm0 = E
(B)
m − E(B)

0 . Having the dynamic polariz-

ability tensor of atom ξ defined as [5]

α
(ξ)
ij (ω) =

2

~
∑
η 6=0

µ0η
i (ξ)µη0j (ξ)ωη0

ω2
η0 − ω2

, (2.30)

the sums inside the square brackets in (2.29) can be identified respectively as ik and

jl tensor elements of dynamic polarizabilities of atoms A and B at the imaginary

frequency iω. Replacing the definition (2.30) into expression (2.29) one obtains

∆E
(2)
2 = Edisp = −~ (δij − 3R̂iR̂j)(δkl − 3R̂kR̂l)

2π (4πε0)2R6

∫ ∞
0

α
(A)
ik (iω)α

(B)
jl (iω) dω , (2.31)

which is the well-known London dispersion interaction for two anisotropic electric

dipole polarizable molecules. In the case of atoms, where αij = ᾱδij, the dispersion

interaction (2.31) reduces to

Edisp = − 3~
(4πε0)2 π R6

∫ ∞
0

ᾱ(A)(iω) ᾱ(B)(iω) dω , (2.32)
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where the mathematical equality,

(δij − 3R̂iR̂j)(δij − 3R̂iR̂j)

R6
=

6

R6
, (2.33)

has been used going from (2.31) to (2.32). In the framework of quantum mechan-

ics, dispersion interactions correspond to the correlation of quantum-mechanical

fluctuations of electronic charge densities of atoms and molecules. In this picture,

fluctuations of the charge density of one system due to the continuous motions of

its electrons, considered as fluctuating dipole or multipole moments, induce fluctu-

ations in the charge density and hence fluctuating dipole or multipole moments of

another system. The coupling of the fluctuating moments of the two species results

in an energy shift in the total energy of the combined system of the species that is

called dispersion interaction. Such a mechanism explains the non-additive nature

of dispersion interactions, since induced fluctuations at one center of charges are

strongly affected by the presence of nearby fluctuating charge distributions, similar

to the induction interactions and unlike the electrostatic coupling of atomic and/or

molecular systems. However, in this framework, Coulomb couplings between elec-

tric moments of interacting species, whether permanent or induced, are considered

instantaneous meaning that the electromagnetic signals from one entity, roughly

speaking, are immediately perceived at the position of the other one. This sort of

approximation is only valid in the nonretarded regime of intermolecular interactions

where the inter-species distance, R, is small compared to characteristic wavelengths

λe of electronic transitions in atoms or molecules, namely R � λe. To go beyond

this approximation and take into account the effect of finite speed of propagation of

electromagnetic signals on intermolecular interactions, one has to employ quantum

electrodynamics (QED), as a theory that comprehensively describes interactions

between electromagnetic fields and matter. In the next section, intermolecular in-

teractions are briefly discussed in the framework of QED.

The fact that the dispersion interactions originate from the fluctuations of elec-

tronic structures of atoms and molecules, as consequences of Heisenberg uncertainty

principle always obeyed by any quantum-mechanical system, implies that this kind of

intermolecular interactions always exists between all types of atomic, molecular and

even macroscopic systems. Therefore, in the case of nonpolar ground-state atoms

and molecules that the induction and electrostatic interactions— respectively given

by equations (2.20) and (2.24)— vanish, only dispersion interactions contribute to

the long-range interaction energy (2.6). However, as seen from equations (2.24)

and (2.31), to fully determine dispersion and induction interactions the knowledge

of atomic and molecular polarizabilities is essential. Polarizability of an atomic or

molecular entity is a tensor, with all properties of response functions, that describes

the response of that entity to an applied electric field. In general, obtaining polariz-

abilities of atoms and molecules from equation (2.30) is not usually straightforward
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since calculation of their transition dipole (or multipole) moments and performing

sums over their states (and integrals over continuum states) is cumbersome. For this

reason, modeling atomic and molecular responses using simple quantum-mechanical

systems are of great interest in the field of intermolecular interactions. One of

the most widely used models for describing atomic and molecular responses is the

quantum Drude oscillator model which will be discussed in the next chapter.

2.3 Intermolecular Interactions in Molecular

Quantum Electrodynamics

Systems consisting of moving charged particles and their electromagnetic fields and

the mutual interactions between them are subject to the laws of electrodynamics.

When de Broglie wavelengths of these particles are much smaller than any length

scale in the physical system under consideration, classical mechanics and electro-

dynamics can successfully describe the system. In that case, Maxwell’s equations

relate the electric and magnetic fields to the charge and current densities of the

particles while the Newton-Lorentz equations (Newton’s equations of motion of par-

ticles with Lorentz forces acting on them) describe the dynamics of each particle.

However, on the atomic and molecular scales, where the classical theory fails to

accurately explain physical and chemical properties of matter using Newtonian me-

chanics, employment of the quantum theory becomes necessary. Hence, the electro-

magnetic fields corresponding to such quantum-mechanical particles are also subject

to the principles of quantum mechanics. This fully quantum-mechanical picture of

particle–field systems on the atomic and molecular level of matter is the domain of

molecular quantum electrodynamics (QED).

An important implication of quantum-mechanical considerations of the electro-

magnetic fields corresponding to charged particles in molecular systems is that unlike

classical electrodynamics, where the electric and magnetic fields can be of arbitrary

strengths from zero upwards, these fields cannot simultaneously vanish. Conse-

quently, such an electromagnetic field always has nonzero absolute energy, at any

given instant, even in its lowest energy state, known as the zero-point state or the

vacuum state. It has been known for decades that the quantum-mechanical zero-

point radiation field is responsible for a wide range of phenomena including Casimir

effect and dispersion interactions, Lamb shift, spontaneous emission, etc.

For a system of point charges qα indicated by position vectors rα with non-

relativistic velocities ṙα that give rise to electric charge and current densities re-

spectively given by

ρ ≡ ρ(r) =
∑
α

qαδ(r − rα) , (2.34)
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j ≡ j(r) =
∑
α

qαṙαδ(r − rα) , (2.35)

microscopic Maxwell’s equations of the electromagnetic field corresponding to the

sources ρ(r) and j(r) are written as

∇ ·E = ρ/ε0 , (2.36)

∇ ·B = 0 , (2.37)

∇×E = −∂B
∂t

, (2.38)

∇×B =
1

c2
∂E

∂t
+

1

ε0c2
j , (2.39)

where the relations ε0µ0 = c−2 and µ0 = (ε0c
2)−1 have been used in (2.39), in which

ε0 and µ0 respectively are the permittivity and permeability of the vacuum and c

is the speed of light. To solve these equations, it is more convenient to express the

electric and magnetic fields in terms of the scalar potential ϕ and the vector potential

A, as it is common in electrodynamics [97]. In the particular case of QED, rewriting

Maxwell’s equations using the potentials has additional benefits that facilitate the

quantization of the electromagnetic fields [42,44,45].

Following the equations (2.37) and (2.38), the magnetic and electric fields are

respectively defined as

B = ∇×A , (2.40)

E = −∂A
∂t
−∇ϕ , (2.41)

which imply that the potentials cannot be determined uniquely but up to the addi-

tion of a gauge factor. As long as the electric and magnetic fields given by these two

equations remain unchanged, one can chose to add any gauge factors to the scalar

and vector potentials. Therefore, A and ϕ can be freely transformed according to

the gauge transformations

A −→ A+ ∇χ , (2.42)

ϕ −→ ϕ− ∂χ

∂t
, (2.43)

without affecting Maxwell’s equations. A well-known choice of the gauge for the

potentials, widely employed in QED for studying non-relativistic systems, is the

so-called Coulomb, radiation, or transverse gauge in which the scalar potential is a

pure transverse vector field with ∇ ·A = 0. This property of the vector potential

together with equation (2.36) leads to the Poisson equation for the scalar potential

with the source term being expressed as a factor of the charge density (ρ/ε0). This
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yields the instantaneous Coulomb potential as a solution to the Poisson equation,

which explains the origin of the name Coulomb gauge. Transversality of A along

with equation (2.39) also results in an inhomogeneous wave equation for the vec-

tor potential with the source term purely be given by a factor of the transverse

component of the current density (j⊥/ε0c
2), justifying the name transverse gauge.

Therefore, in the Coulomb gauge the transverse electromagnetic radiation fields are

purely expressed in terms of the vector potential A while the longitudinal near-zone

electric field corresponds to the instantaneous Coulomb potential ϕ [97].

On one hand, the charge and current densities of the particles play the role

of sources for the electromagnetic fields. On the other hand, the dynamics of the

charged particles, governed by their corresponding Schrödinger equations in quan-

tum mechanics, are affected by electromagnetic fields. Such mutual particle–field

effects bring many difficulties into any efforts for solving these coupled equations

in a self-consistent manner. To overcome these difficulties, the mutual effects of

the particles and the electromagnetic fields are usually considered perturbatively in

QED where in the lowest order of perturbation, it is assumed that the particles do

not influence the driving fields appearing in their equations of motion [44]. Hence,

the total physical system is described as the sum of the particles system and the

free electromagnetic field along with the consideration of the interactions between

them.

In the absence of any field, particles or molecular systems are described using

their Hamiltonians accounting for both Coulomb potentials and kinetic energies of

all the particles constituting the molecules. Thus, their corresponding Schrödinger

equations give dynamics of the molecules in the framework of quantum mechanics,

as it was discussed in the preceding section. The other part of the total system,

i.e. the electromagnetic field in the absence of the particles, can be described by

using Maxwell’s equations, (2.36) to (2.39), with ρ = 0 and j = 0. Such source-free

equations yield the homogeneous wave equation for the electric field(
∇2 − 1

c2
∂2

∂t2

)
E = 0 , (2.44)

as well as identical equations for the magnetic field and the vector potential. General

solutions to these second-order differential equations can be found by separation of

the variables for the fields, as for instance E(r, t) = E(r)E(t) such that the spatial

and the temporal parts of E(r, t) satisfy the differential equations

∇2E(r) + k2E(r) = 0 , (2.45)

∂2E(t)

∂t2
+ ω2E(t) = 0 , (2.46)

where ω is the angular frequency and k is the wave vector defining the propagation

direction of the electromagnetic field with its magnitude given by k = ω/c. A
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possible solution to equation (2.45) is the plane wave function given by [84]

E
(λ)
k (r, t) = εe(λ)(k)ei(k·r−ωt) , (2.47)

where ε is the amplitude of the wave and e(λ)(k) is the complex unit polarization

vector of the mode (k, λ) of an electromagnetic radiation propagating along k. Po-

larization index λ indicates one of the two possible polarizations of the transverse

electromagnetic field. Transversality of the electromagnetic field requires the unit

polarization vector and the wave vector to satisfy the conditions

e(1)(k) · e(2)(k) = 0 , and e(1)(k) · k = e(2)(k) · k = 0 . (2.48)

It is clear that any linear combination of the plane waves (2.47) with different values

for k, λ and ε would satisfy the wave equation (2.44). Such a linear combination

can be expressed in terms of a Fourier series expansion of the electric field.

To normalize the solution (2.47), one can employ the technique of box normal-

ization, i.e. to confine the electromagnetic field within an arbitrarily large but finite

volume V of a cubic box of the side L and impose periodic boundary conditions

on the vector potential to have the same values on the boundaries. The bound-

ary conditions restrict the wave vector k to those vectors of which the Cartesian

components satisfy the relations

kx =
2πnx
L

, ky =
2πny
L

, kz =
2πnz
L

, (2.49)

where nx , ny , and nz are integers. Hence, the allowed range of the wave number

k becomes an infinite countable spectrum, representing an infinite discrete set of

modes for the field. Thus, the Fourier expansion of the electric and magnetic fields

can be written in terms of the modes corresponding different values of k and λ. Since

the electric and magnetic fields are already defined in terms of the vector potential

in equations (2.40) and (2.41), having the Fourier expansion of the vector potential

is sufficient for deriving the two other fields. The mode expansion of the vector

potential is therefore given by [42,44]

A(r, t) =
∑
k,λ

{
A

(λ)
k (r, t) + Ā

(λ)
k (r, t)

}
=
∑
k,λ

{
e(λ)(k)a

(λ)
k (t)eik·r + ē(λ)(k)ā

(λ)
k (t)e−ik·r

}
, (2.50)

where a
(λ)
k are amplitude coefficients and the bars over the letters indicate complex

conjugates. The electric and magnetic fields then can be derived from their relations

with the vector potential.

To quantize the free field system one possibility is to start from the Lagrangian

of electromagnetic field and obtain the corresponding Hamiltonian. The free field
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Lagrangian can be defined as

Lrad =

∫
L d3r =

1

2
ε0

∫ {
Ȧ2(r)− c2[∇×A(r)]2

}
d3r , (2.51)

where L is the Lagrangian density of the field. Choosing the vector potential as the

generalized coordinate of the field system in its configuration space and evaluating

the momentum canonically conjugate to the vector potential, one can derive the

Hamiltonian of the free field from Hamilton’s principal equation. It is noteworthy

to mention that the choice of the “generalized coordinates” of a physical system

is not unique. Such variables and the Lagrangian of the system as a function of

them can be defined arbitrarily as long as they give correct equations of motion of

the system. In general, for a physical system with the Lagrangian L, generalized

coordinates Qi, and canonical momenta P i = ∂L/∂Q̇i, the Hamiltonian of the

system reads

H =
∑
i

P i · Q̇i − L . (2.52)

Applying equation (2.52) to the Lagrangian (2.51) along with the assumption that

there is no source in the space yields the free field Hamiltonian [44]

Hrad =

∫
H d3r =

1

2

∫ {Π2(r)

ε0
+ ε0c

2[∇×A(r)]2
}
d3r , (2.53)

where

Π(r) =
∂L

∂Ȧ
= ε0Ȧ(r) = −ε0E⊥(r) (2.54)

is the canonical momentum of the free electromagnetic field.

As shown in detail in Ref. [44], using the mode expansion (2.50) for the vector

potential A and a similar expansion for its time derivative Ȧ one can express the

Hamiltonian (2.53) in terms of the normalized field modes as

Hrad = 2V ε0c
2
∑
k,λ

k2 a
(λ)
k ā

(λ)
k . (2.55)

On the introduction of the new canonically conjugate real variables q
(λ)
k and p

(λ)
k ,

q
(λ)
k = (ε0V )1/2

{
a
(λ)
k + a

(λ)
k

}
, (2.56)

p
(λ)
k = −ick(ε0V )1/2

{
a
(λ)
k − a

(λ)
k

}
, (2.57)

and rewriting the Hamiltonian (2.55) in terms of these new variables, one arrives at

Hrad =
∑
k,λ

1

2

{
[p

(λ)
k ]2 + ω2[q

(λ)
k ]2

}
. (2.58)

The similarity of the field Hamiltonian (2.58) to the Hamiltonian of a collection of

noninteracting harmonic oscillators indicates that each mode of the confined field
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can be considered as a harmonic oscillator with the same frequency of oscillations

as the frequency of the corresponding mode of the field.

When both the particles and the electromagnetic field are present and the field is

acting on the particles by the Lorentz force, the Lagrangian of the total system has to

be accounting for the particle–field interactions. In that case, the total Lagrangian

can be defined as [44]

L = Lpart + Lrad + Lint , (2.59)

where

Lpart =
1

2

∑
α

mαṙα − V (r1, r2, · · · ) , (2.60)

Lint =

∫
j⊥(r) ·A(r) d3r , (2.61)

are the particles and the particle–field interaction Lagrangians, respectively. Using

equations (2.51), (2.60), and (2.61) one can see that the Lagrangian (2.59) leads to

the correct equations of motion for the particles and the electromagnetic field [44].

The transverse component of the current density (2.35) is given in terms of the

transverse delta function dyadic as

j⊥i (r) =
∑
α

qαṙα,j δ
⊥
ij(r − rα) , (2.62)

where the transverse delta function dyadic is defined as [84]

δ⊥ij(r) =
1

(2π)3

∫
(δij − k̂ik̂j)eik·rd3k = (−∇2δij +∇i∇j)

1

4πr
. (2.63)

Hamilton’s principal equation for the total system reads

H =
{∑

α

pα · ṙα +

∫
Π(r) · Ȧ(r)

}
− L , (2.64)

where

pα =
∂L

∂ṙα
= mαṙα + qαA(rα) , (2.65)

is the canonical momentum of the particle α. Since the interaction Lagrangian

does not depend on Ȧ(r), the canonical momentum of the field remains unchanged,

as given by (2.54). Replacing these momenta of the system and eliminating the

corresponding time derivatives of the generalized coordinates, ṙα and Ȧ(r), in favor

of the canonical momenta in (2.64) yields the Hamiltonian [44]

Hmin =
∑
α

1

2mα

{
pα − qαA(rα)

}2

+ Vint +
1

2

∫ {Π2(r)

ε0
+ ε0c

2[∇×A(r)]2
}
d3r ,

(2.66)

where Vint is the total instantaneous Coulomb coupling between the particles. The

last term in (2.66) is the Hamiltonian of the transverse electromagnetic field which
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is similar to the Hamiltonian of the free field (2.53) while the longitudinal part

of the electric field corresponds to the instantaneous Coulomb potential Vint. A

peculiarity of the Coulomb gauge, as also discussed before, is the distinction between

the radiation fields and the instantaneous near-fields. If one ignores the radiation

fields or equivalently only considers the near-zone limit, the last term as well as the

expression involving the vector potential in the first term vanish and Hamiltonian

(2.66) becomes the same as the Hamiltonian of a system of charged particles. Having

the transverse field present, the sum of the first and the second terms in expression

(2.66) looks similar to the Hamiltonian of charged particles except that here the

kinetic momenta of the particles are not the same as their canonical momenta.

Replacement of the momenta of the particles, pα, with {pα − qαA(rα)} in the

Hamiltonian of the particles system due to their coupling to the electromagnetic

field is known as the principle of minimal electromagnetic coupling. For this reason,

Hamiltonian (2.66) is called the minimal–coupling Hamiltonian [42,44,45].

Considering the particles system in the form of atoms (or molecules) of which

the nuclei (or in general the centers of mass) are fixed in the space, the Coulomb

potential Vint can be partitioned into one-center and two-center interactions,

Vint =
∑
ξ

V (ξ) +
∑
ξ,ξ′

(ξ<ξ′)

V (ξ, ξ′) , (2.67)

where V (ξ) indicates the Coulomb couplings between the particles of the same cen-

ter and V (ξ, ξ′) is the interaction potential between particles of different centers.

Expanding the curly brackets in the first term of equation (2.66) and collecting the

particles in the form of atoms, the minimal–coupling Hamiltonian becomes

Hmin =
∑
ξ

Hatom(ξ) +Hrad +
∑
ξ,ξ′

(ξ<ξ′)

Hint(ξ, ξ
′) , (2.68)

where the atomic and radiation Hamiltonians are given by

Hatom(ξ) =
∑
α

1

2mα

p2α(ξ) + V (ξ) , (2.69)

Hrad =
1

2

∫ {Π2(r)

ε0
+ ε0c

2[∇×A(r)]2
}
d3r

=
ε0
2

∫ {
E⊥

2
(r) + c2B2(r)

}
d3r , (2.70)

respectively, and the interaction Hamiltonian reads

Hint(ξ, ξ
′) =

∑
α

{ q2α
2mα

A2(r(ξ)α )− qα
mα

p(ξ)α ·A(r(ξ)α )
}

+ V (ξ, ξ′) . (2.71)
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To transform the classical Hamiltonian (2.68) to the framework of quantum mechan-

ics, one has to promote the dynamical variables of the particles and the electromag-

netic field to quantum-mechanical operators subject to the commutation relations[
r
(ξ)
α,i , p

(ξ′)
β,j

]
= i~ δij δαβ δξξ′ , (2.72)[

Ai(r) , Πj(r
′)
]

= i~ δ⊥ij(r − r′) , (2.73)

where r
(ξ)
α,i is the i-th component of the displacement vector of the α-th particle of

the ξ-th atom (and similarly for the momentum operators p
(ξ′)
β,j ).

Having the quantum-mechanical Hamiltonian of the particles and the field as

well as the interaction Hamiltonian, the next step towards the derivation of inter-

molecular interactions is to obtain eigenstates and energy spectra of the subsystems.

For the particles subsystem, one has to solve Schrödinger equations corresponding

to atomic Hamiltonian (2.69) to determine the states of the noninteracting atoms

and their spectra. Since solving such equations is often challenging for real atoms

and molecules, simplified quantum-mechanical models are usually employed for de-

scribing atomic systems in molecular quantum mechanics and QED, e.g. two-level

atoms and quantum harmonic oscillators. Throughout the present work, the quan-

tum Drude oscillator (QDO), as a simple and efficient quantum-mechanical model, is

employed to describe atomic and molecular systems in the context of intermolecular

interactions. Hence, the particles subsystem will be described by the states and the

spectra of noninteracting QDOs. To obtain the eigenstates and energy eigenvalues

of the field subsystem, one has to solve the corresponding Schrödinger equation with

the Hamiltonian (2.70). However, considering the fact that modes of the electro-

magnetic field can be regarded as harmonic oscillators, as shown in equation (2.58),

a more elegant approach to deriving the spectrum and the states of the radiation

field is to apply the well-known second quantization technique to this problem.

Starting from the quantum-mechanical form of Hamiltonian (2.58), one can de-

fine the annihilation and creation operators for the oscillator corresponding to mode

(k, λ) of the field,

a(λ)(k) =

√
1

2~ω

[
ωq

(λ)
k + ip

(λ)
k

]
, a†(λ)(k) =

√
1

2~ω

[
ωq

(λ)
k − ip

(λ)
k

]
, (2.74)

subject to the commutation relations[
a(λ)(k), a†(λ

′)(k′)
]

= δkk′δλλ′ , (2.75a)[
a(λ)(k), a(λ

′)(k′)
]

=
[
a†(λ)(k), a†(λ

′)(k′)
]

= 0 . (2.75b)

The Hamiltonian of the electromagnetic field in terms of the creation and annihila-

tion operators becomes

H =
∑
k,λ

{
a†(λ)(k)a(λ)(k′) +

1

2

}
~ck , (2.76)
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of which the vacuum (ground) state represented by the ket |{0}〉 is defined such that

for any mode (k, λ) of the field one has

a(λ)(k)|{0}〉 = 0 , (2.77)

where |{0}〉 denotes a state in which no mode of the field is occupied (and there

is no photon of any frequency), namely |{0}〉 = |0(k1, λ1) , 0(k2, λ2) , · · · 〉. Excited

states of the field can be constructed from the ground state by applying the creation

operators of the modes [45],

|n1(k1, λ1) , n1(k1, λ1) , · · · 〉 =
∏
i

[
a†(λi)(ki)

]ni

√
ni!

|{0}〉 , (2.78)

where ni(ki, λi) is the occupation number of the mode (ki, λi). Quantum analogues

of the Fourier expansion (2.50) for the vector potential as well as for the electric and

magnetic fields can be given in terms of the creation and annihilation operators [44,

45]

A(r) =
∑
k,λ

(
~

2ε0ckV

)1/2 {
e(λ)(k)a(λ)(k)eik·r + ē(λ)(k)a†(λ)(k)e−ik·r

}
, (2.79)

E(r) = i
∑
k,λ

(
~ck

2ε0V

)1/2 {
e(λ)(k)a(λ)(k)eik·r − ē(λ)(k)a†(λ)(k)e−ik·r

}
, (2.80)

B(r) = i
∑
k,λ

(
~k

2ε0cV

)1/2 {
b(λ)(k)a(λ)(k)eik·r − b̄(λ)(k)a†(λ)(k)e−ik·r

}
, (2.81)

where b(λ)(k) is the unit magnetic polarization vector which, according to equation

(2.38), can be defined in relation to the electric polarization and propagation direc-

tion of the electromagnetic waves as b(λ)(k) = k̂× e(λ)(k). In the mode expansions

(2.79) to (2.81), V is the quantization volume of the physical system. When V

becomes very large with the limit V → ∞, the spectrum of k-values becomes con-

tinuous and the sum over k can be replaced by a triple integral in the momentum

space in accordance with [45]

1

V

∑
k

−−−−→
V→∞

1

(2π)3

∫
d3k . (2.82)

Thus the vector potential and the electric and magnetic fields, (2.79) to (2.81),

become independent of the quantization volume.

From equations (2.76), (2.80), and (2.81) one can see that the Hamiltonian of the

radiation field does not commute with the electric and magnetic fields. Therefore,

the vacuum and excited states, defined by (2.77) and (2.78), respectively, are not

eigenstates of the electric and magnetic field operators, and hence these fields have
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no definite values in such states. This argument consequently implies that even in

the specific case of the vacuum state with occupation numbers nk,λ being zero for

all modes of the field, the electric and magnetic fields cannot be identically zero but

they are constantly fluctuating about their average values of zero. Thus, the vacuum

electromagnetic field is necessity for consistency of QED as its existence originates

from the essential canonical commutation relations.

Having the Hamiltonian of the quantized systems of particles and field along

with the assumption that the interactions are weak compared with the internal

fields of atoms, the interatomic interactions may be obtained perturbatively by

considering the noninteracting atoms and fields as the unperturbed system with the

Hamiltonian H0 =Hatom+Hrad and the unperturbed eigenstates given as the products

of the atomic and fields states, |atoms, rad〉= |atoms〉|rad〉. Thus, the atom-atom

and atom-field interactions, with the Hamiltonian Hint given by equation (2.71),

play the role of a perturbation to the noninteracting system of the atoms and the

field. However, it has been seen that calculation of interatomic interactions with

such a perturbation Hamiltonian including both types of couplings, i.e. atom-field

and atom-atom couplings, is cumbersome [42,44,45].

An advantageous alternative QED Hamiltonian, in which the instantaneous

Coulomb couplings between the atoms are eliminated and atom-atom interactions

are mediated by the radiation field, is the so-called multipolar–coupling Hamil-

tonian. In this formalism of QED, atoms or molecules are described by their

polarization and magnetization densities, as functions of positions and velocities

of their particles which are the microscopic observables of the particles system.

The multipolar–coupling Hamiltonian can be obtained from the minimal–coupling

Hamiltonian through a canonical transformation first introduced by Power and

Zienau, and in an alternative manner by Woolley [42,44,45,84]

Hmult = eiSHmine−iS , (2.83)

where the generating function S is defined in terms of the electric polarization field

of the atomic system, P , and the vector potential as

S =
1

~

∫
P⊥(r) ·A(r) d3r . (2.84)

The electric polarization field of a collection of atoms is obtained by the sum of the

polarization fields of the individual atoms, P (r) =
∑

ξ P (ξ; r), where the electronic

part of the polarization field of an atom centered at R(ξ) can be given by

P (ξ; r) =
∑
α

qα(r(ξ)α −R(ξ))

∫ 1

0

δ
(
r −R(ξ) − λ(r(ξ)α −R(ξ))

)
dλ . (2.85)

Since the transformation generator is a function of the generalized coordinates of

the particles-field system, rα and A(r) remain unchanged under the transformation
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(2.83) and only their conjugate momenta change. Considering the form of the trans-

formation and the presence of the polarization field of the particles system in the

definition of the generating function S, given by equation (2.84), the transverse dis-

placement field D⊥ is introduced as the new conjugate momentum of the radiation

field, accounting for the field produced by the displacements of charged particles in

neutral atoms and molecules as

D(r) = ε0E(r) + P (r) . (2.86)

The particles momenta also transform to a new form involving a positive term

qαA(rα), canceling out its negative counterpart in Hamiltonian (2.66), and another

term accounting for the effects of the magnetic field B(r) on the particles [45].

Such transformations of the conjugate momenta of the particles–field system result

in a new form of the Hamiltonian in which atoms and molecules are coupled to

the radiation field via their electric and magnetic multipole moments. Ignoring the

magnetic and diamagnetic atom–field couplings and approximating the polarization

field (2.85) by the dipole term,

P (ξ; r) ≈ µ(ξ)δ(r −R(ξ)) =
∑
α

qα(r(ξ)α −R(ξ))δ(r −R(ξ)) , (2.87)

with µ(ξ) being the electric dipole moment of atom ξ, one arrives at the dipole

approximation of the multipolar–coupling Hamiltonian of the atom–field system,

Hmult =
∑
ξ

Hmult
atom(ξ) +Hmult

rad +Hmult
int . (2.88)

Here the atomic and radiation Hamiltonians are given by

Hmult
atom(ξ) =

∑
α

1

2mα

p2α(ξ) + V (ξ) , (2.89)

and

Hmult
rad =

1

2

∫ {Π2(r)

ε0
+ ε0c

2[∇×A(r)]2
}
d3r

=
1

2ε0

∫ {
D⊥

2
(r) + ε20c

2B2(r)
}
d3r , (2.90)

respectively, and the interaction Hamiltonian becomes

Hmult
int =

1

ε0

∑
ξ

µ(ξ) ·D⊥(R(ξ)) . (2.91)

Similar to expansion (2.80) for the electric field, the transverse displacement field

D⊥(r) can also be given in the form of a mode expansion as [84]

D⊥(r) = i
∑
k,λ

(
~ckε0
2V

)1/2 {
e(λ)(k)a(λ)(k)eik·r − ē(λ)(k)a†(λ)(k)e−ik·r

}
. (2.92)
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The multipolar–coupling Hamiltonian (2.88) along with the definitions (2.89) to

(2.91) imply that in the multipolar–coupling formalism, intermolecular interactions

occur through the coupling of the interacting species with the radiation field and ex-

changing transverse photons without any instantaneous mutual interaction between

the entities.

The perturbative evaluation of the energy shift due to the coupling of two ground

state atoms with the vacuum radiation field begins with the introduction of the states

of the physical system. The ground state of the unperturbed system, consisting of

the noninteracting atoms A and B as well as the vacuum field, with the Hamiltonian

H0 = HA +HB +Hrad is defined as the product state

|0〉 = |0A〉|0B〉|{0}〉 , (2.93)

where |0ξ〉 is the ground state of atom ξ. (Here and throughout the remainder

of the present work, all the Hamiltonians are regarded in the multipolar–coupling

formalism unless it is explicitly mentioned otherwise. However, the superscripts mult

are dropped for simplicity.) An excited state of the system can be defined similarly

with one or two or all of the subsystems being excited. For example,

|I〉 = |aA〉|0B〉|1k,λ〉 (2.94)

is an excited state with atom A in its excited state |aA〉, B in its ground state, and

the field in a single–photon excitation with a photon of the mode (k, λ). The ground-

state energy shift arising from the atoms–field coupling with the Hamiltonian Hint

is given by

∆E = 〈0|M̂ |0〉 = 〈{0}|〈0B|〈0A| M̂ |0A〉|0B〉|{0}〉 . (2.95)

Considering the fact that the field states are identical on the two sides of the op-

erator M̂ in (2.95), this operator can only involve terms that are even in Hint, or

equivalently in D⊥, since the interaction Hamiltonian is linear in D⊥. Thus, M̂ can

be defined as [44]

M̂ = Hint
1

E0 −H0

Hint + Hint
1

E0 −H0

Hint
1

E0 −H0

Hint
1

E0 −H0

Hint . (2.96)

When the interacting atoms or molecules are nonpolar, the first term of (2.96),

which corresponds to the second-order correction to the energy of the noninteracting

system, does not lead to any interaction energy between the two species. Hence,

the leading term of the interaction energy between two nonpolar atoms or molecules

is of the fourth-order and has to be obtained from the fourth-order of perturbation

theory.

The detailed calculations will be given in Chapter 4 where I present different

orders of the interactions between two atoms/molecules in an external field from

various point of views. The rest of this chapter is a brief introduction to the inter-

molecular interactions in the framework of stochastic electrodynamics as a classical
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stochastic approximation to QED, which provides clear interpretations of different

interaction terms for non-relativistic quantum-mechanical problems.

2.4 Intermolecular Interactions in Stochastic

Electrodynamics

Maxwell’s equations (2.36)–(2.39) in the absence of any sources were discussed in

the context of quantum electrodynamics within the preceding section. As it was ex-

plained, the canonical commutation relations and uncertainty principles of quantum

mechanics necessitate the existence of a fluctuating electromagnetic field in the vac-

uum [43]. In classical electrodynamics, in the absence of any sources the electric and

magnetic fields as the solutions to the corresponding homogeneous wave equations,

similar to (2.44), can be identically zero. Such solutions imply that the classical

counterpart of the QED vacuum field and the zero-point energy do not exist. How-

ever, from a mathematical point of view, it is possible to have non-zero solutions to

the homogeneous wave equations of the fields that consequently require considera-

tions of different boundary conditions compared to the usual case of zero-solutions.

A possible choice of the boundary conditions, made based on experiments, is the so-

called incoming-wave boundary conditions which determines none-zero solutions for

the scalar and the vector potentials and results in a classical fluctuating or random

zero-point electromagnetic field.

Stochastic electrodynamics (SED) is the classical theory of particle–field inter-

actions that includes the existence of the random zero-point radiation field in its

formulation [57–64, 66, 67, 71, 86–88]. It has been shown that this radiation field

has a Lorentz-invariant spectrum with a zero-point energy ~ω/2 for each mode of

the frequency ω [57,58,67,86]. The Lorentz-invariance property of this spectrum is

a consequence of fitting the results of classical “thought experiments” on classical

electric dipole oscillators to the results of the quantum counterparts. Thus, the

Planck’s constant ~ enters the theory as a proportionality constant.

The classical fluctuating electromagnetic radiation, satisfying the Lorentz invari-

ance condition, can be defined in the form of the transverse electromagnetic field

with the electric component given by [86]

E0(r, t) = Re

{
1√

4πε0

2∑
λ=1

∫
e(λ)(k)h(k, λ)ei[k·r−ωt+θ(k,λ)] d3k

}
, (2.97)

where h(k, λ) is the energy associated with the mode (k, λ) and is defined as

h2(k, λ) = ~ω/2π2. Also, the phase factor θ(k, λ) is a random phase ranging

from 0 to 2π, and e(λ)(k) represents the unit polarization vector of the field with

e(λ)(k) · e(λ′)(k) = δλλ′ , and the sum runs over two possible polarizations. A similar
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expression for the magnetic component of the field can be obtained on making use

of the Maxwell–Faraday equation, ∇×E0 = −∂B0/∂t .

It has been shown that the classical fluctuating electromagnetic field plays a

crucial role in the SED theory of intermolecular interactions. In this theory, van der

Waals dispersion interactions between polarizable atoms are consequences of the

couplings between fluctuating polarization of the interacting species induced by the

zero-point radiation field. To study these atom–field and atom–atom interactions

one has to consider equations of motion of the particles under the influence of the

zero-point radiation field as well as the fields of the nearby atoms. Since in SED,

particles are considered as classical objects their equations of motion are given by

Newton’s second law involving the Lorentz force as a classical driving force. In this

framework, atoms are modeled by classical dipole oscillators, i.e. a particle with

electric charge (−q) and mass m connected to a stationary nucleus of the opposite

charge via a harmonic oscillator potential. The nucleus is fixed at the center of the

local coordinates of the atom and the negative charge is bound to it due to the

restoring force F = −mω2
0r, where r is the position vector of the negative charge

in the local coordinates.

For two atoms A and B respectively centered at RA and RB, the equations of

motion of the corresponding classical dipole oscillators, ignoring weaker magnetic

forces, are given by [68–70]

m
d2r

A

dt2
= −mω2

0rA + qE(RA, t) +mτ
d3r

A

dt3
, (2.98)

m
d2r

B

dt2
= −mω2

0rB + qE(RB, t) +mτ
d3r

B

dt3
, (2.99)

where the center of oscillations of A and B are assumed to be fixed. In equations

(2.98) and (2.99), the last terms on the right hand sides are radiation damping

forces, r
A

and r
B

are displacements of the oscillators A and B from their equilibrium

positions, and for the sake of simplicity oscillator parameters q,m and ω0 are as-

sumed to be identical for the two atoms. The electric field E(RA, t) in (2.98) is the

total electric field at the center of oscillator A given by the vector sum

E(RA, t) = E0(RA, t) +Eµ
B
(RA, t) , (2.100)

where E0 is the zero-point electric field. Eµ
B

is the electric field of the fluctuating

dipole moment of atom B, which is originally induced by the zero-point electric

field at the center of atom B. The total electric field E(RB, t) in (2.99) can be sim-

ilarly defined. The electric field radiated by an oscillating electric dipole moment at

frequency ω = ck, defined as µ(t) = µe−iωt, is known from classical electrodynam-

ics [97],

Eµ(R, k; t) = Re

{[k2[R̂×µ(t)]×R̂
4πε0 R

+
3R̂[µ(t)·R̂]− µ(t)

4πε0 R3
(1−ikR)

]
eikR

}
, (2.101)
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where R̂ = R/R .

To compute the interaction energy between A and B one has to solve coupled

equations of motion of the two oscillators, (2.98) and (2.99), to obtain the oscilla-

tors displacements as functions of time. The energy of each oscillator then can be

calculated from the well-known expression for the energy of a classical oscillator as

the sum of the kinetic and the potential energies, namely

E (ω) =
1

2
m〈ṙ2〉+

1

2
mω2〈r2〉 . (2.102)

Subtracting energies of the noninteracting oscillators from the interacting ones yields

the interaction energy between A and B. To facilitate this calculation, one can use

the Fourier decomposition of equations (2.98) and (2.99) to arrive at the monochro-

matic equations of motion

− ω2mr
A

= −mω2
0rA + qEk,λ(RA, t) + imω3τr

A
, (2.103)

− ω2mr
B

= −mω2
0rB + qEk,λ(RB, t) + imω3τr

B
, (2.104)

where Ek,λ is the complex mode (k, λ) of the electric field E.

To further simplify equations (2.103) and (2.104), one can separately consider the

two cases of retarded and nonretarded interactions. In the retarded regime, when

the two interacting species are very far apart, for electromagnetic modes with high

frequencies (small wavelengths), there are cancellation effects between modes with

adjacent frequencies due to the slight phase shifts that occur at large distances in

the retarded regime [68]. Consequently, only modes with low frequencies contribute

to the coupling between the two species. This argument implies that in the retarded

regime, each of the monochromatic equations of motion (2.103) and (2.104) can be

approximated by

−mω2
0rξ + qEk,λ(Rξ, t) = 0 . (2.105)

On making use of the definition of the static dipole polarizability of dipole oscillator

ξ, given by αξ = q2/(mω2
0), one can rewrite the equation of motion of ξ in the

more compact form µξ = αE(Rξ, t), where µξ = qrξ . This result indicates that

the dipole moment of ξ is induced by the total electric field E(Rξ, t) and the time-

dependence of dipole moment is determined by the time-dependence of the driving

field applied on the oscillator. Therefore, one can simply obtain the total energy of

ξ as the electric energy of an induced dipole moment in the inducing field, namely

Eξ = −1

2
α
〈
E2(Rξ, t)

〉
, (2.106)

where the brackets imply time–averaging.

For two atoms A and B seated on the z-axis and separated by a distance R

with the centers of oscillations given by RA = 0 and RB = Rẑ, as depicted in

Fig. 2.2, the interaction energy can be defined using the energy difference of one
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Figure 2.2: Two interacting dipole oscillators A and B separated by a distance R on the z-axis.

of the oscillators, say B, in the interacting (|RB − RA| = R) and noninteracting

(|RB −RA| =∞) configurations, i.e.

∆E = EB(R)− EB(∞) . (2.107)

On making use of the vector sum (2.100) for the total electric field at the center of

oscillator B, the energy of this oscillator in the interacting configuration is given by

EB(R) = −1

2
αB
〈
[E0(R, t) +Eµ

A
(R, t)]2

〉
. (2.108)

After removing the self-energy terms, EB(∞), and keeping the lowest order of cou-

pling, the distance dependent interaction energy between A and B is approximately

given by

∆E ≈ −αB
〈
E0(R, t) ·Eµ

A
(R, t)

〉
, (2.109)

where µ
A

= αAE0(0, t) is the fluctuating dipole moment of A induced by the zero-

point electric field and Eµ
A
(R, t) is the electric field at the center of B radiated by

the induced fluctuating dipole moment of A. Making use of the definitions (2.97)

and (2.101), summing over frequencies and polarization of the zero-point field, and

averaging over phase and time one can obtain the interaction energy (2.109) scaling

with the interatomic distance as R−7 [68, 70], which is the well known Casimir–

Polder potential. An extended version of these calculations to the case of interatomic

interactions under the influence of an external static field will be presented in detail

in Chapter 4.

In the nonretarded regime when all frequencies matter for the interaction energy,

to obtain ∆E one has to solve the coupled equations of motion of the two oscillators

to determine their displacements. Having these quantities and their time derivatives

determined, one can use the classical definition of energy of the oscillators, (2.102),

to derive the interaction energy. Considering that R = Rẑ and µξ = qrξ, and on

making use of (2.100) and (2.101), equations of motion (2.103) and (2.104) can be

written in terms of Cartesian components of the vectors such that

− ω2mζA = −mω2
0ζA + qE

(k,λ)
0;ζ ( 0 , t) +mηζ(R, k)ζB + imω3τζA , (2.110)

− ω2mζB = −mω2
0ζB + qE

(k,λ)
0;ζ (R, t) +mηζ(R, k)ζA + imω3τζB , (2.111)
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where ζξ and E
(k,λ)
0;ζ are ζ-component of rξ and the zero-point electric field E0;k,λ,

respectively. Functions ηζ are defined as

ηz =
2q2

4πε0m

(
1

R3
− ik

R2

)
eikR , (2.112)

ηζ =
q2

4πε0m

(
k2

R
+
ik

R2
− 1

R3

)
eikR , ζ = x, y . (2.113)

Introducing the normal modes (ζ+, ζ−) corresponding to each set of Cartesian com-

ponents of (r
A
, r

B
) as

ζ+ =
1√
2

(ζA + ζB) , ζ− =
1√
2

(ζA − ζB) , (2.114)

and rewriting (2.110) and (2.111) in terms of these new variables one arrives at two

uncoupled equations of motions for ζ+ and ζ−

− ω2ζ+ = −[ω2
0 + ηζ(R, k)]ζ+ +

q√
2m

[E
(k,λ)
0;ζ ( 0 , t) + E

(k,λ)
0;ζ (R, t)] + iω3τζ+ , (2.115)

− ω2ζ− = −[ω2
0 − ηζ(R, k)]ζ− +

q√
2m

[E
(k,λ)
0;ζ ( 0 , t)− E(k,λ)

0;ζ (R, t)] + iω3τζ+ , (2.116)

respectively. The solutions to the normal modes equations of motion are given by

ζ±(t;k, λ) =
q[E

(k,λ)
0;ζ ( 0 , t)± E(k,λ)

0;ζ (R, t)]
√

2m[ω2
0 − ω2 − iω3τ ± ηζ(R, k)]

+ cc . (2.117)

where the complex conjugate (cc) of the first term is added to the solutions to

yield real-valued functions for ζ±, accounting for the complex conjugate counter-

part of the complex form of the zero-point field and expressions (2.112) and (2.113).

One can simply realize that (2.115) and (2.116) are basically equations of motion

of two dipole oscillators with unit masses, effective charges q/
√

2m , and charac-

teristic frequencies ω2
± = ω2

0 ± Re[ηζ(R, k)] that are subject to the driving forces

q[E
(k,λ)
0;ζ ( 0 , t) ± E(k,λ)

0;ζ (R, t)]/
√

2m. To account for all modes of the random radia-

tion field, one has to perform an inverse Fourier transformation by summing over λ

and integrating over k to obtain the normal modes ζ±(t) in the position space.

It has been shown that the average energy of an oscillator of characteristic fre-

quency ωc in the fluctuating radiation field is the same as the average energy of a

normal mode of the field at the same frequency ωc [86, 88]. This finding can be

checked by starting from the well-known expression for the energy of an oscillator

as given in (2.102) where the displacement of the oscillator satisfies an equation

of motion of the oscillator involving a driving force due to the application of the

random radiation field. Averaging over time and the random phase of the field and

summing over polarization of the field followed by an integration over the wavenum-

ber k results the above mentioned finding. Therefore, to obtain the energies of
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the oscillators corresponding to the normal modes ζ±(t) as well as the energies of

the noninteracting oscillators A and B, neglecting thermal effects, one can use the

expression

E (ωc) =
1

2
~ωc (2.118)

for the energy of a mode of the random field.

When the interaction force between the oscillators A and B is weak compared

with the restoring force of the noninteracting oscillators, the characteristic frequen-

cies of the oscillators corresponding ζ±(t) can be given by [69,88]

ω2
± = ω2

0 ± Re[ηζ(R,ω0/c)] (2.119)

which in the nonretarded regime that ω0R/c� 1 can be approximated as

ω±,y = ω±,y ≈
(
ω2
0 ±

q2

4πε0m

)1/2

≈ ω0

[
1±

(
q2

4πε0mω2
0

)
− 1

2

(
q2

4πε0mω2
0

)2
]
, (2.120)

ω±,z ≈
(
ω2
0 ±

2q2

4πε0m

)1/2

≈ ω0

[
1±

(
2q2

4πε0mω2
0

)
− 1

2

(
2q2

4πε0mω2
0

)2
]
. (2.121)

Using the frequencies (2.120) and (2.121) in the energy relation (2.118) the interac-

tion energy between the two dipole oscillators A and be is obtained as

∆E = {E+ + E−} − {EA + EB} = − 3~ω0

4[4πε0]2R6

(
q2

mω2
0

)2

. (2.122)

On making use of the definition of the static polarizability of a dipole oscillators,

α = q2/mω2
0, the interaction energy (2.122) can be written as

∆E = − 3~ω0α
2

4[4πε0]2R6
, (2.123)

which is the well-known London dipersion interaction between two polarizable par-

ticles in dipole approximation.



Chapter 3

Quantum Drude Oscillator

The harmonic oscillator [98] is one of the exactly solvable systems in quantum me-

chanics. The Hamiltonian for such a system in one dimension is defined as

H =
1

2m
x2 +

1

2
mω2x2 , (3.1)

with Hermite polynomials as the solutions to the corresponding Schrödinger equa-

tion, i.e. Hψ(r) = Eψ(r). This fundamental model has been used in many branches

of physics and chemistry including quantum field theory and quantum electrody-

namics, quantum optics, statistical mechanics, solid-state physics, spectroscopy, and

high-energy physics. Especially, quantum harmonic oscillators are widely employed

to describe the response of quantum-mechanical systems to weak external pertur-

bations. The success of this model stems from the fact that the energy of physical

systems near equilibrium can be well approximated by quadratic functions of vari-

ables representing displacements from the equilibrium state. Such an approximation

can be understood by expanding any arbitrary physical potential around their equi-

librium in the form of a Taylor series, namely [99]

V (x) = V (x0) + V ′(x0)(x− x0) +
1

2
V ′′(x0)(x− x0)2 + · · · . (3.2)

In the expansion (3.2), the first term on the right hand side is a constant which

can be ignored as a constant shift in the potential energy does not change the

physical picture of the system. The second term that is the first derivative of V with

respect to x vanishes at x = x0 as a minimum of the potential occurs at this point.

Therefore, the potential can be approximated by the leading order x-dependent term

in expansion (3.2), namely

V (x) ≈ 1

2
V ′′(x0)(x− x0)2 , (3.3)

that is a general form of a harmonic potential similar to the second term of the

Hamiltonian (3.1).

As it was discussed in Chapter 2, classical harmonic oscillator plays a crucial

role in the description of matter in stochastic electrodynamics [57–64,66–71,86–88]

33
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where atoms are represented by classical dipole oscillators and their dynamics are

given by Newton’s second law of motion for such harmonically oscillating particles.

In the quantum-mechanical theory of matter, quantum harmonic oscillators can be

employed to describe the response of atomic and molecular systems. As a represen-

tative of the class of models based on the quantum harmonic oscillator, the quantum

Drude oscillator (QDO) [73–76] is a coarse-grained quantum-mechanical approach

for describing the electronic response of valence electrons in atoms and molecules.

Within the QDO model, each atom or molecule is represented by a Drude quasi-

particle characterized by its mass m and charge (−q) bound to a nucleus of an

opposite charge and an infinite mass through a harmonic potential with a character-

istic frequency ω. The three adjustable parameters of the QDO model can accurately

reproduce a set of three atomic/molecular response properties. To properly capture

the linear response of valence electrons, a reasonably accurate parameterization [75]

q =
√
mω2α , m =

5~ C6

ω C8

, ω =
4C6

3~α2
, (3.4)

is obtained by reproducing the dipole polarizability α as well as the C6 and C8 dis-

persion coefficients of homospecies dimers taken from experimental or calculated ab

initio reference data for atoms or molecules. When adjusting the QDO parameters

to accurate reference data, this coarse-grained model constitutes a simple yet effi-

cient tool to describe response properties and non-covalent interactions of atoms,

small and large (bio)molecules, solids, nanostructures and hybrid organic/inorganic

interfaces [73–76,80,91,92,94,100–105]. Specifically, the QDO model can quantita-

tively – within a few percent compared to explicit treatment of electrons – describe

polarization and dispersion interactions [75,76,94] as well as accurately capture elec-

tron density redistribution induced by these interactions [106]. In addition, QDOs

have been shown to provide a robust tool to describe vdW interactions under the

influence of external charges as well as spatial confinement [30, 33, 37]. Finally,

even though the QDO model describes distinguishable Drude particles bound to

their own nuclei, it is possible to generalize this model to quantum bosonic statis-

tics. Introducing Pauli-like exchange interactions to the QDO model allowed to

derive a generalized quantum-mechanical relation between atomic polarizabilities

and van-der-Waals radii, demonstrating its validity for many atoms in the periodic

table [103–105].

The present work benefits from the quadratic form of the QDO Hamiltonian

which allows diagonalization of the Hamiltonian of a system of interacting QDOs

with or without an external field being applied. Using the dipole approximation for

the atom-atom and atom-field couplings, such an exact diagonalization procedure

yields a new system of decoupled QDOs, whose ground state contains all the dipolar

interaction terms. The importance of this self-consistent solution grows with size

and complexity of the system containing many interacting species [80, 91, 92, 102].
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Taking advantages of such solutions, it has been shown that Lifshitz’ macroscopic

formula for dispersion interactions between a variety of macroscopic objects can be

derived from an atomistic point of view as the interactions between assemblies of

QDOs in the nonretarded regime [107–109]. On the other hand, the complete set

of eigenstates of a QDO in a uniform electric field enables expanding perturbed

states of the coupled QDO–field system under the influence of linear perturbations,

e.g. describing interactions with nearby QDOs as well as with macroscopic bodies

and boundary conditions. In turn, such an expansion allows one to study retarded

and nonretarded field-mediated intermolecular interactions under the influence of a

variety of boundary conditions and/or external fields by means of the perturbation

theory within QED.

Despite all the compelling analytical and computational features offered by the

QDO model and its extensive applications in QM theory of intermolecular interac-

tions, this model has not been widely used in molecular QED. A certain connection

has been established in the work of Renne [110,111] who derived a general expression

for the retarded dispersion energy in a system consisting of an arbitrary number of

dipole–coupled harmonic oscillators in interaction with the vacuum radiation field in

the minimal-coupling formalism of QED. Employing the multipolar–coupling scheme

of QED, Ciccarello et al. [112] have shown that describing two identical atoms by

charged harmonic oscillators can reproduce the well-known Casimir-Polder energy

for the retarded dispersion interaction. The present work substantially advances the

use of QDOs within the QED framework for studying interactions of atomic and

molecular systems with electromagnetic fields and/or other atoms and molecules.

The exact results for two dipole-coupled QDOs in static electric fields, which

are presented in the next chapter, can be straightforwardly generalized to an ar-

bitrary number of interacting species. This feature of the QDO model allows one

to easily extend the existing many-body approaches for description of dispersion

interactions [80, 91] to include external fields. Moreover, such an approach enables

numerically accurate descriptions of the effect of intra-molecular fields on molecular

polarizabilities: considering atomic charge redistribution in a molecule due to local

electric fields caused by interactions with other atoms, one can accurately obtain

molecular polarizabilities based on hybridized (atom-in-a-molecule) polarizabilities

of constituting atoms.

However, it should be mentioned that the QDO, as a simplified coarse-grained

model, has some limitations that prevent it from capturing all the physical effects

related to the molecular interactions under a static field. In particular, the Gaussian

form of the QDO wavefunction does not allow one to describe field-induced defor-

mation of electron clouds that present in the case of real atoms in static electric

fields. In a homogeneous electric field, the ground-state electron density of a single

QDO undergoes a rigid displacement which leads to vanishing β and γ hyperpolar-
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izabilities [75, 113] due to the spherical symmetry and the lack of anharmonicity in

the model. Hence, some interactions stemming from hyperpolarization of molecules

related to either dispersion-induced or field-induced changes in static dipole polariz-

abilities due to molecular β and γ hyperpolarizabilities [10–13,15,19,23,24,114,115]

also vanish for coupled QDOs. However, such terms are either of higher order with

respect to the interspecies distance (for the terms that originate from static field-

induced β hyperpolarizability [116,117]) or negligible in weak static fields compared

to the linear-response terms at long interspecies distances (the terms originating

from dispersion-induced changes in the polarizabilities [115,118,119]) that are stud-

ied in this work. Nevertheless, it is worth mentioning that the QDO model can

be further improved to exhibit more complex features (e.g. hyperpolarizabilities)

by considering several QDOs at each molecular center instead of only one for rep-

resenting the molecule. For such a model, the framework developed here can be

straightforwardly extended to include the aforementioned missing contributions and

achieve a complete description of molecular interactions in external static electric

fields.



Chapter 4

Intermolecular Interactions in

Static Electric Fields

4.1 Introduction

The stable structure and properties of biomolecules, nanostructured materials, and

molecular solids are determined by a delicate balance between different intermolec-

ular forces [3–7]. In many realistic systems, molecular interactions are substan-

tially modified by solvents, cell membranes, ionic channels, and other environ-

ments [30, 33, 37, 120]. A proper description of such environments demands ro-

bust approaches for modeling both nonretarded and retarded intermolecular inter-

actions under arbitrary fields. Molecular interactions in presence of static and dy-

namic electromagnetic and thermal fields have been studied using various approaches

[25–29, 31–34], but as mentioned in Chapter 1, a comprehensive understanding is

still missing and some results remain controversial. In order to resolve existing con-

troversies and clarify discrepancies in the literature, in this chapter a comprehensive

framework for modeling and understanding intermolecular interactions in electric

fields is developed based on first principles of quantum mechanics and QED.

The advances made in this chapter hinge on the usage of two formalisms that

enable an accurate modeling and conceptual understanding of nonretarded and

retarded interactions for two coupled quantum Drude oscillators (QDO) [73–75]

subject to a static electric field: solving Schrödinger’s equation via exact diago-

nalization, and using perturbation theory in QED [42–45, 55, 56, 85]. In addition,

stochastic electrodynamics (SED) [57–62,65,66], is employed as a minimal semiclas-

sical formalism that transparently connects molecular interactions to the fields that

originate them. The usage of QDOs to accurately and efficiently model the linear

response of valence electrons in atoms and molecules is a critical aspect because

coupled QDOs enable analytical solutions (with and without electric field) and have

been convincingly demonstrated to provide a reliable quantitative tool to describe

37
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response properties of real atoms and molecules subject to external fields or confine-

ment [73–76, 80, 92, 94, 102–104]. QDOs can quantitatively – within a few percent

compared to explicit treatment of electrons – describe polarization and dispersion

interactions [75, 76, 94], capture electron density redistribution induced by these

interactions [106], model intermolecular interactions in electric fields [30,33], among

many other response phenomena [7]. The current study benefits from many attrac-

tive features of QDOs and demonstrates their applicability to the retarded regime.

By means of the developed framework, ominant contributions to the interaction en-

ergy of two QDOs in an electric field are derived up to terms ∝ R−6 (R−7) for non-

retarded (retarded) regime. These contributions are interpreted as the field-induced

electrostatic and polarization interactions obtained in addition to the dispersion

interaction found to be unchanged in the presence of static electric field.

In the next four sections, the problem of intermolecular interactions in a uniform

static electric field is tackled by using four different approaches. Section 4.2 presents

a detailed description of the exact diagonalization method to derive an exact for-

mula for the interaction energy, which then is approximated by compact expressions

obtained using Taylor expansions. In addition to the leading contributions to the

interaction energy, here (in Sections 4.2 and 4.5) I consider the full infinite-order

series of interactions. In Section 4.3, I show how the approximated results of Sec-

tion 4.2 can be reproduced using perturbation theory in the framework of QM. To

take into account the effect of retardation, I also employ QED and SED and present

exhaustive derivations of intermolecular interactions in these frameworks to provide

the readers with a guidance for practical uses of QED and SED as applied to cou-

pled QDOs. Namely, Section 4.4 contains a derivation of the interaction energy for

both retarded and nonretarded regimes from a perturbative approach within the

QED framework. In order to identify and interpret all dominant contributions to

the interaction energy, in Section 4.5, I rationalize the results of the other three

approaches by means of SED. To illustrate possible practical applications of the

developed framework, in Section 4.6, I consider argon-argon and benzene-benzene

dimers as two representative examples for atomic and molecular systems. Finally, I

discuss all the obtained results and make conclusions in Section 4.7.

4.2 Molecular Quantum Mechanics:

Exact Diagonalization

In this section I present a nonperturbative approach for describing the interaction

between two species (atoms or molecules) in the presence of a uniform static electric

field. I make use of the exact solution of the QDO model in both cases where the

QDO is either coupled via its electric dipole moment to another QDO or subject to

an external static electric field. Using a two-step normal-mode transformation, this
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Figure 4.1: Two interacting atoms or molecules represented as quantum Drude oscillators

(QDOs), separated by a distance R = |~R| along the z axis, under the influence of both, the fluctuat-

ing vacuum electromagnetic field ~Erad and an applied uniform static electric field ~E = (Ex, Ey, Ez).

allows to diagonalize the total Hamiltonian for a system of two interacting QDOs

which are initially coupled to an external field.

In the nonretarded regime, when the interspecies distance R is much smaller than

the characteristic wavelength λe of electron transitions to excited states, λe�R, the

interaction reduces to the instantaneous Coulomb coupling. Thus, the Hamiltonian

of a system of two interacting QDOs reads

H =
∑
i=1,2

[
− ~2

2mi

∇2
ri

+
1

2
miω

2
i r

2
i

]
+ V (r1, r2) . (4.1)

Here, mi and ωi are masses and characteristic frequencies of the two Drude particles

[75], respectively. If the interacting QDOs are located along the z axis and separated

by the distance R (see Fig. 4.1), then the coupling Coulomb potential in its dipole

approximation is

V (r1, r2) ≈ Vdip(r1, r2) =
q1q2

(4πε0)R3
(r1 · r2 − 3z1z2) , (4.2)

where −qi is the charge of ith Drude particle bound to its nucleus with the charge

qi . Then, the x-dependent part of the Hamiltonian (4.1) is given by

Hx =
∑
i=1,2

[
− ~2

2mi

d2

dx2i
+

1

2
miω

2
i x

2
i

]
+

q1q2
(4πε0)R3

x1x2 . (4.3)

Introducing new coordinates x′1 =
√
m1x1 and x′2 =

√
m2x2 , Eq. (4.3) transforms

to

Hx =
∑
i=1,2

[
−~2

2

d2

dx′i
2 + aix

′
i
2

]
+ γx x

′
1x
′
2 , (4.4)

with

γx =
q1q2

(4πε0)
√
m1m2R3

, (4.5)

and ai = ω2
i /2. To diagonalize this Hamiltonian, I rewrite the potential energy in a

matrix form

a1x
′
1
2

+ a2x
′
2
2

+ γxx
′
1x
′
2 = (x′1 x′2)M̂

(
x′1
x′2

)
, (4.6)
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where M̂ii = ai and M̂12 = M̂21 = γx/2. The eigenvalues and orthonormal eigenvec-

tors of matrix M̂ are

λ± =
1

2

[
(a2 + a1)±

√
Dx

]
(4.7)

and

c± =
1

A±

(
γx

(a2 − a1)±
√
Dx

)
, (4.8)

respectively, where the use has been made of the notation

Dx = (a2 − a1)2 + γ2x , A± =
√
γ2x + [(a2 − a1)±

√
Dx]2 . (4.9)

Introducing the normal-mode coordinates

x± =
1

A±

(
γxx

′
1 + [(a2 − a1)±

√
Dx]x

′
2

)
(4.10)

and using the coordinate transformation

x′1 =
γx
A+

x+ +
γx
A−

x− , (4.11)

x′2 =
(a2 − a1) +

√
Dx

A+

x+ +
(a2 − a1)−

√
Dx

A−
x− ,

one can diagonalize the Hamiltionian (4.4) by expressing it in terms of the normal-

mode coordinates x± and corresponding frequencies ω± = [(a1 + a2)±
√
Dx]

1/2 as

Hx =
∑
i=±

−~2

2

d2

dx2i
+

1

2
ω2
i x

2
i . (4.12)

Equation (4.12) is the Hamiltonian of a system of two uncoupled QDOs with fre-

quencies ω± and unit masses.

Now I apply an external uniform static electric field, E = (Ex, Ey, Ez), to this

system by introducing the field–QDOs coupling Hamiltonian in the dipole approxi-

mation

Hf = −(q1r1 + q2r2)·E . (4.13)

For its x-dependent part, one has

Hf,x = −(q1x1 + q2x2)Ex = −
(
q1x
′
1√

m1

+
q2x
′
2√

m2

)
Ex . (4.14)

On making use of the transformations (4.11), the above Hamiltonian becomes

Hf,x = −
∑
i=±

fixiEx , (4.15)
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where the prefactors f+ and f− are defined as

f± =
1

A±

(
q1√
m1

γx +
q2√
m2

[(a2 − a1)±
√
Dx]

)
. (4.16)

Therefore, the x-component of the total Hamiltonian, H ′ = H + Hf , for the two

interacting QDOs in the presence of an external uniform static electric field reads

H ′x =
∑
i=±

[
−~2

2

d2

dx2i
+

1

2
ω2
i x

2
i − Exfixi

]
. (4.17)

Completing the squares for x± yields the quadratic form

H ′x =
∑
i=±

[
−~2

2

d2

dx2i
+
ω2
i

2

(
xi −

fiEx
ω2
i

)2

− f 2
i E2x

2ω2
i

]
, (4.18)

that can be considered as the Hamiltonian of two non-interacting one-dimensional

(1D) oscillators with the characteristic frequencies ω± and shifted centers of oscil-

lations by the field-dependent factors f±Ex/ω2
± . Therefore, the ground-state energy

corresponding to the Hamiltonian (4.18) can be easily obtained as

Ex =
∑
i=±

[
~ωi
2
− f 2

i E2x
2ω2

i

]
. (4.19)

On the other hand, the ground-state energy of the two non-interacting QDOs in the

external field is the sum

E (ni)
x =

∑
i=1,2

[
~ωi
2
− αiE2x

2

]
, (4.20)

with αi = q2i /miω
2
i as the isotropic static dipole polarizability of the ith isolated

QDO. Comparing equations (4.19) and (4.20), one sees that f± play the role of the

ratio q/
√
m renormalized for the use of the collective (normal-mode) coordinates x±

introduced in equation (4.10).

In the next step I derive the interaction energy of the two 1D oscillators under the

influence of the external electric field as the difference between the total energy of

the coupled QDOs and the sum of the total energies of two non-interacting QDOs

in the same field. Based on the expressions (4.19) and (4.20) for the energy of

interacting and non-interacting systems, the interaction energy can be obtained as

∆Ex =Ex − E (ni)
x

=
E2x

1− α1α2/([4πε0]2R6)

(
α1α2

[4πε0]R3
− α2

1α2

2[4πε0]2R6
− α1α

2
2

2[4πε0]2R6

)
−~

2
(ω1 + ω2)

+
~
√

2

4
×


[

(ω2
1 + ω2

2) + (ω2
2 − ω2

1)

√
1 +

4α1α2 ω2
1 ω

2
2

[4πε0]2 (ω2
2 − ω2

1)
2
R6

]1/2

+

[
(ω2

1 + ω2
2)− (ω2

2 − ω2
1)

√
1 +

4α1α2 ω2
1 ω

2
2

[4πε0]2 (ω2
2 − ω2

1)
2
R6

]1/2 . (4.21)
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Due to the symmetry of the considered system, ∆Ey can be obtained in the same

way as ∆Ex just by replacing the subscript x with y. To derive ∆Ez , one needs

to diagonalize the z-dependent part of the total Hamiltonian, Hz, using similar

transformations as given in (4.11) but with replacing x by z and γx by γz = −2γx.

For this case, one obtains

z± =
γzz
′
1 + [(a2 − a1)±

√
Dz]z

′
2√

γ2z + [(a2 − a1)±
√
Dz]2

, (4.22)

and

ω± = [(a1 + a2)∓
√
Dz]

1/2 with Dz = (a2 − a1)2 + γ2z . (4.23)

Altogether, this leads to

∆Ez =Ez − E (ni)
z

=
−2 E2z

1− 4α1α2/([4πε0]2R6)

(
α1α2

[4πε0]R3
+

α2
1α2

[4πε0]2R6
+

α1α
2
2

[4πε0]2R6

)
−~

2
(ω1 + ω2)

+
~
√

2

4
×


[

(ω2
1 + ω2

2) + (ω2
2 − ω2

1)

√
1 +

16α1α2 ω2
1 ω

2
2

[4πε0]2 (ω2
2 − ω2

1)
2
R6

]1/2

+

[
(ω2

1 + ω2
2)− (ω2

2 − ω2
1)

√
1 +

16α1α2 ω2
1 ω

2
2

[4πε0]2 (ω2
2 − ω2

1)
2
R6

]1/2 . (4.24)

Despite their intricate form, formulas (4.21) and (4.24) allow to clearly distin-

guish between electrostatic, polarization, and dispersion interactions. Indeed, the

dispersion interaction energy results from the difference between the first terms of

equations (4.19) and (4.20), since the resulting contribution is proportional to the

(reduced) Planck constant. Although the exact expressions for the dispersion energy

in (4.21) and (4.24) do not allow to explicitly eliminate the distance-independent

terms corresponding to the self-energies, all such terms cancel out when a Taylor

series expansion is performed to obtain the expressions (4.26) and (4.27). In con-

trast to the dispersion energy depending on the characteristic frequencies of the

interacting species, the electrostatic and polarization contributions to ∆Ex, ∆Ey,

and ∆Ez are fully determined by the two static dipole polarizabilities, α1 and α2.

The corresponding three terms in the large parentheses within the second line of

equations (4.21) and (4.24) are the field-induced dipole-dipole electrostatic energy

and two (symmetric) contributions to the field-induced polarization energy. The

fraction in front of these parentheses encodes a mutual self-consistent polarization

of two polarizable species under the external static field. By performing a Taylor

expansion for this fraction, as I show below, one obtains an infinite series. As shown

in Section 4.5, this series can be interpreted as a sum of interaction energies of an
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infinite number of dipole moments induced at the two QDOs, starting with the two

initial dipoles, µ1 = α1E and µ2 = α2E , induced by the applied electric field. The

physical mechanism of the electrostatic/polarization infinite series is similar to the

one known for the dispersion interaction [121]. The only difference is that the dis-

persion coupling originates from the fluctuating electric dipoles instead of the static

dipoles relevant for the electrostatic and polarization series.

Taking into account that ∆Ey = ∆Ex, equations (4.21) and (4.24) provide one

with the complete description of the total interaction energy between two QDOs in

the presence of the external field, i.e.

∆Etot = ∆Ex + ∆Ey + ∆Ez . (4.25)

Due to the use of the QDO model, all the electrostatic, polarization and dispersion

contributions are given by analytical formulas. However, to obtain more transparent

expressions, I perform Taylor expansions of the first fraction within the second line

as well as the square roots within the third and fourth lines of equations (4.21) and

(4.24). These series expansions, performed below with respect to small terms propor-

tional to α1α2/(4πε0)
2R6, are related to the following physical picture. The employed

dipole approximation for the Coulomb potential implies that the separation distance

is much larger than the electronic clouds of two interacting species modeled by the

QDOs. The effective radius of these clouds can be roughly described by [α/(4πε0)]
1/3.

This gives the small parameter for the expansions, α1α2/(4πε0)
2R6 � 1, and one

obtains

∆Ex =
α1α2 E2x
[4πε0]R3

− α1α2(α1 + α2)E2x
2[4πε0]2R6

+
α2
1α

2
2 E2x

[4πε0]3R9
− α2

1α
2
2(α1 + α2)E2x

2[4πε0]4R12

− α1α2 ~ω1 ω2

4[4πε0]2(ω1 + ω2)R6
−α

2
1α

2
2 ~ω1 ω2 (ω2

1 + 3ω1ω2 + ω2
2)

16[4πε0]4(ω1 + ω2)3R12
+O

(
1/R15

)
(4.26)

and

∆Ez =− 2α1α2 E2z
[4πε0]R3

− 2α1α2(α1 + α2)E2z
[4πε0]2R6

− 8α2
1α

2
2 E2z

[4πε0]3R9
− 8α2

1α
2
2(α1 + α2)E2z

[4πε0]4R12

− α1α2 ~ω1 ω2

[4πε0]2(ω1 + ω2)R6
− α2

1α
2
2 ~ω1 ω2 (ω2

1 + 3ω1ω2 + ω2
2)

[4πε0]4(ω1 + ω2)3R12
+O

(
1/R15

)
, (4.27)

where only terms with distance dependence up to R−12 have been explicitly writ-

ten. The frequency-dependent terms, within the second line of equations (4.26) and

(4.27), correspond to the expansion of the dispersion energy which is already well

known [121]. The first term in these equations describes the electrostatic interaction

of two dipoles which are initially induced by the applied static field. Each of these

initial field-induced dipoles produces its own electric field experienced by another

QDO. In its turn, this additional electric field from one field-induced dipole induces

a concomitant dipole on the other QDO. The energy of such dipoles in the fields

inducing them is given by the second term of equations (4.26) and (4.27) describing
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the field-induced polarization interaction. The interpretation of higher-order terms

in this infinite series becomes more transparent within a semiclassical approach, as

I show in section 4.5 by using stochastic electrodynamics.

The higher-order electrostatic/polarization terms shown in equations (4.26) and

(4.27) will have an important role for many-body interactions in large molecular

systems [78]. However, for the two-body system considered here, we are mainly

interested in leading contributions up to ∝ R−6. Therefore, for now I neglect terms

∝ R−9 and higher-order contributions. This yields the total interaction energy

between two QDOs under a static field as

∆E =
α1α2(E2x + E2y − 2E2z )

[4πε0]R3
−
α1α2(α1 + α2)(E2x + E2y + 4E2z )

2[4πε0]2R6

− 3α1α2 ~ω1 ω2

2[4πε0]2(ω1 + ω2)R6
. (4.28)

An extension of this result to the case of anisotropic molecules is straightforward

following the derivation presented in the current section (see Appendix A). The last

term in equation (4.28) corresponds to the well-known nonretarded vdW dispersion

interaction, which is not affected by the uniform static field in the dipole approxi-

mation (4.2) within the QDO model of atomic and molecular responses. The first

and second terms of interaction energy (4.28) are field-induced electrostatic and

polarization interaction energies, respectively. According to equation (4.28), the

field-induced electrostatic interaction can be attractive or repulsive depending on

the orientation of the external static electric field with respect to the interspecies

distance. By contrast, the field-induced polarization and dispersion interactions are

always attractive. The different contributions to the interaction energy as well as

the interplay between them will be discussed in more detail after the consideration

of the case of large inter-atomic/molecular distances in comparison to the charac-

teristic wavelengths of electron transitions to excited states, R� λe.

As shown in the next section, the interaction energy given by equation (4.28),

which is an approximation to the exact results (4.21) and (4.24), can be derived

from the Rayleigh-Schrödinger perturbation theory. However, before moving to this

alternative approach, let me point out a noteworthy aspect of the considered exact

diagonalization method which is not present for other approaches employed in this

work. The opportunity to diagonalize the Hamiltonian (4.17), as achieved in equa-

tion (4.18), implies that using the QDO model one can also easily capture the effect

of intramolecular fields acting on atoms in a molecule. Indeed, covalent interactions

cause charge transfer between atoms, which leads to a distribution of local centers

of positive and negative charges over the molecular system. The ensuing electric

fields can be regarded as local external fields acting on atoms (see Appendix A for

dissimilar local fields applied to anisotropic QDOs). Using the exact diagonaliza-

tion method, one can take into account the effect of such fields via spatial shifts of
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the center of QDOs describing atoms together with Stark shifts in atomic energies,

in order to properly describe molecular polarizabilities. Such a self-consistent pro-

cedure applied to an arbitrary number of QDOs in an inhomogeneous electric field

should allow to develop quantum-mechanical force-fields that can efficiently describe

all types of intermolecular interactions in atomic and molecular systems.

Although equation (4.28) provides the leading order contributions, with distance-

dependencies up to R−6, to the interaction energy between two QDOs in dipole

approximation, it should be mentioned that it still misses an additional term that

exists in the case of real atoms and molecules corresponding to vdW dispersion

contributions to the polarizability of interacting atoms or molecules. It has been

shown that dispersion interactions modify the polarizability of an interacting pair

where the leading-order correction scales with the inter-species distance as R−6

and depends on the γ hyperpolarizability of the individual atoms or molecules

[10–15, 19, 23, 24, 114, 115]. In coupling to an external static electric field, the

dispersion-induced change in the polarizability of interacting molecules yields an

additional interaction energy that is quadratic in the applied field and that varies

as R−6 with the intermolecular distance. Such an additional contribution to the

interaction energy can be considered as a field-induced correction to the dispersion

energy of the interacting pair. However, as it was mentioned in Chapter 3, a simple

QDO cannot capture such a hyperpolarization effect [10,15] as it does not possess a

γ hyperpolarizability. Therefore, to capture a complete picture of the dipolar inter-

actions in a static field one has to consider more than one QDO at each atomic or

molecular center to break the spherical symmetry of the model and add anharmonic-

ity to the system. Such a multi-QDO model exhibits β and γ hyperpolarizabilities

and thus provides more realistic response properties in comparison to single QDOs.

The dipolar interactions between two multi-QDO systems can be converted to a

many-QDO problem which is still exactly solvable within the present framework

(see Chapter 5).

It is worth mentioning that vdW dispersion interaction between two atoms or

molecules also causes a dispersion-induced dipole moment that varies as R−7 in the

separation between the interacting species [16, 18, 20, 21, 122–130]. The coupling of

the dispersion-induced dipole moment with a static electric field results in an inter-

action energy that is linear in the field and scales with the intermolecular distance

as R−7. As first suggested by K. L. C. Hunt, such an interaction energy corresponds

to the hyperpolarization of an atom by fluctuating field from the neighboring atom

in combination with the applied field which depends on the B hyperpolarizability

(dipole-dipole-quadrupole hyperpolarizability) and the static dipole polarizability

of the atoms [125]. Since a QDO has a nonvanishing B hyperpolarizability, the

dispersion-induced dipole moment can be captured by taking into account dipole-

quadrupole couplings [131] in the interaction Hamiltonian (4.2). Dispersion-induced
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dipole moment and dispersion-induced changes in the polarizability of atoms and

molecules and their corresponding effects in static fields have been extensively stud-

ied by various theoretical approaches as well as by means of accurate ab initio cal-

culations. As the details regarding these studies are out of the scope of the present

work I refer interested readers to the references mentioned above as well as to the

references [118,119,132–144].

4.3 Perturbation Theory in Quantum Mechanics

Perturbation theory is a powerful and insightful tool in quantum mechanics and

quantum electrodynamics, in particular for the calculation of molecular interaction

energies. Within this approach, the quantum states of a system of interacting atoms

or molecules can be expanded in the basis of non-interacting states and the inter-

action potentials are obtained as corrections to the total energy of non-interacting

species. The application of perturbation theory requires the states of the unper-

turbed system to form a complete basis set. Since a QDO in a static electric field is

an exactly solvable quantum-mechanical problem, I apply the Rayleigh-Schrödinger

perturbation theory considering a system of two non-interacting QDOs in an exter-

nal field as the unperturbed system. Then, the Coulomb interaction between the

two QDOs plays the role of a perturbing potential.

Assuming that the two QDOs are placed along the z axis and separated by a

distance R, the total Hamiltonian can be written as H = H0 + Vint , where Vint

in the dipole approximation is given by equation (4.2) and the Hamiltonian of the

unperturbed system reads

H0 =
2∑
i=1

H
(0)
i =

2∑
i=1

(
p2i

2mi

+
1

2
miω

2
i r

2
i − qiri · E

)
. (4.29)

The eigenfunctions and eigenvalues corresponding to each unperturbed Hamiltonian

H
(0)
i are obtained as

ψ{nx,ny ,nz}(r) ≡ ψnx(x)ψny(y)ψnz(z) = φ{nx,ny ,nz}

(
r − q

mω2
E
)
, (4.30)

E{nx,ny ,nz} = ~ω
(
nx + ny + nz +

3

2

)
− 1

2
αE2 , (4.31)

respectively. Here, φ{nx,ny ,nz}(r) = φnx(x)φny(y)φnz(z) are the wavefunctions of an

isolated QDO, corresponding to the well-known eigenstates of the quantum harmonic

oscillator [5]. Throughout the discussion below, for the sake of simplicity, I refer

to the two QDOs with Hamiltonians H
(0)
1 and H

(0)
2 and the shifted wavefunctions

and energy eigenvalues as unperturbed QDOs. Using the wavefunctions (4.30), one

can calculate matrix elements of the electric dipole operator, µ = q r . For the



4.3. Perturbation Theory in Quantum Mechanics 47

x-component of the dipole moment, one has

〈j|µx|i〉 =q〈j(0)|x|i(0)〉+ 〈j(0)| q
2Ex
mω2
|i(0)〉 (4.32)

=q
√

~
2mω

[√
j δj,i+1 +

√
j + 1 δj,i−1

]
+ α Ex δi,j ,

where 〈x|i〉 = ψi(x) and 〈x|i(0)〉 = φi(x), with ψ and φ introduced in equation (4.30).

The y and z components of the dipole moment can be obtained similarly. Having

the eigenstates and eigenvalues of H
(0)
i , wavefunctions corresponding to H0, i.e.

the total unperturbed Hamiltonian (4.29), can be written as the product states

Ψ(r1, r2) = ψ(r1)ψ(r2). In the following, I calculate the energy shifts due to the

Coulomb coupling between the two QDOs up to the second-order correction using

the matrix elements of the atomic dipole moments given by equation (4.32).

From the first-order perturbation, the energy shift is

∆E (1) = 2〈0, 0, 0| 1〈0, 0, 0| Vint |0, 0, 0〉1 |0, 0, 0〉2

=
q21q

2
2

(
E2x + E2y − 2E2z

)
[4πε0]m1m2ω2

1ω
2
2R

3
=
α1α2 (E2x + E2y − 2E2z )

[4πε0]R3
, (4.33)

where 〈r|nx, ny, nz〉 = ψ{nx,ny ,nz}(r) and 〈nx, ny, nz|r〉 is its complex conjugate.

Equation (4.33) is the same expression as the first term of equation (4.28). To

calculate the energy shift from the second-order perturbation,

∆E (2) =
∑
I 6=0

〈0|Vint|I〉〈I|Vint|0〉
E0 − EI

, (4.34)

one needs to consider two cases regarding the states of unperturbed QDOs in the

intermediate ket state |I〉 :

• case (i): one of the QDOs is in its excited state whereas the other one is in

its ground state,

• case (ii): both QDOs are in their excited states.

In the first case, at any instant of time, field-induced static dipole moment of just

one of the atoms is involved in the interaction process between them, which yields

the energy shift

∆E (2)
1 =−

∑
n6=0

[
2〈0| 1〈0| q1q2(r1 · r2 − 3z1z2) |n〉1 |0〉2

]2
[4πε0]2R6 ~ω1(nx + ny + nz)

−
∑
m 6=0

[
2〈0| 1〈0| q1q2(r1 · r2 − 3z1z2) |0〉1 |m〉2

]2
[4πε0]2R6 ~ω2(mx +my +mz)

=−
α1α2(α1 + α2) (E2x + E2y + 4E2z )

2[4πε0]2R6
, (4.35)
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where |n〉 = |nx, ny, nz〉 and n 6= 0 means {nx, ny, nz} 6= {0, 0, 0}, and for the QDOs

transition energies the use has been made of the relations En0 = ~ω1(nx + ny + nz)

and Em0 = ~ω2(mx + my + mz). This second–order interaction energy is the same

as the second term of equation (4.28). In the second case, where for each transition

of the total system both QDOs are excited, the field-induced dipole moments do

not contribute to the interaction. Therefore, equation (4.34) yields the well-known

dispersion energy

∆E (2)
disp = −

∑
n,m 6=0

[
2〈0| 1〈0| q1q2(r1 · r2 − 3z1z2) |n〉1 |m〉2

]2
[4πε0]2R6 (En0 + Em0)

= − 3~ω1ω2α1α2

2[4πε0]2(ω1 + ω2)R6
. (4.36)

The energy shift (4.36) is the same as the third term of the nonretarded interaction

energy (4.28).

Although the results obtained from the perturbation theory are approximate,

they deliver all the leading contributions to the interaction energy. Moreover, this

approach is more intuitive compared to the exact solution of the Schrödinger equa-

tion in terms of distinguishing the dipole moments involved in each contribution to

the interaction energy between atoms/molecules. On the other hand, the diagonal-

ization of the Hamiltonian (4.18) provides one with a more complete description of

the effects of self-consistent electric fields.

In summary, the Rayleigh-Schrödinger perturbation theory considered in this

section allowed to confirm the leading-order results obtained from exact diagonal-

ization as coming from the first two orders of perturbation theory for two dipole-

coupled QDOs. So far, all the derived energy terms correspond to the nonretarded

regime of the interaction. However, for large interatomic separations in comparison

to characteristic wavelengths of atomic transitions, the effect of retardation has to

be taken into account. This implies that interactions are no longer instantaneous.

This task can be accomplished by making use of a field-theoretical formalism, where

the interaction between atoms occurs via exchanging photons. In the next section,

I employ perturbation theory in the framework of microscopic QED, to investigate

the effect of retardation on the interactions that were obtained so far in Sections 4.2

and 4.3.

4.4 Perturbation Theory in Microscopic QED

Within the multipolar-coupling formalism of QED, interactions between atoms oc-

cur through their coupling to the fluctuating vacuum radiation field via their elec-

tric dipole/multipole moments, whereas any direct instantaneous coupling between
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atoms is eliminated. Therefore, for a system of two QDOs in presence of the vacuum

radiation field as well as the external static electric field E , the total Hamiltonian

consists of the Hamiltonians of noninteracting QDOs and fields plus fields-QDOs

coupling terms. Similar to the derivation performed in the previous section, I con-

sider the total unperturbed system as the system of two non-interacting QDOs that

are already coupled to the external field via their electric dipole moments. However,

in contrast to the QM framework, here the perturbation occurs solely due to the

coupling of the QDOs to the vacuum radiation field. Thus, in the total Hamiltonian,

H = H(0) +Hint, the Hamiltonian of the unperturbed system reads

H(0) = Hrad +H
(0)
1 +H

(0)
2

= Hrad +
∑
i=1,2

[
p2i
2m

+
1

2
mω2r2i − µi · E

]
, (4.37)

where µi = qiri is the electric dipole moment operator of the ith QDO. The pertur-

bation is given by

Hint =− 1

ε0
µ1 ·D⊥(r1)−

1

ε0
µ2 ·D⊥(r2) , (4.38)

where D⊥ is the transverse component of the vacuum displacement radiation field

which was given in equation (2.92) as

D⊥(r) = i
∑
k,λ

(
~ckε0
2V

)1/2 {
e(λ)(k)a(λ)(k)eik·r − ē(λ)(k)a†(λ)(k)e−ik·r

}
, (4.39)

with akλ and a†kλ being annihilation and creation operators of a vacuum-field mode

with the wave vector k and electric polarization vectors e(λ)(k) and ē(λ)(k), respec-

tively. They obey the bosonic commutation relations

[akλ , a
†
k′λ′ ] = δkk′δλλ′ , [akλ , ak′λ′ ] = [a†kλ , a

†
k′λ′ ] = 0 . (4.40)

The ground state ket vector of the total unperturbed system is given by the

product state

|0〉 = |0, 0, 0〉1 |0, 0, 0〉2 |{0}〉 , (4.41)

where |{0}〉 denotes the ground state (or equivalently the vacuum state) of the fluctu-

ating radiation field and 〈ri|0, 0, 0〉i = ψ{0,0,0}(ri) with ψ(r) given by equation (4.30).

The excited states of the total unperturbed system can be defined similarly. Then,

making use of these states and the matrix elements of dipole moments, one can

perform QED perturbative derivations to obtain the interaction energy for the two

QDOs, as consisting of contributions from different orders of corrections to the total

energy of the unperturbed system.
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Figure 4.2: Two Feynman diagrams correspond to the coupling between static field-induced

dipole moments of atoms and the vacuum field. The vertical solid lines are universal time lines.

The 1st- and the 3rd-order of perturbation yield vanishing contributions because

of the creation and annihilation operators of the radiation field sandwiched between

two identical vacuum states, |{0}〉.

The non-vanishing terms from the second order,

E (2) =
∑
I 6=0

〈0|Hint|I〉〈I|Hint|0〉
E0 − EI

, (4.42)

arise when the radiation field is excited with a single photon in the intermediate

state |I〉. For the atomic part of |I〉, there are two possibilities that result in non-

vanishing energy shifts which are considered separately in the following. The two

cases are: (1) both unperturbed QDOs are in their ground states, (2) one of them is

excited, whereas the other one is in its ground state. In the former case, where the

intermediate state |I〉 is defined as |0, 0, 0〉1|0, 0, 0〉2|1kλ〉, the interaction between

the atoms happens in two steps. First, one of the atoms interacts with the radiation

field via its static field-induced dipole and emits a (virtual) photon. Hence, the total

system, which was initially in its ground state, is promoted to the excited state |I〉.
At the second step, the other atom similarly interacts with the radiation field via

its static field-induced dipole and absorbs the photon that was emitted at the first

step. The second transition brings the total system back to the ground state. This

procedure is equivalent to a sum over two distinct Feynman diagrams illustrated in

Fig. 4.2. They look similar to the diagrams corresponding to the interaction between

molecules with permanent electric dipole moments [44]. The similarity suggests

that the interaction energy stemming from the described mechanism corresponds to

electrostatic interactions. This point as well as the origin of other contributions to

the total interaction energy will be discussed in more detail within the next section,

based on a transparent physical picture of the interactions provided by stochastic

electrodynamics.

The second-order energy correction (4.42) after removing self-energies (distance-
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independent terms), ∆E (2) = E (2)(R)− E (2)(∞), reduces to

∆E (2) = −
∑
kλ

EiEj e(λ)i (k) e
(λ)
j (k)

2V ε0
[2α1α2 cos(kzR)] , (4.43)

where the repeated indices i and j imply summation over Cartesian components,

i, j = {x, y, z}. Replacing the sum over k with a triple integral,
∑
k →

V
8π3

∫
d3k,

and summing over polarization of the radiation field yields

∆E (2) = − α1α2

8π3ε0
EiEj

∫
d3k cos(kzR)(δij − k̂ik̂j) , (4.44)

with k̂i = ki/k. Transforming this integral to the spherical coordinate system and

performing the angular integration using the relation∫∫
(δij − k̂ik̂j) e±ik·R sin θdθ dϕ = 4π Im[Fij(kR)] , (4.45)

with

Fij(kR) =
[
(δij − R̂iR̂j)

1

kR
+ (δij − 3R̂iR̂j)(

i

k2R2
− 1

k3R3
)
]
eikR , (4.46)

one arrives at

∆E (2) = − α1α2

8π3ε0
EiEj

∫ ∞
0

k2
[

(δij − R̂iR̂j)
sin(kR)

kR

+(δij − 3R̂iR̂j)(
cos(kR)

k2R2
− sin(kR)

k3R3
)
]
dk . (4.47)

Carrying out the remaining integral, and considering that R = Rẑ, the interaction

energy is obtained as

∆E (2) =
α1α2(E2x + E2y − 2E2z )

4πε0R3
, (4.48)

which is valid for any range of the interatomic separation, R. The above expression

reproduces the first term of equation (4.28) and hence is not affected by retardation.

Since in this case both atoms are coupled to the vacuum field via their static field-

induced dipoles, with the R−3 distance dependence of the interaction energy (4.48),

this contribution can be called as field-induced electrostatic interaction.

For the second case, the intermediate state |I〉 corresponds to the situation when

one of the QDOs is excited and the other one is in its ground state. For each

transition of the total system to its excited state, one of the atoms emits a photon

and then absorbs it by itself in the next downward transition, when the total system

goes back to its ground state. Thus, for such series of transitions, there is no

exchange of photons and hence no interaction between the atoms. Equation (4.48)

confirms the conclusion from the diagrams of Fig. 4.2. Since, in the absence of

the external field, there are no field-induced dipoles, the interaction energy, ∆E (2),
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vanishes similar to the case when the interaction occurs between molecules with no

permanent electric dipoles. The power of the QDO model is that the effect of a

static electric field clearly manifests as a shift in the center of oscillations of the

Drude particle, which can be understood as a static polarization of the atom or

molecule.

The third case, corresponding to the intermediate state |I〉 where both QDOs

are excited, delivers only vanishing contributions due to the form of the interaction

Hamiltonian (4.38), which does not contain any direct coupling between the two

oscillators. If both QDOs are simultaneously excited within the intermediate state

|I〉, the resulting matrix element vanishes due to the orthogonality of the eigenstates

of the oscillators,

〈0|Hint|I〉 =− 1

ε0
〈{0}| 2〈0| 1〈0|

[
µ1 ·D⊥(r1) + µ2 ·D⊥(r2)

]
|n〉1|m〉2|1kλ〉

=− 1

ε0

[
1〈0|µ1|n〉1 2〈0|m〉2

]
· 〈{0}|D⊥(r1)|1kλ〉

− 1

ε0

[
1〈0|n〉1 2〈0|µ2|m〉2

]
· 〈{0}|D⊥(r2)|1kλ〉 = 0 , (4.49)

which gives no contributions to the interaction energy.

The next non-vanishing contribution to the interaction energy arises from the

4th-order perturbation theory,

E (4) =−
∑

I,II,III 6=0

〈0|Hint|III〉〈III|Hint|II〉〈II|Hint|I〉〈I|Hint|0〉
(EI − E0)(EII − E0)(EIII − E0)

+
∑
I,II 6=0

〈0|Hint|II〉〈II|Hint|0〉〈0|Hint|I〉〈I|Hint|0〉
(EI − E0)2(EII − E0)

. (4.50)

In the absence of the external field, similar to nonpolar molecules possessing no

permanent dipole moments, the second term of equation (4.50) does not contribute

to the interaction energy. The first term contributes to ∆E (4) only from summing

over those combinations of intermediate states |I〉, |II〉, and |III〉 that satisfy certain

conditions, which are explained in the following. In the intermediate states |I〉 and

|III〉, the field must be in a single-photon excited state, while one of the atoms is

excited and the other is in its ground state. Then, for |II〉, there are three possibilities

that may result in finite contributions to the interaction energy: (1) the vacuum field

is in a two-photon excitation state and both atoms are excited; (2) the field is in

a two-photon excitation state while both atoms are in their ground states; (3) the

field is in its ground state while both atoms are excited. Among all the possible

combinations of such intermediate states, those that involve exchange of two virtual

photons between the atoms lead to the dispersion interaction [44, 45]. Within this

picture, the interaction between the two atoms occurs through the coupling of their

fluctuating electric dipole moments to the vacuum field.



4.4. Perturbation Theory in Microscopic QED 53

In the presence of the external electric field, E , atoms become polarized pos-

sessing static field-induced dipole moments, µ = αE . Therefore, the coupling of

atoms to the vacuum field may also happen through their static dipole moments,

in addition to their fluctuating dipole moments. This additional possibility results

in further contributions to the interaction energy. In what follows, I discuss such

contributions by evaluating them from the first and the second terms of Eq. (4.50).

This task is performed for three separate cases, listed in Table 4.1, depending on

the atomic behavior in the intermediate states |I〉, |II〉, and |III〉.

Case Atomic transitions in virtual states

(c1) Both atoms do transitions

(c2) One of the atoms remains in the ground state,

the other atom does transitions

(c3) None of the two atoms do transitions

Table 4.1: Atomic behavior in the intermediate states, which appear within the 4th-order per-

turbation theory, equation (4.50).

Case (c1) is similar to the situation of nonpolar species, as was already discussed

above. Therefore, the resulting interaction energy in this case should be the same

as the dispersion energy of two coupled nonpolar atoms in absence of any external

field. The calculation of this energy shift follows the standard procedure presented

in Refs. [44, 45]. As explained there, the dispersion interaction between two atoms

arises due to the exchange of a pair of virtual photons. For instance, such an

exchange may happen through the following steps:

Figure 4.3: An example of exchange of two virtual photons between two atoms A and B.

1. Atom A goes to an excited state |a〉 and emits a virtual photon 1kλ , while

atom B remains in its ground state: |0A, 0B, {0}f〉 −→ |aA, 0B, {1kλ}f〉 ;
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2. Atom A gets de-excited and emits another photon, 1k′λ′ , but atom B is still

in its ground state:

|aA, 0B, {1kλ}f〉 −→ |0A, 0B, {1kλ,1k′λ′}f〉 ;

3. Atom B absorbs one of the photons and transits to an excited state |b〉, while

A remains unchanged: |0A, 0B, {1kλ,1k′λ′}f〉 −→ |0A, bB, {1k′λ′}f〉 ;

4. Atom B absorbs the other photon and goes back to its ground state, while A

remains unchanged:

|0A, bB, {1k′λ′}f〉 −→ |0A, 0B, {0}f〉 .

This four-step procedure is illustrated in Fig. 4.3. In total, there are twelve distinct

diagrams representing all possible combinations of atomic and field states. They

correspond to the exchange of a pair of virtual photons between the two atoms, as

shown in Fig. 4.4. All the twelve diagrams give the same numerators in the first

term of equation (4.50) but different denominators (see Table 4.2).

Figure 4.4: The twelve diagrams contributing to the first term of the 4th-order energy correction

given by equation (4.50). This figure follows Fig. 7.5 of Ref. [44].
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Diagram Denominator

(i) (Eb0 + ~ck)(~ck + ~ck′)(Ea0 + ~ck′)
(ii) (Eb0 + ~ck′)(~ck + ~ck′)(Ea0 + ~ck′)
(iii) (Eb0 + ~ck)(Ea0 + Eb0)(Ea0 + ~ck′)
(iv) (Eb0 + ~ck)(Ea0 + Eb0)(Eb0 + ~ck′)
(v) (Eb0 + ~ck′)(Ea0 + Eb0 + ~ck + ~ck′)(Ea0 + ~ck′)
(vi) (Eb0 + ~ck′)(Ea0 + Eb0 + ~ck + ~ck′)(Eb0 + ~ck)

(vii) (Ea0 + ~ck)(~ck + ~ck′)(Eb0 + ~ck′)
(viii) (Ea0 + ~ck)(~ck + ~ck′)(Eb0 + ~ck)

(ix) (Ea0 + ~ck)(Ea0 + Eb0)(Eb0 + ~ck′)
(x) (Ea0 + ~ck)(Ea0 + Eb0)(Ea0 + ~ck′)
(xi) (Ea0 + ~ck)(Ea0 + Eb0 + ~ck + ~ck′)(Eb0 + ~ck)

(xii) (Ea0 + ~ck)(Ea0 + Eb0 + ~ck + ~ck′)(Ea0 + ~ck′)

Table 4.2: Denominators of the first term in equation (4.50) related to diagrams of Fig. 4.4. This

table follows Table 7.1 of Ref. [44]. Ea0 = Ea − E0 and Eb0 = Eb − E0 denote excitation energies

of atoms A and B to their excited states |a〉 and |b〉, respectively.

Summing over all these terms, as well as performing summations and integrals

over all atomic states and modes of the vacuum field, yields the well-known London

and Casimir-Polder dispersion energy [44,45],

∆E (4)
1 = ∆E

L
= − 3α1α2 ω1ω2~

2[4πε0]2(ω1 + ω2)R6
, (4.51a)

∆E (4)
1 = ∆E

CP
= − 23~c α1α2

[4πε0]24πR7
, (4.51b)

for nonretarded and retarded regimes, respectively. As mentioned above, the second

term of the fourth-order expression (4.50) does not contribute to the interaction

energy in case (c1).

In case (c2) of Table 4.1, one of the atoms is coupled to the vacuum field via

its static field-induced dipole, while the other atom couples to the vacuum field via

its fluctuating dipole moment. However, for the interaction between two atoms,

they should exchange a pair of virtual photons. Hence, the interactions should be

described by the same diagrams as shown in Fig. 4.4. The denominators of the

first term in equation (4.50) corresponding to the twelve diagrams are almost the

same as those given in Table 4.2. The only difference is that the atomic transition

energy must be replaced with zero for the atom that is coupled to the vacuum field

through its static field-induced dipole moment and does not undergo any transition

(~cka0 = 0 or ~ckb0 = 0). Therefore, in case (c2) the 4th-order interaction energy
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is given by the sum of two energy shifts ∆E (4)
2 =

∑2
n=1[∆E (4)

2 ]n where n denotes

the atom that remains in its ground state during the interaction. Evaluating the

numerator and denominator of the first term in equation (4.50) for each diagram

and summing over all the twelve diagrams yields

[∆E (4)
2 ]1 = − α2

1EiEj
V 2ε20 ~c

∑
k,k′

∑
λ,λ′

∑
b

e
(λ)
i (k) ē

(λ)
i′ (k) e

(λ′)
j (k′) ē

(λ′)
j′ (k′)

×
µ0b
i′ µ

b0
j′

kb0

(
1

k + k′
− 1

k − k′

)
k′ei(k+k

′)·R , (4.52)

where {i, j, i′, j′} = {x, y, z}, summations over repeated indices are implied, and

the sum
∑

b runs over all atomic states of the second atom with ~ckb0 = Eb − E0.

Performing summations over the vacuum-field polarization and replacing the sums

over k and k′ with the related integrals one arrives at

[∆E (4)
2 ]1 = − α2

1EiEj
64π6ε20 ~c

∑
b

µ0b
i′ µ

b0
j′

kb0

∫∫
k′(δii′ − kiki′)(δjj′ − k′jk′j′)ei(k+k

′)·R

×
(

1

k + k′
− 1

k − k′

)
d3k d3k′ . (4.53)

By transforming the integral over k to spherical coordinates, performing angular

integration, and evaluating the integral over k′, like in Refs. [44,45], the energy shift

[∆E (4)
2 ]1 becomes

[∆E (4)
2 ]1 = − 1

4π3ε20
α2
1EiEj

(∑
s

µ0b
i′ µ

b0
j′

~ckb0

)∫ ∞
0

k5Re[Fjj′(kR)]Im[Fii′(kR)] dk . (4.54)

Considering equation (4.32), it can be shown that only the first three excited

states (|100〉, |010〉, and |001〉) of the second QDO contribute to the sum over

atomic states. Then, using the result of equation (4.32), one obtains

[∆E (4)
2 ]1 =− 1

4π3ε20

q22 ~
2m2ω2

{
α2
1(E2x + E2y )

~ω2

×
∫ ∞
0

k5
[

sin(2kR)

2k2R2
+

cos(2kR)

k3R3
− 3 sin(2kR)

2k4R4
− cos(2kR)

k5R5
+

sin(2kR)

2k6R6

]
dk

+
α2
1E2z
~ω2

∫ ∞
0

k5
[
−2 sin(2kR)

k4R4
− 4 cos(2kR)

k5R5
+

2 sin(2kR)

k6R6

]
dk

}

=−
α2
1α2 (E2x + E2y + 4E2z )

2[4πε0]2R6
. (4.55)

Here, the QDOs are assumed to be isotropic and the integrals are taken using stan-

dard integration techniques without any specific assumption about R, which makes
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equation (4.55) valid for any range of interatomic separation. The term [∆E (4)
2 ]2 can

be similarly obtained. In case (c2), the second term of expression (4.50) does not

contribute to the interaction energy between the QDOs since the resulting energy

shift has no distance-dependent part. Therefore, the total energy shift from case (c2)

is given by

∆E (4)
2 = −

α1α2(α1 + α2) (E2x + E2y + 4E2z )

2[4πε0]2R6
, (4.56)

which is the same as the second term of interaction energy (4.28). Since this interac-

tion results from the coupling of the two atoms to the vacuum field, one by its static

field-induced dipole moment and the other one by its fluctuating dipole moment,

it is apparent that this term corresponds to polarization (induction) interactions.

However, here the static dipoles are initially induced by the applied static electric

field. Hence, we relate the energy (4.56) to a field-induced polarization interaction.

In Case (c3) of Table 4.1, each of the two terms of the 4th-order perturba-

tion (4.50) provides contributions to the interaction energy. Among the twelve

diagrams of Fig. 4.4, four of them (iii, iv, ix, and x) contribute to the second term

and the other eight diagrams contribute to the first term. The diagrams correspond

to expressions with similar numerators but different denominators. Denoting the

latter by Dn, there are three distinct cases for the eight diagrams:

Di = Dvi = Dvii = Dxii = ~3c3kk′(k + k′) , (4.57)

Dii = Dv = ~3c3k′2(k + k′), Dviii = Dxi = ~3c3k2(k + k′) .

Summing over inverse of these denominators results in∑
n

1

Dn

=
2(k + k′)

~3c3k2k′2
. (4.58)

Therefore, for the first term of the 4th-order energy correction, after carrying out

the sum over the radiation field polarization and replacing the sums over the wave

vectors with integrals, one arrives at

[∆E (4)
3 ]1 =−α

2
1α

2
2 EiEjEi′Ej′

(2π)6 2ε20 ~c

∫∫
d3k d3k′

[
k+k′

k k′
(δii′−k̂ik̂i′)(δjj′−k̂′j k̂′j′)ei(k+k

′)·R
]
. (4.59)

Similar to the previous cases, transforming the integrals to the spherical coordinate

system and taking the angular integrals using equations (4.45) and (4.46) yields

[∆E (4)
3 ]1 =−α

2
1α

2
2 EiEjEi′Ej′

8π4 ε20 ~c

∫∫
kk′(k + k′) Im[Fii′(kR)] Im[Fjj′(k

′R)] dk dk′ . (4.60)

Then, the integration over k′ results in

[∆E (4)
3 ]1 =−α

2
1α

2
2 EiEjEi′Ej′

8π4 ε20 ~c

∫ ∞
0

k Im[Fii′(kR)]

{
2R̂jR̂j′

k

R2
− (δjj′ − 3R̂jR̂j′)

π

2R3

}
dk .

(4.61)
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In addition, the k–integral can be taken making use of standard integration tech-

niques, with no need for any specific assumption about the range of R, and by

replacing R with Rzẑ one arrives at

[∆E (4)
3 ]1 = +

4α2
1α

2
2 E2z (E2x + E2y − 2E2z )

[4πε0]2 (~cπ)R5
. (4.62)

The remaining four diagrams (iii, iv, ix, and x) equally contribute to the en-

ergy shift [∆E (4)
3 ]2 resulting from the second term of equation (4.50). Performing

steps similar to the derivation of [∆E (4)
3 ]1, one can obtain [∆E (4)

3 ]2. The two terms

turn out to be [∆E (4)
3 ]2 = −[∆E (4)

3 ]1, which consequently give no net contribution

to the total interaction energy between the atoms when both are coupled to the

radiation field via their static field-induced dipole moments. Thus, the interaction

energies (4.51) and (4.56) are the leading contributions from the 4th-order pertur-

bation theory. Within the employed QED approach, one can also take into account

the influence of the applied static field on the cloud of virtual photons surrounding

each atom [145–149] to obtain higher-order terms as well. However, the effect of

the distortion of such photon clouds on the molecular interactions was shown to be

small, yielding interaction energy ∝ R−11, as caused by field-induced hyperpolariz-

abilities [117]. Nevertheless, the impact of clouds of virtual photons on the molecular

interactions might become important for atoms at close separation, i.e. when elec-

tron exchange effects become important. Indeed, the distortion of photon clouds

by a static field can change the effective atomic vdW radii, but to investigate such

effects in detail [104] one would need to go beyond the perturbative QED approach

used here.

The fact that the interaction energies (4.48) and (4.56) are not affected by the

retardation might seem to be surprising at the first glance. However, once the origin

of these interactions is identified, their static behavior becomes well understandable.

Within the next section, I perform a derivation in the framework of stochastic elec-

trodynamics and identify the origin of each contribution to the interaction energy

obtained thus far.

4.5 Stochastic electrodynamics

Finally, I employ a semiclassical approach, mainly developed by Boyer [67–70], to

derive the interaction energy from classical electrodynamics with a classical ran-

dom electromagnetic zero-point radiation field. Within this approach, the random

radiation field, which is a classical equivalent of the vacuum fluctuating radiation

field in QED, polarizes atoms. Then the induced random polarizations of nearby

atoms interact through their electromagnetic fields obeying principles of classical

electrodynamics. Here, I restrict the consideration to the retarded regime, where

for large interatomic distances only low frequencies (large wavelengths) significantly
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contribute to the retarded interactions. The nonretarded case can be similarly

considered following Ref. [69]. The stochastic electrodynamics approach permits

a straightforward identification of the different interaction terms with the electric

fields that cause them, providing a minimal model to understand the origin of molec-

ular interactions.

Consider a classical dipole oscillator with charge qi, mass mi, and characteristic

frequency ωi. These parameters are again to be determined by the conditions of

equation (3.4). In an electric field E(ri, t), the equation of motion of such a classical

counterpart of the QDO is given by [68]

mi
d2ri
dt2

= −miω
2
i ri + qiE(ri, t) + τ

d3ri
dt3

, (4.63)

where the last term corresponds to the radiation reaction. For each mode of the

electric field E with frequency ω, the above equation reduces to

−miω
2ri = −miω

2
i r

2
i + qiEω(ri, t) + iτω3ri . (4.64)

Here, being interested in the retarded regime (large separation distances), we can

assume that only modes with low frequencies contribute to the coupling between

the two species. As discussed in Refs. [68, 70], this assumption is valid since elec-

tromagnetic waves with large ω (short wavelengths) have destructive interference

with the waves of adjacent frequencies due to slight phase shifts acquired at large

distances. This effect of mutual cancellations for high-frequency modes leads to a

situation when only waves with large wavelengths (compared to the separation dis-

tance) contribute to the interaction between the two species. Therefore, one can

assume that the terms ∝ ω2 and ω3 are much smaller than the two other terms in

equation (4.64). By neglecting such small terms for all modes of the field E(ri, t),

equation (4.63) reduces to

miω
2
i ri = qiE(ri, t) . (4.65)

Replacing q2i /miω
2
i with the static polarizability, αi, one obtains the oscillator dipole

as µi ≡ qi ri = αiE(ri, t), where E(ri, t) is the total electric field at its position.

The energy of an electric dipole moment induced by an electric field in the same

field is known from classical electrodynamics as given by E = −1
2
α〈E2〉, where the

bracket indicates time-averaging. Here, I apply a static uniform electric field on top

of the random zero-point radiation field. Consequently, the induced polarization of

an oscillator has two parts each corresponding to one of the fields. I assume that

the first oscillator is located at the origin, r1 = (0, 0, 0), and the second oscillator

is brought to the point r2 = (0, 0, R) on the z axis from its initial position at the

positive infinity, (0, 0,+∞). The energy difference of the total system in these two

configurations, namely ∆E (R) = E (R)− E (∞), is the interaction energy that I am
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looking for. The total electric field at the position of the second oscillator is a vector

sum of the four fields

E(r2, t) = E0(r2, t) +Eµ1(r2, t) + Eµ1(r2) + E . (4.66)

Here, the letters E and E denote the electrostatic and radiation fields, respectively,

where E0(r2, t) is the random zero-point radiation field defined by [86]

E0(r, t) = Re
1√

4πε0

2∑
λ=1

∫
e(λ)(k) h(k, λ) ei[k·r−ωt+θ(k,λ)] d3k , (4.67)

as it was previously explained and given by equation (2.97) in Chapter 2. In equa-

tion (4.66), Eµ1(r2, t) is a time-dependent field radiated from the oscillating electric

dipole moment of the first oscillator induced by the zero-point radiation field. By

analogy, Eµ1(r2) is the electric field of the static dipole moment of the first oscillator

induced by the uniform electric field E . The electric fields of static and oscillating

dipole moments are given by [97]

Eµ(r) =
1

4πε0

3 r̂(µ · r̂)− µ
r3

, (4.68)

and

Eµ(r, t) = Re

{[
k2(r̂ × µ)× r̂

4πε0 r
+ Eµ(r) (1− ikr)

]
eikr
}
, (4.69)

respectively, where r̂ = r/r. Thus, the electromagnetic energy of the second oscilla-

tor, located at r2 = (0, 0, R) and possessing a static polarizability α2, in the presence

of the total electric field (4.66) can be obtained in the lowest order of coupling as

E2(R) = −1

2
α2

〈
E2(R, t)

〉
(4.70)

= −1

2
α2

〈[
E0(R, t) +Eµ1(R, t) + Eµ1(R) + E

]2〉
.

After subtracting the oscillator self-energy at R→ +∞ from the total energy (4.70),

one arrives at

∆E2 = −α2

[〈
E · Eµ1(R)

〉
+

1

2

〈
Eµ1(R) · Eµ1(R)

〉
+
〈
E0(R, t) ·Eµ1(R, t)

〉
+
〈
Eµ1(R) ·Eµ1(R, t)

〉
+
〈
Eµ1(R) ·E0(R, t)

〉
+
〈
E ·Eµ1(R, t)

〉
+
〈
E ·E0(R, t)

〉]
. (4.71)

First, I perform averaging over time and random phase by making use of the

following relations

〈cos[−ω t+ θ(k, λ)] cos[−ω′t+ θ(k′, λ′)]〉 =
1

2
δλλ′ δkk′ , (4.72a)
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〈sin[−ω t+ θ(k, λ)] sin[−ω′t+ θ(k′, λ′)]〉 =
1

2
δλλ′ δkk′ , (4.72b)

〈cos[−ω t+ θ(k, λ)]〉 = 〈sin[−ω t+ θ(k, λ)]〉 = 0 , (4.72c)

〈sin[−ω t+ θ(k, λ)] cos[−ω′t+ θ(k′, λ′)]〉 = 0 . (4.72d)

Considering the relations (4.72), one can see that only the first three terms of equa-

tion (4.71) contribute to the interaction energy and the four other terms are vanish-

ing. Hence, ∆E2 becomes

∆E2 = −α2

[〈
E · Eµ1(R)

〉
+

1

2

〈
Eµ1(R) · Eµ1(R)

〉
+
〈
E0(R, t) ·Eµ1(R, t)

〉]
. (4.73)

The first term of the interaction energy (4.73) corresponds to the coupling of an

electric dipole moment of the second oscillator, induced by the uniform electric

field, with the static field of the first oscillator, as given by equation (4.68). The

time and phase averaging for this term yields

∆E (1)
2 = −α2E ·

[
3ẑ(α1E · ẑ)− α1E

[4πε0]R3

]

=
α1α2(E2x + E2y − 2E2z )

[4πε0]R3
. (4.74)

For the second term of equation (4.73), where the static dipole moment of one

atom, induced by the electric field of the static dipole moment of the other atom,

interacts with the same field, the resulting interaction energy is given by

∆E (2)
2 = −1

2

[
α2

3ẑ(α1E · ẑ)− α1E
[4πε0]R3

]
·
[

3ẑ(α1E · ẑ)− α1E
[4πε0]R3

]

= −
α2
1α2(E2x + E2y + 4E2z )

2[4πε0]2R6
. (4.75)

The third term of equation (4.73) describes the interaction energy of two randomly

oscillating electric dipole moments, which are induced at the corresponding two

species by the random zero-point radiation field. Using equation (4.67) and (4.69)
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for E0(R, t) and Eµ1(R, t), respectively, one obtains

∆E3 =− α1α2

[4πε0]2

〈
2∑

λ=1

2∑
λ′=1

∫∫
d3k d3k′ h(k, λ)h(k′, λ′) cos[k′zR− ω′t+ θ(k′, λ′)]

×

{
e(λ

′)(k′)·e(λ)(k)

(
k2

R
cos[kR− ωt+ θ(k, λ)]− k

R2
sin[kR− ωt+ θ(k, λ)]

− 1

R3
cos[kR− ωt+ θ(k, λ)]

)

− e(λ′)z (k′) · e(λ)z (k)

(
k2

R
cos[kR− ωt+ θ(k, λ)]− 3k

R2
sin[kR− ωt+ θ(k, λ)]

− 3

R3
cos[kR− Ω t+ θ(k, λ)]

)}〉
, (4.76)

which is the same as equation (27) of Ref. [68]. Taking the same mathematical steps

as in Refs. [67] and [68], the corresponding interaction energy can be obtained as

∆E (3)
2 = − 23~c

[4πε0]2
α1α2

4πR7
, (4.77)

which is the well-known retarded dispersion interaction. Altogether, this gives the

total interaction energy

∆E (R) =
α1α2(E2x + E2y − 2E2z )

[4πε0]R3
−

(α2
1α2 + α2

2α1)(E2x + E2y + 4E2z )

2[4πε0]2R6
− 23~c

[4πε0]2
α1α2

4πR7
,

(4.78)

where the counterpart of the interaction energy (4.75), obtained by exchanging α1

and α2, is already added as well to the total interaction.

A remarkable advantage of stochastic electrodynamics is that the origins of

all contributions to the total interaction energy can be easily understood from a

(semi)classical point of view. The interpretation of the results that were obtained

so far in this chapter can be given based on the expressions (4.73) and (4.78). The

first term of equation (4.78) is identical to its counterpart in equation (4.28) as well

as to equations (4.33) and (4.48), which is evidently the interaction energy of the

two static electric dipoles induced by the external field. Therefore, it can be consid-

ered as a field-induced electrostatic interaction. The second term of the interaction

energy (4.78) is identical to its counterpart in equation (4.28) as well as to equa-

tions (4.35) and (4.56). This interaction energy corresponds to the energy of a dipole

oscillator, induced by the electric field of the static field-induced dipole of the other

oscillator, interacting with the same field. The nature of this interaction is very

similar to the polarization (or induction) interaction between atoms with perma-

nent dipole moments. Hence, let us call this term as the field-induced polarization
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interaction. The third term of equation (4.78) describes the well-known Casimir-

Polder dispersion interaction between two atoms corresponding to the QED result

for the retarded case of large interatomic separations. Its nonretarded counterpart

is given by the third term of equation (4.28) as well as by equation (4.36).

All the above interaction terms are obtained in the lowest order of coupling,

as it was assumed in equation (4.70). However, it is straightforward to consider

higher orders of couplings between the oscillators within the framework of stochastic

electrodynamics. To this end, one has to take into account the effect of the electric

dipoles of the oscillators on the fields that they are interacting with and consider the

resulting interactions in a self-consistent approach. For instance, when an external

static electric field is applied to a system of two interacting atoms or molecules, the

external field polarizes them and induces static dipoles, µ
(0)
i , in each ith center of

charge, as depicted in Fig. 4.5. Thus the zeroth-order of coupling, with an interaction

energy U (00), occurs between the two externally induced dipole moments, µ
(0)
1 and

µ
(0)
2 . In their turn, each of these dipole moments induces another static dipole

moment, µ
(1)
i , on the other atom. Therefore, the next level of coupling, with an

interaction energy U (10) + U (01), occurs between a secondly induced dipole moment

of an atom with the dipole moment of the other atom induced by the external field:

µ
(1)
1 ↔ µ

(0)
2 and µ

(0)
1 ↔ µ

(1)
2 . Higher orders of coupling can be described similarly.

The total field-induced interaction energy can be obtained from summing up all such

different contributions which form an infinite series

U =
∑

k=0,1,2,...

∑
l=0,1,2,...

U (kl) . (4.79)

Here, U (kl) denotes the dipole-dipole interaction energy

U (kl) =
R2(µ

(k)
1 · µ

(l)
2 )− 3(µ

(k)
1 ·R)(µ

(l)
2 ·R)

ηkl (4πε0)R5
, (4.80)

where ηkl is a constant prefactor related to the order of induced dipoles. The leading

contribution in the series (4.79), which is U (00) with η00 = 1, corresponds to the

first term of the interaction energy (4.78). All further contributions to the infinite

series (4.79), with k > 0 and/or l > 0, involve dipoles induced by electric fields of

other induced dipoles. Each time such a dipole moment of one oscillator is induced

by an electric field of an induced dipole of another oscillator, where the field is given

by equation (4.68). The sum of the corresponding first two contributions, U (10) and

U (01) with η10 = η01 = 1/2, describe the field-induced polarization energy related

to the second term of equation (4.78). Going further, the sums U (11) + U (20) +

U (02) and U (21) + U (12) + U (30) + U (03) correspond, respectively, to the third and

fourth terms in equations (4.26) and (4.27). This analysis shows that the infinite

series (4.79) is equivalent to the one obtained in Section 4.2 from the exact QM

solutions, equations. (4.21)–(4.24).
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Figure 4.5: The hierarchy of dipole moments induced by different electric fields are shown for

each species: µ
(0)
i are the initial dipoles induced by the external field; µ

(1)
i are the dipoles induced

by the electric fields of the dipoles µ
(0)
i ; µ

(2)
i are the dipoles induced by the fields of the dipoles

µ
(1)
i ; and so on.

A similar consideration of higher-order couplings between fluctuating dipoles

is well-known from literature for the dispersion interactions [121]. The lowest or-

der of coupling occurs between fluctuating dipole moments induced by the random

zero-point radiation field and results in the London/Casimir-Polder dispersion in-

teraction for the nonretarded/retarded regime. Due to the employment of the QDO

model, the exact diagonalization approach (Section 4.2) successfully captures all

such higher-order coupling terms on equal footing for both, the field-induced elec-

trostatic/polarization and dispersion interactions.

4.6 Application to atomic and molecular systems

In this section, the formulas derived in the previous sections are applied to nucleo-

electronic systems, considering argon-argon and benzene-benzene as two represen-

tative examples for atomic and molecular dimers, respectively. The chosen exam-

ples allow to study field-induced effects on intermolecular interactions in systems of

varying polarizability, for different configurations of the considered dimers and the

applied electric field. In what follows, I discuss the three contributions to the total

force, F = −∇R[∆E (R)], stemming from field-induced electrostatics, field-induced

polarization, and dispersion contributions to the interaction energy, ∆E (R). The

latter is given by equations (4.28) and (4.78) for the nonretarded and retarded

cases, respectively. The obtained either negative or positive forces correspond to

the attractive and repulsive interactions, respectively. Among the three forces, the

field-induced polarization and dispersion forces always remain attractive, whereas

the field-induced electrostatic force can change its sign depending on the direction

of the applied electric field with respect to the line connecting the two species. This
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force is attractive when the field is applied along the inter-species separation, and

is repulsive when the field is perpendicularly applied to the dimer. The obtained

three forces scale as ∝ α2E2/R4, ∝ α3E2/R7, and ∝ α2~ω/R7 (∝ α2~c/R8) for the

field-induced electrostatic, field-induced polarization, and nonretarded (retarded)

dispersion interactions, respectively. From these scaling laws, it follows that the

field-induced polarization force can become comparable to the field-induced elec-

trostatic force only for systems with high polarizabilities. In addition, the two

field-induced forces similarly depend on the strength of the applied electric field,

whereas the dispersion force does not depend on it.

First, I consider the argon dimer. The atomic dipole polarizability of argon,

α = 11.1 a.u. [75], is quite small. Consequently, the field-induced forces (especially,

the field-induced polarization force) are weak for this system. In order to obtain

reasonable force values, the consideration is restricted to the nonretarded case corre-

sponding to smaller interatomic separations. Since, for argon, ωe = 0.7272 a.u. [75],

one has λe = 2πc/ωe = 1183.7 a.u. ≈ 626 Å. For the present analysis, the interatomic

distance is chosen to be R = 5 Å, which corresponds to the nonretarded regime,

R � 600 Å. Figure 4.6 shows that, for two argon atoms separated by the chosen

distance, the field-induced polarization force becomes negligible in comparison to

the dispersion and field-induced electrostatic forces. Therefore, it is enough to take

into account the latter two forces only. Their strength is governed by an interplay

between how large is the interatomic distance and how strong is the static electric

field. In addition, the external field can be applied in two qualitatively different

directions, parallel and perpendicular to the line connecting the two argon atoms.

For the static electric field applied along the interatomic distance, the field-induced

electrostatic interaction is attractive and it can only assist the dispersion attraction.

By contrast, for the electric field applied perpendicular to the interatomic distance,

the field-induced electrostatics becomes repulsive which makes it competitive with

the dispersion attraction. For this case, at the field strength of about 1.8 V/Å, the

net force vanishes.

Let us now consider the interaction of two molecules. The benzene dimers have

been often used as one of the simplest systems to study vdW interactions involving

two aromatic molecules of π−π type, which play a key role in chemistry and biology.

Here, a uniform static electric field is applied to two different configurations of the

benzene dimer, namely the T-shaped structure with C2v symmetry (T (C2v)) and

the Sandwich structure with D6h symmetry (SW (D6h)) [150, 151], as illustrated in

Fig. 4.7. The in-plane, out-plane, and average (isotropic) dipole polarizabilities of a

benzene molecule are well-known [91] as (in atomic units) αin = 82.00, αout = 45.10,

and αavg = 1
3
(αxx + αyy + αzz) = 69.70, respectively. Then, the QDO characteristic

frequency of benzene can be computed according to equation (3.4) as

ωe = 4C6/(3 ~α2
avg) = 0.4729 a.u. ,
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Figure 4.6: Nonretarded interatomic forces for two interacting argon atoms separated by R=5 Å.

The symbols || and ⊥ indicate the two cases when the field is either parallel or perpendicular to

the line connecting the centers of the atoms. For a field of the strength ≈ 1.8 V/Å perpendicularly

applied to the dimer, the repulsive field-induced (FI) electrostatic force compensate the attractive

field-induced polarization and dispersion forces.

Figure 4.7: Two configurations of benzene dimers; left: T-shaped structure T (C2v), and right:

Sandwich structure SW (D6h).

where the dispersion coefficient of the benzene–benzene vdW interaction, C6 = 1723

in atomic units, is taken from Ref. [152]. Similarly, the corresponding wavelength is

obtained as

λe = 2πc/ωe = 1820 a.u. ≈ 963 Å .

Therefore, the nonretarded (retarded) regime of benzene–benzene interactions is

valid for those intermolecular distances R that satisfy the condition R � 103Å

(R� 103Å).

For a varying strength of a uniform static electric field applied to the ben-

zene dimers, Figs. 4.8 and 4.9 show the intermolecular forces for the nonretarded

(R = 5 Å) and retarded (R = 2000 Å) regimes, respectively. The magnitude of the

intermolecular forces (as well as the strength of the applied static electric fields)

in the retarded regime is drastically smaller compared to the nonretarded regime.

Nevertheless, by comparing Figs. 4.8 and 4.9, one can see the same qualitative be-

havior for both regimes. Although being negligible for the considered benzene dimers

in practice (see Fig. 4.9), the intermolecular forces corresponding to the retarded

regime can become measurable for the case of extended (bio)molecules possessing

large polarizabilities. The presented results show that in both, nonretarded and

retarded cases, the total field-induced force can overtake the dispersion force for

certain strengths of the static field, if the latter is applied perpendicularly to the

intermolecular distance. The field strength at which the field-induced and dispersion
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forces cancel out depends on the intermolecular distance and the structure of the

dimer. At any separation distance, the needed field strength for such compensation

is always smaller for the SW structure compared to the T-shaped structure.

Figure 4.8: Nonretarded intermolecular forces for two interacting benzene molecules separated

by a distance of R = 5 Å and possessing (a) T-Shape or (b) Sandwich structure. The symbols ||
and ⊥ indicate the field applied either parallel or perpendicular to the line connecting the centers

of the molecules. For an external field of the strength E ≈ 2 V/Å perpendicularly applied to a T-

shaped benzene dimer the repulsive field-induced (FI) electrostatic force compensate the attractive

field-induced polarization and dispersion forces while such compensation in Sandwich structure of

benzene dimer occurs at E ≈ 1.5 V/Å.

Figure 4.9: Retarded intermolecular forces for two interacting benzene molecules separated by

a distance of R = 2000 Å and possessing (a) T-Shape or (b) Sandwich structure. The symbols ||
and ⊥ indicate the field applied either parallel or perpendicular to the line connecting the centers

of the molecules. For an external field of the strength E ≈ 2 × 10−5 V/Å perpendicularly applied

to a T-shaped benzene dimer, the repulsive field-induced (FI) electrostatic force compensate the

attractive field-induced polarization and dispersion forces while such compensation in Sandwich

structure of benzene dimer occurs at E ≈ 1.5× 10−5 V/Å.

Figure 4.10 shows the strength of the static field at which the net force vanishes

versus interspecies distance, when the field is perpendicularly applied to the benzene

and argon dimers. As R increases (starting from values close to equilibrium distances

in the dimers) the strength of the compensating field (E0) becomes smaller. For

a range of R which is more probable in stable dimers (slightly larger than the
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equilibrium distance of the dimers in the absence of the external field), E0 is always

larger for the Ar-Ar system compared to both, T–shaped and Sandwich structures

of benzene dimer. This difference indicates that electric fields from external sources

and nearby molecules should have a stronger influence on larger molecules.

Figure 4.10: Strength of a static electric field, perpendicularly applied to benzene and argon

dimers, at which the field-induced and dispersion forces cancel out, is shown versus intermolecu-

lar/interatomic distance (represented in logarithmic scale). The nonretarded regime of the molec-

ular interactions is considered, which corresponds to the results of Figs. 4.6 and 4.8.

4.7 Discussion and Conclusion

The QDO model, as an efficient tool for describing atomic/molecular linear polariza-

tion response, was employed to derive different forces acting on two separated species

(atoms or molecules) under the combined action of a static–electric and vacuum–

radiation fields. The obtained three lowest-order (with respect to the inverse sepa-

ration distance, R−1) contributions to these forces stem from the field-induced elec-

trostatics (∝ R−3), field-induced polarization (∝ R−6), and dispersion (∝ R−6/R−7)

interactions. All the three contributions to the interaction energy form an infinite

series due to the self-consistent mutual polarization of the interacting species (see

Sections 4.2 and 4.3). The field-induced interactions are not influenced by the retar-

dation effects, whereas the dispersion interaction shows a conventional behavior for

nonretarded and retarded regimes, both of which are not affected by static electric

fields (the hyperpolarization effects are neglected). For the considered unconfined

atoms in isotropic and homogeneous vacuum, the field-induced polarization and dis-

persion forces remain attractive. In contrast, the field-induced electrostatic force

becomes attractive or repulsive for the electric field applied either along the sep-

aration distance or perpendicular to it, respectively. Therefore, it is possible to

tune the intermolecular interactions by a variation of the strength and the direc-

tion of the applied electric field. In order to resolve many existing discrepancies

and strengthen partial results available in the literature, the present comprehensive
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framework is based on four complementary approaches rooted in quantum mechan-

ics, quantum electrodynamics, and stochastic electrodynamics. The employment of

these four approaches leads to a systematic and robust characterization of inter-

molecular interactions under the combined action of an externally-applied field and

the ever-present vacuum field. A generalization of the presented framework to many

QDOs, higher multipole contributions, as well as to the case of spatially-confined

systems can be performed in a straightforward manner.

In order to assess the potential of this framework for practical applications, I have

considered and compared argon-argon and benzene-benzene dimers, as representa-

tive models for atomic and molecular systems. It was shown that the field-induced

polarization plays a minor role for the considered dimers. However, the polariza-

tion contribution can become important for highly-polarizable systems (especially,

systems excited by optical modes with frequencies close to the molecular character-

istic frequencies) since field-induced polarization scales with the cube of the dipole

polarizability, whereas the other two forces scale with the square of the dipole polar-

izability. Generally, the effect of a static electric field can be assumed negligible for

small atomic systems since the field-induced electrostatic force can compete with

the dispersion force only at large separations for reasonable electric fields (much

weaker than the internal atomic one). However, the situation becomes more intri-

cate for large molecular systems, especially at the nanoscale. Here, the effective

normal-mode polarizabilities become highly anisotropic and can easily reach 2–3 or-

ders of magnitude higher values than those of small molecules [77]. This may lead

to a non-trivial interplay between field-induced forces with the dispersion one. In

addition, when increasing the size of the system, the effective separation distance

between its components becomes larger. In turn, the increased separation enhances

the field-induced electrostatic force with respect to the other forces, which can ei-

ther amplify or weaken the net intermolecular forces depending on the direction of

an applied field. Consequently, one can suggest that the action of external electric

fields should become relevant for macromolecules and nanoscale objects.

It is important to embed the presented derivations and results into the state of

the art in the literature. As was mentioned above, for the field-induced forces to

become comparable to the dispersion force at short separation distances, one needs

to apply quite strong electric fields in case of atomic systems. Indeed, the effective

electric field acting from the argon nucleus on its valence shell is ∝ 10 V/Å. On the

other hand, the field-induced electrostatic force in the Ar-Ar dimer with R = 5 Å

becomes comparable to the dispersion force at an external field of ∝ 1 V/Å. Thus,

for reasonable strengths of external electric fields, the field-induced forces are not

relevant in the case of vdW-bonded atomic systems. This statement is in agreement

with the conclusion of Ref. [27], where the leading contribution to the field-induced

electrostatic interaction was derived based on classical electromagnetic theory. Nev-
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ertheless, the field strength required to make the field-induced electrostatic force

comparable to the dispersion one rapidly decreases with increasing R, as illustrated

by Fig. 4.10. Consequently, at large interatomic distances, particularly in the re-

tarded regime, the field-induced interactions can become dominant even for weak

applied fields. In addition, increased field effects are expected for large molecular

systems. As was already mentioned above, in such systems the many-body effects

can drastically influence the strength of the interaction and therefore much weaker

applied fields can cause strong effects. A specifically interesting case is when an

external electric field is due to a single optical mode. As discussed in Ref. [27], the

difference present for the field-induced electrostatic interaction in that case can be

effectively described by replacing the static polarizability α ≡ α(0) by its frequency-

dependent counterpart α(ωopt), where ωopt is the frequency of the optical mode.

Thus, by choosing a proper optical frequency, one can drastically enhance the po-

larizability α(ωopt) ∝ (ω − ωopt)
−1. Taking this into account, one expects that for

large molecules such a setup can significantly increase the role of the field-induced

polarization force, as not considered in Ref. [27] but revealed in the present work.

The fact that, within the considered lowest order of coupling between mat-

ter and vacuum radiation field, the dispersion interactions between two atoms or

molecules are not affected by a static electric field stems from their quantum-

mechanical nature. Since an applied uniform static field influences fluctuations

of neither the vacuum radiation field nor electronic densities in the lowest order of

couplings, it cannot affect the leading order term of dispersion interactions. This

implies that, neglecting contributions coming from dispersion–induced changes of

polarizabilities [10–13, 15, 19, 23, 24, 114, 115] and dispersion–induced dipole mo-

ments [16, 18, 20, 21, 122–130] as well as static field–induced molecular hyperpo-

larization effects [116, 117], under static electric fields the leading contributions to

the dispersion energy remain ∝ R−6 and ∝ R−7 for the nonretarded and retarded

regimes, respectively. Within the perturbative technique of the QED theory, these

dispersion interactions arise from the 4th-order of the coupling of matter to the

vacuum radiation field and the two interacting atoms exchange a pair of virtual

photons. However, the above commonly accepted picture was recently questioned

by Fiscelli et al. [34] who obtained, within the 2nd-order of perturbation, the dis-

persion interaction energy between two atoms under static electric fields as ∝ R−3

and ∝ R−4 for nonretarded and retarded regimes, respectively. A careful considera-

tion of the approach used by Fiscelli et al. [34] can identify an error in their analysis

caused by employing perturbation theory in two steps. Namely, in Ref. [34], first the

wavefunctions of a two-level “hydrogen” atom in a static electric field were obtained

from perturbation theory, by considering the external field as a perturbation. Then,

the obtained wavefunctions were used as unperturbed eigenstates of an atom (under

the static field) to be coupled to another “hydrogen” atom through the vacuum
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radiation field. Considering this coupling as a new perturbation, Fiscelli et al. [34]

used perturbation theory for the second time. As mentioned above, the “unper-

turbed” wavefunctions employed for this step, were obtained in Ref. [34] from the

first use of perturbation theory by the authors. However, since these “unperturbed”

wavefunctions do not form a complete set, strictly speaking, they cannot be used for

expanding the eigenstates of the system of two interacting “hydrogen” atoms under

a static electric field. This incompletness of the wavefunctions is the origin of the un-

usual scaling law of R−4 obtained in Ref. [34] for the retarded regime. One can show

that, by applying the Gram-Schmidt orthonormalization procedure to “hydrogen”

wavefunctions under a static electric field obtained by Fiscelli et al. [34], their term

∝ R−4 transforms to ∝ R−3. Hence, there should be no influence of the retardation

on the interaction energy obtained in Ref. [34], which already suggests that the R−3

term derived in that work is of electrostatic origin. In addition, the fact that the

interaction energy was obtained in Ref. [34] from the 2nd-order of the QED pertur-

bation theory should be emphasized. Taking into account the detailed derivation

performed within Section 4.4, one can finally conclude that the (corrected) results

of Fiscelli et al. [34] correspond to the field-induced electrostatic interaction.

The above discussion underlines the importance of robust and comprehensive

frameworks. Based on molecular quantum mechanics and quantum electrodynamics,

the framework presented in this work employs the QDO model as a well-established

coarse-grained formalism to describe electronic response properties and dispersion

interactions. Unlike the “two-level atom” model, widely used in quantum optics and

quantum electrodynamics, the QDO model allows exact solutions under the effects

of a variety of external fields and/or boundary conditions. With the developed

extension of the efficient QDO model to the presence of external static electric

fields, this framework paves the way for a deeper understanding of inter- and intra-

molecular interactions under various electromagnetic fields. The further possible

studies can capture considerations of nontrivial effects of geometric confinements

and boundary conditions on these interactions, with an eventual practical use of

such knowledge especially in chemistry, nanoscience, and biophysics. The derived

formalism provides a reliable picture of the field-induced and dispersion interactions

going from the nonretarded to retarded regime, and is amenable to various extensions

from the two-body to many-body interactions between atoms or molecules. Indeed,

the analytical solution given by equation (4.28) can be straightforwardly generalized

to any number of QDOs, each of them under a different static field. The latter

approach would allow to effectively model internal atom-dependent electric fields

present in large molecules.

As a brief summary, I enumerate several potential implications and possible

extensions of the presented work in this chapter:

• Employing the QDO model within QM and QED theory of intermolecular in-
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teractions enables studying atomic and molecular systems under the influence

of external sources or fields.

Due to the quadratic form of the QDO Hamiltonian, the problem of coupling

this quantum-mechanical system to external fields and/or boundary condi-

tions is analytically solvable within the dipole approximation or the multipole

expansion of the Coulomb potential. Hence, one can perform perturbative

QM and QED calculations of intermolecular interactions between atoms or

molecules. This allows to investigate retarded and nonretarded interactions

in molecular systems of increasing complexity and unambiguously classify the

different types of field-induced molecular interactions.

• In the nonretarded regime, the effect of external fields on intermolecular in-

teractions can be straightforwardly generalized to systems with an arbitrary

number of interacting species by implementing field-induced changes in a sys-

tem of many interacting QDOs.

As discussed above, an arbitrary number of QDOs coupled through the dipole-

dipole potential under a static electric field is an exactly solvable problem in

quantum mechanics. Taking into account the field-induced redistributions of

electron densities in many-body systems, one can investigate the effect of ex-

ternal fields on many-body interactions.

• Using the QDO model, one can capture the effect of intramolecular local fields

in large molecules.

The opportunity to diagonalize the total Hamiltonian of QDOs under a static

field, like in equation (4.17), implies that using the QDO model one can also

capture the effect of intramolecular fields acting on atoms in a molecule. In-

deed, covalent interactions cause charge transfers between atoms, which leads

to a redistribution of local centers of positive and negative charges over the

molecular space. This effect can be described via local effective external fields

acting on atoms. Using the exact-diagonalization method of Section 4.2, one

can take into account the effect of such fields via spatial shifts of the QDO

centers of oscillation. Such generalization would extend the present framework

to the study of intramolecular interactions.

• The dispersion interaction between two atoms, as a result of quantum-mechanical

fluctuations of the electronic density, is not affected by external uniform static

fields.

Dispersion interactions originate from quantum-mechanical fluctuations of elec-

tronic structures of matter and the vacuum field. Consequently, these interac-

tions cannot be influenced by uniform static fields. However, static fields in-

ducing electrostatic and polarization interactions, can qualitatively and quan-

titatively change total intermolecular interactions. These hypotheses were
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comprehensively investigated and confirmed in the present work by employing

four complementary approaches.

• Employing the QDO model for electronic polarization response allows one to

better understand and classify QED effects in atoms and molecules.

Perturbation theory, as a powerful mathematical tool, is widely used in QM

and QED, including its various applications in physics and chemistry. This

approach considers the effects of small perturbations on the properties of a

QM system. Within quantum mechanics, this implies that states of the per-

turbed system can be expanded in terms of states of the unperturbed system,

which requires the latter to form a complete set. Employing the QDO model,

as an exactly solvable problem under a variety of physical conditions, enables

us to apply straightforward perturbation theory techniques to coupled QDOs

and obtain robust classification of different types of field-induced molecular in-

teractions. This is an especially interesting approach to search for non-trivial

field-induced interactions in QED and quantum-field theory.

• Intermolecular interactions can be tailored by applying static electric fields,

which induce field-dependent electrostatic and polarization forces.

Attractive/repulsive character of the obtained field-induced electrostatic force

depends on the orientation of the applied field with respect to the separation

distance while the field-induced polarization force is always attractive. When

the external field is applied perpendicularly, the field-induced electrostatic

force becomes repulsive. In such case, the interplay between the field–induced

and dispersion forces can be used as a mechanism for controlling intermolecular

interactions.

Before summarizing the results of this chapter, it is important to mention re-

maining limitations of the employed coupled QDO model, whose resolution would

be needed to form a complete physical picture of intermolecular interactions under a

static electric field. As was exhaustively discussed in Ref. [75], a QDO does possess

multipole hyperpolarizabilities starting from the dipole-dipole-quadrupole one, but

the first (β) and second (γ) hyperpolarizabilities vanish due to the spherical symme-

try and Gaussian wavefunction, respectively. Therefore, the QDO model does not

fully capture the higher-order contributions to the intermolecular interaction energy

which are related to either dispersion-induced or field-induced changes in electric

dipoles due to molecular β and γ hyperpolarizabilities [10,13,15,18,19,116,117].

In summary, four complementary formalisms were derived and discussed, which

constitute a robust framework for investigating molecular interactions at arbitrary

separation distances under the influence of uniform static electric fields. It was shown

that such fields induce static atomic polarization, offering an opportunity to tune
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molecular interactions via an interplay of field-induced electrostatics/polarization

as well as dispersion interactions. To conclude, it should be remarked that the

presented framework barely scratches the surface of possible developments and ap-

plications in the field of molecular interactions under the combined action of external

and vacuum fields.



Chapter 5

Many–Body Interactions in Static

Electric Fields

5.1 Introduction

Long-range intermolecular forces are dominant when distances between interacting

species are large enough (typically larger than a few angstroms) to ignore exchange

interactions. In such situations, intermolecular interactions have electromagnetic

nature and, depending on the properties of the interacting entities, can exhibit

different features (e.g. can be attractive or repulsive and may or may not be de-

scribed by pairwise additive potentials). Based on these features and the responsible

mechanisms for the interactions, long-range intermolecular forces can be understood

in terms of electrostatic, induction, and dispersion interactions between atoms or

molecules. As it was briefly discussed in Chapter 2, it has been shown that induction

and dispersion interactions are not pairwise additive [3, 4, 6, 45], while electrostatic

interactions can be expressed as a sum of pairwise interactions. Considering the

fact that the dispersion potential is an ever-present contribution to the total inter-

action energy between atoms or molecules, one can conclude that intermolecular

interactions are not pairwise additive in general. In a perturbative manner, the

total interaction can be written as an expansion including two-body contributions,

three-body contributions, four-body contributions, and so on, namely

∆Etot =
∑
a,b

∆Eab +
∑
a,b,c

∆Eabc +
∑
a,b,c,d

∆Eabcd + · · · , (5.1)

where the interacting bodies can be atoms, molecules, or macroscopic objects. In

this expansion, usually the two-body term contributes the most to the interaction

energy, whereas the three-body contribution is the next leading-order term and so

on. For that reason, pairwise potentials are frequently considered as approxima-

tions to the total interaction energy. While the pairwise approximation provides a

reasonable estimate of the interaction energy for systems with a small number of

75
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interacting atoms, e.g. small molecules, the accuracy of pairwise methods reduces

considerably in the case of large systems and their results can significantly deviate

from experimental data. For example, computing the energy of Ar and Xe crystals

by only accounting for pairwise interactions yields, respectively, 10% and 13% er-

rors compared to experimental binding energies found for these systems, where the

errors are attributed to the neglect of non-additive many-body contributions to the

dispersion energies [45]. Although such errors might not look considerable, they can

play an important role in the structure of many molecular systems as the energy

differences between equilibrium structures are quite small. For instance, in water

and ice the triple-dipole contribution, that quantitatively seems to be negligible,

has significant effects on the structures of small water clusters [4]. By employing a

parameter-free method [80] based on a system of coupled quantum Drude oscillators,

Gobre and Tkatchenko have shown that in nano-structured materials, the disper-

sion coefficients are functions of the nanostructure size and deviate significantly from

pairwise additive picture [78]. It has also been shown that dispersion interactions in

nano-materials remain important at larger distances than what is typically assumed

and follow different scaling laws depending on the system size [77, 78]. In molec-

ular systems that exhibit permanent multipole moments the situation is expected

to be more pronounced as the non-additivity of induction interactions matters in

addition to many-body dispersion effects. The unexpected structures of the alkaline

metal halides are well-known examples for highlighting the importance of many-

body effects that are attributed to the non-additive contributions to the induction

interactions [4].

As it was discussed in Chapter 4, electrically neutral molecular systems ac-

quire static electric multipole moments in external static electric fields. These

field–induced moments, perturbatively speaking, contribute to the intermolecular

potentials by electrostatic and polarization interaction energies. In Section 2.4 it

was shown that the field-induced polarization couplings have similar characteris-

tics to induction interactions in molecules with permanent multipole moments and

exhibit non-additive properties. Considering the ever-present dispersion contribu-

tions, one can expect significant many-body effects on the behavior of intermolecular

interactions in external static electric fields.

The next section presents the formulation of many-body interactions in an ex-

ternal electric field within the framework of quantum mechanics. In this formalism,

the QDO model is employed to describe atomic responses in the coupling with other

atoms as well as with electric fields. The presented formulations then will be ap-

plied to a benzene dimer to obtain an estimation of the many-body effects for this

small molecular system by comparing the results of this chapter with the results

that were shown in Section 4.6 for a simplified model of a benzene dimer. Finally,

the application of the present study to carbon nano-wires is discussed in detail for
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different system sizes and the effects of many-body field-induced contributions are

evaluated. Suggestions for tailoring inter-chain potentials through the application

of static electric fields are discussed eventually at the end of this chapter.

5.2 Many-Body Molecular Interactions in

External Fields

The Hamiltonian of a system of interacting many QDOs in the dipole approximation

to the Coulomb coupling is given by

Hmb =
N∑
a=1

[
− ~2

2ma

∇2
a +

1

2
maω

2
ar

2
a

]
+

1

2

N∑
a,b=1

qaqb ra ·T(ab) · rb , (5.2)

where N is the number of interacting QDOs and ma, qa, and ωa represent mass,

charge, and frequency of the a-th QDO, respectively, whereas ra is displacement

of the a-th QDO centered at Ra. In this Hamiltonian, T(ab) is the instantaneous

dipole-dipole interaction tensor between the a-th and b-th QDOs, with the ij-th

Cartesian components defined as

4πε0T
(ab)
ij = −3RiRj −R2δij

R5
, (5.3)

where R = |Rb − Ra|. Rescaling the position vectors ra by masses of the QDOs

as r′a = 1√
ma
ra and rewriting the many-body Hamiltonian in terms of the new

displacement vectors, equation (5.2) becomes

Hmb =
N∑
a=1

[
−~2

2
∇2

a +
1

2
ω2
ar

2
a

]
+

1

2

N∑
a,b=1

qa qb√
mamb

ra ·Tab · rb , (5.4)

where primes are dropped for simplicity reason. Making use of the equality qa/
√
ma =

ωa
√
αa , the many-body Hamiltonian (5.4) can be written in the matrix notation as

Hmb = K +
1

2
X†M X , (5.5)

where

X† = (r1 , r2 , r3 , · · · ) (5.6)

and K =
∑N

a=1

[
−~2

2
∇2

a

]
is the total kinetic energy operator, while the second term

on the right hand side of equation (5.5) gives the potential energy operator, including

the harmonic potentials of isolated QDOs as well as the Coulomb couplings. In this

Hamiltonian, M is a 3N × 3N matrix built up from the 3× 3 blocks Mab defined as

Mab = ω2
aδab + ωa ωb

√
αa αb Tab(δab − 1) . (5.7)

Having the eigenvectors of M, one can form a unitary matrix U to diagonalize M

using a unitary transformation as M = U†MU where M is a diagonal matrix with
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the elements corresponding to normal mode frequencies of the interacting system.

Using the same unitary matrix one can obtain normal mode coordinates in which the

total system of N interacting QDOs is projected into a system of N non-interacting

QDOs featured by normal mode frequencies and position (column) matrix

X̃ = U†X . (5.8)

Hence the many-body Hamiltonian can equivalently be given in terms of the normal

mode coordinates and the corresponding frequencies as

Hmb = K̃ +
1

2
X̃†M X̃ . (5.9)

In the presence of external static electric fields, an extra potential enters into the

Hamiltonian of each QDO due to its interaction with the external field. In dipole

approximation, the total Hamiltonian of the atom–field couplings is given as

Haf = −
N∑
a=1

µa · Ea = −
N∑
a=1

qara · Ea , (5.10)

where Ea is the external static electric field at the position of the a-th QDO, that

is uniform over the whole volume of the QDO. Transforming this Hamiltonian to

the primed mass-rescaled coordinate systems yields (the primes are dropped for

simplicity as before)

Haf = −
N∑
a=1

ra · (ωa
√
αa Ea) = −

N∑
a=1

ra · Fa = −X† · F . (5.11)

In (5.11) the vector Fa is defined such that Fa = ωa
√
αa Ea which in a matrix

form can be represented as F† = (F1 , F2 , F3 , · · · ). Expressing the QDO–Field

interaction Hamiltonian Haf in terms of the normal mode positions, X̃, one has

Haf = −X̃†U†F = −X̃† F̃ , (5.12)

where F̃ = U†F. Therefore, the Hamiltonian of the total system including QDOs

and the external fields reads

Htot = Hmb +Haf = K̃ +
1

2
X̃†MX̃− X̃†F̃ , (5.13)

that can be rewritten in the following form

Htot = K̃ +
1

2

(
X̃−M−1F̃

)†
M
(
X̃−M−1F̃

)
− 1

2
F̃†M−1F̃ . (5.14)

The last term of equation (5.14) shows field-dependent energy shifts in the ground

states of the normal-mode oscillators. The first two terms of equation (5.14) are

similar to the Hamiltonian (5.9) except that in Htot centers of oscillations of the
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normal-mode displacements are shifted by factors that depend on the external fields.

Thus the ground state energy of this system is given by

Etot =
1

2

3N∑
`=1

(
~
√

M`` − F̃†M−1F̃
)

=
1

2

3N∑
`=1

(
~
√
M`` −

F̃2
`

M``

)
. (5.15)

Hence, the total interaction energy, including all field-induced interactions and

many-body interactions between QDOs, can be obtained by subtracting the ground

state energy of the non-interacting QDOs in external fields, i.e.

E0 =
1

2

N∑
a=1

(
3ωa − αa Ea · Ea

)
, (5.16)

from the ground-state energy of the fully interacting system, Etot . Therefore, the

total interaction energy is given by

∆E =
1

2

3N∑
`=1

(
~
√

M`` −
F̃2
`

M``

)
− 1

2

N∑
a=1

(
3~ωa − αa Ea · Ea

)
, (5.17)

which can be rewritten as

∆E = ∆EMBD + ∆EFI

=
1

2
~
( 3N∑

`=1

√
M`` −

N∑
a=1

3ωa

)
+

1

2

( N∑
a=1

αa |Ea|2 −
3N∑
`=1

F̃2
`

M``

)
(5.18)

where ∆EMBD is the many-body dispersion interaction energy and ∆EFI is the many-

body field-induced interaction energy. It can be straightforwardly seen that in the

case of two interacting QDOs expression (5.18) reduces to the two-body interaction

energy (4.25) with the components given by equations (4.26) and (4.27).

5.3 Application to atomic and molecular systems

In the following section, the derived formula for many-body interactions in external

static fields, i.e. equation (5.18), is applied to molecular systems. To this end, the

formalism presented in Section 5.2 is implemented into the many-body dispersion

(MBD) framework introduced in Ref. [81]. The first molecular system that is con-

sidered here is a simplified model of a benzene dimer with the Sandwich structure

and D6h symmetry (SW (D6h)) [150] that was already introduced in Section 4.6.

After that, a system of two interacting carbyne chains is considered to explore the

dependence of the field-induced many-body effects on the length of the chains and

the inter-chain separation. For each of this two systems, the interaction energies and

forces are presented for different field-species alignments with various magnitudes of

the static electric field.
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Before presenting the detailed analyses for the benzene dimer and the carbyne

chains in external static fields, here I briefly list the tests that are performed for

each of the aforementioned systems and the purposes of these tests as follows:

a) Benzene dimer:

i) Considering the net intermolecular force for several field magnitudes and

different field-dimer alignments to examine the dependence of the field-

induced forces and their interplay with the dispersion force on the direc-

tion and the strength of the applied field.

ii) Comparing the total intermolecular interaction energy obtained from the

many-body approach with the results of the two-body method (presented

in Section 4.6 where the molecules were considered as point dipole polar-

izable QDOs) to evaluate the importance of the field-induced many-body

contributions to the total interaction energy.

b) Carbyne chains:

i) Performing a comparison between the total interaction energies/forces in

a carbon dimer and a system of two carbyne chains, each made of two

carbon atoms, in different external fields to evaluate the impact of field-

induced many-body interactions in the simplest many-body system with

only two-, three-, and four-body terms.

ii) Evaluating the impact of system size on the field-induced contributions to

the inter-chain interaction energy and force, by considering four systems

of two interacting chains with different number of carbon atoms per chain.

iii) Exploring the dependence of the field-induced effects on the field-chains

alignments by preparing three distinct configurations, namely: (1) field

parallel with the chains, (2) field perpendicular to the chains but parallel

with the inter-chain separation, and (3) field perpendicular to the plane

of the chains.

iv) Examining the behavior of the interaction energies and forces between

the chains in different fields at nanoscale inter-chain distances.

The net long-range intermolecular force in an SW (D6h) benzene dimer under

the influence of an external static electric field is depicted in figure 5.1 as a func-

tion of the intermolecular distance R for several magnitudes of the applied field.

This figure shows that the total force can drastically change due to the applica-

tion of a static electric field. Similar to the results of Section 4.6, an external field

parallel to the dimer enhances the benzene–benzene attraction while a field that is

perpendicularly applied to the dimer diminishes the attraction between the benzene

molecules. The plots of figure 5.1 indicate that to balance the field-induced forces
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Figure 5.1: Intermolecular many-body interaction force in a benzene dimer with SW (D6h) con-

formation under the influence of static electric fields. The intermolecular distance R0 at which

the interplay between the field-induced and dispersion forces results in a vanishing net force de-

pends on the strength of the perpendicular applied field. For the present examples the values of

R0[E⊥(V/Å)] are given from the plots as R0(0.35) = 11.68Å, R0(0.7) = 7.46Å, R0(1.05) = 5.81Å,

and R0(1.4) = 4.90Å.

against the dispersion force at shorter intemolecular distances, stronger fields are

required. Figure 5.2 illustrates a comparison between the results of two methods

for evaluating the effects of external fields on the interaction energy between the

benzene molecules: 1- the many-body approach with the interaction energy given

by equation (5.18), and 2- two-body approach corresponding to equation (4.25).

In both approaches, the interaction energies show similar qualitative trends with

Figure 5.2: Intermolecular interaction energy in a benzene dimer with SW (D6h) conformation

under the influence of external static electric fields, versus the intermolecular distance R. Left:

Numerical many-body results for the total interaction energy including many-body contributions

of both field-induced and dispersion potentials. Right: Analytical two-body results for the total

interaction energy by considering the molecules as point dipole polarizable QDOs with static

polarizabilities given as the average of the molecular polarizability of benzene.
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respect to the strength of the applied field and the intermolecular distance. Both

approaches indicate that applying an external field destabilizes the benzene dimer

when the electric field is perpendicular to the dimer, whereas it stabilizes the dimer

when the field is parallel with the dimer axis. These destabilization/stabilization

effects decrease as the intermolecular distance increases, whereas they increase with

the strength of the applied field. Therefore, tuning the strength and the direction

of the field enables us to manipulate the equilibrium distance of the dimer and its

conformation energy.

However, the two sets of plots in Fig. 5.2 show different quantitative field-induced

effects, especially for perpendicular field–dimer configurations (E⊥). In the two-body

approach, the total interaction energy becomes positive and grows faster with the

strength of the applied field, compared with the many-body case. This difference

can be understood by considering the perturbative expansions (4.26) and (4.27) as

well as the discussion given in Section 4.5. As previously mentioned at the be-

ginning of this chapter, a static electric field, perturbatively speaking, induces two

types of interactions between the benzene molecules, one of which exhibits pairwise

additive characteristics while the other is highly nonadditive. The leading-order

nonadditive field-induced term is the polarization interaction which is always at-

tractive while the leading-order term of additive contributions is the field-induced

electrostatic interaction which is repulsive when the field is perpendicular to the

inter-species distance in the dimer. In the two-body picture where the molecules

are represented by point dipole polarizable QDOs, the impact of the nonadditive

terms (mainly the polarization contribution) is underestimated. Therefore, the at-

tractive field-induced polarization term decays rather fast with R and the repulsive

Figure 5.3: Dispersion and field-induced intermolecular interaction energies from a two-body

point-dipoles model of benzene dimer with SW (D6h) conformation under the influence of static

electric fields, as functions of the intermolecular distance R. The field-induced polarization contri-

bution (FIpol) decays faster with R as the strength of the field increase.
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(pairwise additive) field-induced electrostatic term becomes dominant quickly as the

intermolecular distance increase (see Fig. 5.3). The impact of field-induced many-

body contributions will be discussed more detailed in the following, when the results

for many-body interactions in carbyne chains with different lengths are presented.

Figure 5.4: A carbon dimer (left) and a system of two carbyne chains each composed of two

carbon atoms (right). The interacting entities are separated by distance R.

(a) (b)

(c) (d)

Figure 5.5: Up: total long-range interaction energy (per atom) in a carbon dimer, (a), and in a

system of two carbyne chains each composed of two carbon atoms, (b), for different magnitudes and

directions of the applied field. Down: total interaction force for the same two systems, (c) and (d).

A static field that is perpendicularly applied to the carbon dimer (R) weakens the carbon-carbon

attraction. An external field applied to the interacting chains always enhances the inter-chain

attraction if the field is along the inter-chain separation R (along the z-axis), while it weakens the

attraction between the chains if the field is perpendicular to R (along the x- or y-axis).
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Figure 5.5 compares the effects of static electric fields on the interaction energies

and forces in two cases: 1- two single carbon atoms; 2- two carbyne chains each with

two carbon atoms, as depicted in figure 5.4. In both cases the interacting entities

are assumed to be separated along the z-axis with a vector R = Rẑ departing

from the center of one species to the center of the other. In the case of two single

atoms, the field effects are similar to the previous example of benzene dimer where an

external field that is perpendicularly applied to the dimer, i.e. Ex and/or Ey, weakens

the attraction between the atoms. In the case of the two chains, each of which

composed of two carbon atoms distributed along x̂ with a distance rc−c = 1.4Å, an

external field that is perpendicular to R (in the xy-plane) diminishes the inter-chain

dispersive attraction. However, when the field is along the x-axis, the field-induced

effects are significantly stronger than when the field is along ŷ.

To explore the impact of system size on the field-induced contributions to the

total interaction between two carbyne chains, the interaction energies (per atom)

are illustrated in figure 5.6 for four cases with different number of atoms per chain

(N). As seen from this figure, the effects induced by a field aligned with the chains

(E = Ex) tend to show a minimum by increasing the number of atoms per chain

as well as the magnitude of the field at short distances. For example, when the

magnitude of the field is E = Ex = 1.25V/Å such a minimum appears for N = 100

(figure 5.6b) at around R = 1.6Å while for N = 1000 (figure 5.6c) and N = 3000

(figure 5.6d) the minimum is located at around R = 1.9Å but it does not exist

for N = 10 (figure 5.6a). At larger distances, the field along x̂ increases the total

interaction energy toward positive values as the repulsive electrostatic term decays

with R slower than other contributions to the interaction energy. However, the

energy curves as functions of the inter-chain distance R noticeably change as N

becomes larger. For smaller values of N , the energy curves reach a maximum and

then decay faster compared to the curves for higher N . Such extrema correspond

to the situations at which the field-induced and dispersion forces reach a balance

and the net force vanishes. The extremum of the binding energy occurs at larger

distances as N increases while an increase in the magnitude of the field smoothly

shifts the extremum towards smaller distances.

For an external field along the y-axis, i.e. a field perpendicular to R as well as to

the chains, the total interaction energy (per atom) is shown for the aforementioned

chains in figure 5.7. When the number of atoms per chain is not large, e.g. N =

10 or N = 100 (figures 5.7a and 5.7b), the field-induced interaction energy for

E = Ey is always attractive and enhances the binding between the chains. As

the number of atoms increases, this trend changes and the field-induced interaction

energy grows towards positive values and thus vanishes at some inter-chain distances

like R
(FI)
0 . This point can be better seen from figure 5.8 where the field-induced

interaction energy (per atom) for the aforementioned systems of chains is presented.
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(a) (b)

(c) (d)

Figure 5.6: Total interaction energy (per atom) between two carbyne chains each composed

of N carbon atoms distributed along the x-axis with the carbon-carbon separation rc−c = 1.4Å.

The chains are held apart at a distance of R and the external field is applied perpendicularly to

the inter-chain distance but aligned with the chains (E = Ex). The inset in each case shows the

same curves as the main plots but with the focus being on larger inter-chain distances at which the

interaction energies approach zero. Increasing the number of atoms per chain considerably changes

the form of energy–distance dependence. At short distances, i.e. R < 2Å, the balance between

the field-induced and dispersion interactions can result in a minimum for the sum of the dispersion

and field-induced interaction energies when the number of atoms per chain is large enough, as it

can be seen in (b), (c), and (d) but not in (a). At long distances, the interplay between the field-

induced and dispersion interactions can yield a maximum for the total interaction energy. For any

given magnitude of the external field, the maximum of the curves shifts towards larger distances N

increases. These extrema correspond to the points at which the system reaches a balance between

the field-induced and dispersion forces and the total inter-chain force vanishes.

For example, from figure 5.8c for N = 1000 one can see that R
(FI)
0 ≈ 2.2Å and

6.7Å, while in figure 5.8d for N = 3000 such distances are around 2.1Å and 15.6Å.

Therefore, R
(FI)
0 is an inter-chain distance at which the total binding energy between

the chains is entirely due to their dispersion interaction. Also, the slope of the

energy–distance curves, i.e. the inter-chain force, significantly changes with N for
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(a) (b)

(c) (d)

Figure 5.7: Total interaction energy between two carbyne chains each composed of N carbon

atoms distributed along the x-axis with the carbon-carbon separation rc−c = 1.4Å. The chains

are held apart at a distance of R and the external field is applied perpendicularly to the inter-

chain distance as well as to the chains (E = Ey). Increasing the number of atoms per chain

considerably changes the form of energy–distance dependence. The interplay between the field-

induced and dispersion interactions can yield a maximum for the total interaction energy when N

is large enough, as can be seen in (d) with N = 3000. These extrema correspond to the points at

which the system reaches a balance between the field-induced and dispersion forces and the total

inter-chain force vanishes.

any given magnitude of the field. Such a dependence of the inter-chain forces on the

number of atoms per chains yields some values of R at which the total interaction

energy reaches its maximum and the total force vanishes for N = 3000 while such

distances do not exist for other cases of N considered in figure 5.7. Figure 5.9

shows the effects of a static field on the inter-chain interaction energy when the

field is applied to the chains along R. Increasing the number of atoms in chains

decreases the field-induced contributions to the total interaction energy per atom.

However, it should be noted that the total interaction energy for the whole chains

increases with N . Therefore, as one expects, such a field-chains configuration yields
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(a) (b)

(c) (d)

Figure 5.8: Field-induced interaction energies (per atom) between two carbyne chains each

composed of N carbon atoms distributed along the x-axis with the carbon-carbon separation

rc−c = 1.4Å. The chains are separated at a distance of R and the external fields is applied

perpendicularly to the inter-chain distance as well as to the chains (E = Ey). For chains with

N = 1000 and N = 3000 carbon atoms, (c) and (d) respectively, the field-induced interactions can

be either attractive or repulsive while in the case of smaller chains with N = 10 and N = 100

atoms, (a) and (b) respectively, the field-induced interactions are always attractive. For the former

cases, there are inter-chain distances like R
(FI)
0 at which the field-induced interaction energies

vanish regardless of the magnitude of the applied field. For N = 1000 in (c) one can see that

R
(FI)
0 ≈ 2.2 , 6.7 Å while for N = 3000 in (d) such situations occur at R

(FI)
0 ≈ 2.1 , 15.6 Å.

an enhancement to the binding energy between the chains for any given magnitude

of the field and at any inter-chain distance.

For chains comprising many carbon atoms, which can be as long as a few hun-

dred nanometers, large distances (of the order of tens of nanometers) between the

chains can be of relevance in realistic nanostructures. Such long-range inter-chain

distances are considered for a systems of two chains with N = 3000 in figure 5.10

where the total interaction energies and forces are shown for the three different

field-chains alignments. As one expects at distances larger than e.g. R > 20Å,



Chapter 5. Many–Body Interactions in Static Electric Fields 88

(a) (b)

(c) (d)

Figure 5.9: Total interaction energies (per atom) between two carbyne chains each composed of

N carbon atoms distributed along the x-axis with the carbon-carbon separation rc−c = 1.4Å. The

chains are separated at a distance of R and the applied external field is parallel to the inter-chain

distance but perpendicular to the chains (E = Ez). Increasing the number of atoms in chains

decreases the field-induced contributions to the total interaction energy per atom. However, the

total interaction energy for the whole chains increases with N . The field always enhances the

binding energy of the two chains.

for the given magnitudes of the electric field the total interaction energy and force

remain repulsive (attractive) for E = Ex (E = Ez) and continuously decay with R.

However, in the case of an applied field along ŷ the total interaction energy can

exhibit a local minimum at distances larger than 20Å, if the applied field is strong

enough. For example, as it is seen from figure 5.10, for the fields E = Ey = 0.8V/Å,

E = Ey = 1V/Å, and E = Ey = 1.2V/Å, such local minima occur at R = 26.6Å,

R = 28.5Å, and R = 29.3Å, respectively. Therefore, in the particular case of an

applied static field that is perpendicular to the chains as well as to the inter-chain

separation, the interplay between the dispersion and field-induced interactions can

result in an equilibrium at a distance of a few nanometers for this one-dimensional

nanostructured system.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.10: Total interaction energy and force between two carbyne chains, each comprising

N = 3000 carbon atoms spread over the x-axis, in an external static electric field. The chains are

separated along the z-axis, i.e. R = Rẑ. When the field is applied along ŷ the interplay between

the dispersion and field-induced interactions can result in a local minimum for the interaction

energy at large inter-chain distances. For the fields E = Ey = 0.8V/Å, E = Ey = 1V/Å, and

E = Ey = 1.2V/Å, such local minima occur at R = 26.6Å, R = 28.5Å, and R = 29.3Å, respectively,

while a minimum does not exist at such large distances for E = Ey = 0.4V/Å.
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Comparing the plots in figures 5.6, 5.7, and 5.9 demonstrates that to manipulate

the binding energy and the equilibrium between two carbyne chains as well as to

reach a balance between the field-induced and dispersion forces one can employ either

of E = Ex (perpendicular toR and aligned with the chains) or E = Ey (perpendicular

to R as well as to the chains) static fields. However, when the field is applied along

the chains but perpendicular to R the total interaction energy is more sensitive to

the magnitude of the field and a balance between the field-induced and dispersion

forces can be reached at weaker fields compared to when the field is perpendicular

to the chains and to R, particularly at short distances (R < 2.5Å). A comparison

between the values of the total interaction energy in figures 5.6 – 5.9 shows that the

field-induced interaction energies are significantly larger for E = Ex than for E = Ey
and E = Ez. However, such a comparison should not lead one to an incomplete

conclusion regarding the importance of different components of an external field on

the inter-chain interactions. Figure 5.11 shows the total inter-chain force for two

chains each made of N = 2500 carbon atoms spread along the x-axis with carbon-

carbon distance rc−c = 1.4Å. This figure indicates that at any given strength of

the external field the total inter-chain forces for the three field directions Ex, Ey,
and Ez are of similar order of magnitude. Therefore, in a field-chains configuration

where different components of the field (relative to the chains) exist, the dynamics

of the chains can be significantly affected by each of the components which might

be important for practical applications.

The intricate behavior of the inter-chain energy and force curves for different

chains-field configurations imply a nontrivial interplay between the pairwise additive

and nonadditive parts of the field-induced interactions. It is worth mentioning again

that, from a perturbative point of view, the leading-order terms of the additive

and nonadditive contributions to the field-induced interactions can be regarded as

the field-induced electrostatic and the field-induced polarization terms, respectively.

However, one has to also keep in mind that there are higher-order terms as well in a

possible perturbative expansion which similar to the higher-order terms expansion

(4.26) have different signs and depend differently on polarizability and distance. One

has to note that when the external field is along the chains, the atom-field couplings

depend on the in-chain polarizability of atoms (αxx) while for a field perpendicular

to the chains the atom-field couplings depends on the out-of-chain polarizability

(αyy or αzz).

It has been shown that the charge density fluctuations in a carbyne chain become

strongly delocalized over the length of the chain and thus the polarization along

the chain has a wave-like behavior [77]. The delocalization effects in the chain

substantially increase the polarizability along the chain (αxx) while the two other

components are influenced less significantly (αyy or αzz). Therefore, when the field

is applied along the chains, the atom-field couplings are considerably large and yield
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Figure 5.11: Total inter-chain forces in three different chains-field configurations for two carbyne

chains each composed of N = 2500 carbon atoms distributed along the x-axis with the carbon-

carbon separation rc−c = 1.4Å. The total forces in the three cases are of similar order of magnitude.

strong field-induced static polarization along the chain that can be considered as

strong field-induced dipole moments along the chains. Such strong static dipole

moments, in the first order, interact with each other via the dipolar interaction

and result in the field-induced electrostatic interactions. However, since these static

dipole moments are strong, they create strong electric fields that polarize other

atoms and induce extra polarization on these atoms. In its turn, the secondly

induced polarization of each atom couples with the fields of other atoms and results

in higher order interaction terms which are highly non-pairwise additive. Due to

the mechanisms responsible for such terms, their dependence on polarizability is

higher compared with the electrostatic terms. Consequently, a substantial increase

in the polarizability as well as increasing the magnitude of the external field yields

a significant increase in the contribution of such many-body terms to the total

interaction energy. As the number of atoms per chain becomes larger the in-chain

polarizabilities of atoms over the chains increases enhancing the electrostatic as

well as the many-body terms. As the polarizabilities get larger the higher-order

many-body terms turn to have more significance as their polarizability dependence

increases with their order. Since these higher-order terms change signs from one
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order to another (due to an induction mechanism similar to what was explained in

Section 4.5), the interplay between them and the electrostatic contributions becomes

more delicate when the polarizabilities of chains increase. For a better conceptual

understanding of such a competition between the electrostatic and many-body terms

one can consider the two-body expansion (4.26) and the form of its different orders.

When the field is perpendicular to the chains as well as to R, i.e. E = Ey,
since the out-of-chain polarizability has not changed notably due to the screening

effects from the nearby atoms [77], the atom-field couplings in this case are weaker

compared to the in-chain atom-field couplings. Thus, the resulting field-induced

static dipole moments are weaker compared to when the field is along the chains

and therefore the field-induced effects are less considerable.

5.4 Discussion and Conclusion

In this chapter, the field-induced contributions to the many-body interactions in

molecules and one-dimensional nanostructures were investigated. It was shown that

employing the QDO model one can extend the theory of many-body intermolecular

interactions [81] to include the effects of external static fields on the interactions

in many-atom interacting systems. Taking advantage of the quadratic form of the

QDO Hamiltonian, the total Hamiltonian of a many-QDO system in an external

static field, including the QDO-QDO dipolar couplings as well as the QDO-field

interactions, was transformed to a normal mode coordinates to become diagonalized.

Then the energy of the interacting system was expressed in terms of normal mode

frequencies. Subtracting the energy of non-interacting QDOs from the energy of

interacting system resulted in expression (5.18) for the interaction energy between

the systems under consideration which accounts for all many-body terms in dipole

approximation of the couplings. The developed many-body theory was applied in

Section 5.3 to a system of two interacting benzene molecules as well as to two

interacting carbyne chains. In the case of two benzene molecules, it was shown

that neglecting the field-induced many-body effects yields an overestimate of the

field-induced contributions to the benzene-benzene interaction energy especially at

higher magnitudes of the applied field.

Studies on carbyne chains have demonstrated the significant impact of many-

body contributions to the vdW interactions in these nano-structures. It has been

shown that many-body effects play a key role for understanding the peculiar scaling

laws of vdW interactions in carbyne chains and the assembly of such systems [77,78].

In this chapter, it was shown that application of a static electric field to a system

of two interacting carbyne chains yields field-induced inter-chain interactions that

strongly deviate from pairwise additivity. Thus the many-body effects due to the

application of the static field play a major role in the interplay between the field-
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induced and dispersion forces. Changing the number of carbon atoms per chain

and computing the inter-chain interaction energies and forces demonstrated that

increasing the size of carbyne chains leads to stronger field-induced effects and can

drastically change the characteristic of inter-chain interactions. The intricate rela-

tion between system size and the field-induced effects was explained by considering

the polarizability and distance dependence of the interactions. An increase in the

number of atoms per chain yields larger in-chain polarizabilities at atomic centers

which is a consequence of delocalization of the charge density fluctuations over the

chain and the wave-like behavior of polarization along the chain [77]. Stronger

polarizabilities therefore result in stronger many-body contributions that are more

sensitive to polarizabilities than the pairwise additive terms (e.g. field-induced po-

larization in comparison to field-induced electrostatic interactions).

Based on the results of this chapter, one can expect that for two-dimensional

(2D) materials where the screening effects from the nearby atoms affect the atomic

polarizabilities over the 2D surfaces [77, 79], the field-induced effects become more

relevant even at small magnitudes of the applied field. Such a conclusion is of a great

importance as the assembly of 2D nanostructures is mainly governed by long-range

vdW interactions that can be tailored by employing static electric fields. Therefore,

controlling the electrostatic properties of 2D materials like graphene [83], which

might serve as a viable fabrication method for nanometer-scale 2D structures [82],

can be accessible with weaker static fields than what is expected in the literature. An

interesting example of such considerations is that taking into account both the field-

induced and dispersion contributions from a many-body approach, one can explore

the exfoliation mechanism to present an accurate estimation of the field strengths

required for the field-driven fabrication of 2D nanostructures.



Chapter 6

Conclusion and Outlook

The present work considered long-range interactions between atomic, molecular and

nanostructured systems under the influence of static electric fields in the linear range

of atomic responses. The importance of such a study in the context of intermolec-

ular interactions is twofold. First, in a realistic picture of chemical and biological

environments, molecules are surrounded by various sources of electric fields in the

form of microscopic ions and partial charged displacements or macroscopic charged

layers or surfaces that act as electromagnetic mirrors. The electric fields of these

sources are constantly influencing the charge distributions of atomic and molecular

centers and thus affect the long-range intermolecular interactions. Therefore, to

have a more comprehensive understanding of intermolecular interactions in realistic

materials it is crucial to take into account the effects of static electric fields. Second,

as the stability and assembly of molecular and nanostructured systems are governed

by the long-range interaction between their atoms and/or molecules, external static

electric fields can be employed as practical tools for fabrication or manipulation of

the structure and stability of such physical systems.

A comprehensive understanding of the influence of static electric fields on in-

termolecular interactions demands a thorough study of this physical problem from

different perspectives. For that reason, three distinct frameworks, namely quantum

mechanics (QM), quantum electrodynamics (QED), and stochastic electrodynamics

(SED) were employed in this work to explore field-induced effects on the vdW in-

teractions in two-body problems. To compute the interactions in the QM and QED

frameworks the atomic and molecular responses were modeled by simple yet efficient

quantum Drude oscillators (QDO) while in the SED approach the atomic/molecular

centers were represented by classical oscillators carrying a negative point charge that

is bound to a fixed center of equal positive charge via a harmonic potential. Our anal-

yses have shown that neglecting higher-order contributions, like from field-induced

hyperpolarizabilities of atoms scaling as R−11 [116, 117], under static electric fields,

the leading contributions to the dispersion energy remain ∝ R−6 and ∝ R−7 for the

nonretarded and retarded regimes, respectively. However, the interplay between the
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field-induced and dispersion forces enables the possibility of controlling intermolec-

ular interactions through employing static fields that are perpendicularly applied to

the two-body interacting system.

Taking advantage of the quadratic form of the QDO Hamiltonian, the study was

extended to the many-body interacting systems. The main motivation for taking this

step stems from the proven fact that many-body effects significantly contribute to the

long-range interactions between physical systems with many interacting parts like

one-dimensional and two-dimensional nanostructures and macro-molecules [78]. In

the absence of an external field as well as permanent polarization of the systems, the

many-body effects are of the dispersion type. Here, it was shown that the application

of a static electric field to a many-body system causes field-induced contributions to

the interaction energy that strongly deviates from pairwise additivity particularly

in the case of weak fields and large distances between the interacting entities. Such

weak fields can be typically expected especially in biological environments due to the

presence of ions at large distances or partially charged surfaces. As an example of

nanostructures, the interaction of two carbyne chains in an external static field was

considered. Our analyses demonstrated that many-body effects induced by the field

play a crucial role in the interplay between the field-induced and dispersion forces

that is most significant when the field is aligned with the chains but also notable

when the field is perpendicular to the plane of the two chains.

When the field is aligned with the chains, the significance of the field-induced

many-body effects stems from the wave-like behavior of the polarization along

the chains [77] that substantially increases the polarizability of atoms over the

chains. Having such increased in-chain polarizabilities, field-induced many-body

terms that have stronger polarizability dependence (compared with the nonadditive

field-induced electrostatic terms) become more relevant in this chains-field config-

uration. It was shown that applying such a field along the chains enables us to

impose an equilibrium-like point at short inter-chain distances such that the total

interaction energy is minimum and the total forces vanishes.

For a field that is perpendicular to the plane of the chains, the field-induced

effects are weaker than when the field is parallel to the chains. However, in this field-

chains configuration still the many-body effects notably contribute to the force and

interaction energy between the chains. For instance, in the case of chains with large

number of atoms, there are some inter-chain distances at which the field-induced

interaction energies vanish due to the cancellation of the pairwise additive repulsive

electrostatic contributions by the attractive many-body contributions to the total

energy. For example, such cancellation between different contributions to the field-

induced interaction energies in the case of chains with N = 1000 or N = 3000 atoms

occur at around R ≈ 2.2 , 6.7 Å and R ≈ 2.1 , 15.6 Å, respectively, for weak fields

(e.g. E < 1 V/Å), while it does not occur for chains with N = 10 or N = 100.
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It was also shown that for two chains comprising many carbon atoms and a static

field that is perpendicular to the plane of the chains, the total interaction energy

can exhibit a local minimum at large inter-chain distances (R > 20Å) if the applied

field is strong enough. For two chains each composed of N = 3000 carbon atoms,

perpendicular fields of the magnitudes E = 0.8V/Å, E = 1V/Å, and E = 1.2V/Å

yield local minima for the total interaction energy at R = 26.6Å, R = 28.5Å, and

R = 29.3Å, respectively. Therefore, for this particular field-chains configuration

an equilibrium is achievable at large inter-chain distances for this one-dimensional

nanostructured system.

However, although the field-induced effects on the interaction energies are quan-

titatively and qualitatively different for distinct field-chains alignments, one has to

keep in mind that the field-induced forces for the three possible configurations are

of similar order of magnitude. Therefore, a precise configuration of the field and the

chains is crucial for preventing undesired field-induced effects that can influence the

dynamics of the chains and significant deviation from the planned results.

The presented work in this thesis was an attempt for comprehensively study-

ing intermolecular interactions in static electric fields and understanding the field-

induced effects on the assembly of nanomaterials. On this direction, I briefly enu-

merate several possible extensions of this study:

• Many-body field-induced effects in 2D materials

The delocalization of the charge distribution fluctuations in 2D materials sug-

gests that the many-body effects induced by external static fields are of high

importance in these systems and thus have to be taken into account when fab-

rication methods based on electric-field–assisted exfoliation are employed for

nanostructured materials. In this direction, a future study on the influence of

static fields on the interactions between 2D materials like bilayer graphene is

considered as a generalization of the results of Chapter 5 to 2D nanostructures.

• Many-body field-induced and dispersion interactions in the retarded regime

As increasing the system sizes with moving to larger scales demands con-

siderations of larger distances between the interacting species, an important

step towards the completion of this study is to extend the presented many-

body formulations to the retarded regime. To this end, the Hamiltonian of

the many-body system has to be written in the framework of QED to take

into account the couplings of the particle-system with the vacuum radiation

field along with the particle-particle instantaneous Coulomb interactions. In

the minimal-coupling formalism where the instantaneous Coulomb interactions

appear independently from the vacuum-field–particle couplings, an additional

term due to the interactions of atoms with external field enters the formula-

tion as a static polarization of the atoms. Employing the QDO model, such a
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static polarization can be transformed into a field-induced shift in the center

of oscillations of the QDOs and thus can be absorbed in the atomic part of the

Hamiltonian. Therefore, solving the equations of motion of the shifted oscil-

lators as well as the equations of the vacuum field oscillators, one can obtain

the energy of the total interacting system and consequently the interaction

energy valid for large distances between the interacting many-body systems in

the retarded regime.

• Inclusion of dispersion- and field-induced hyperpolarization effects

Representing atomic and molecular systems by several QDOs of different char-

acteristic frequencies and response functions allows the model to exhibit β and

γ hyperpolarizabilities. Employing such an improved model enables one to take

into account the effects of changes in the polarizabilities of atoms induced by

the fields of other atoms or external fields, that appear in the form of hyperpo-

larizations. Due to the responsible mechanisms for such effects, the resulting

interactions have a non-additive nature and thus may play a significant role in

the interplay between different contributions to the total interaction energies

and forces in many-body systems.

• Inclusion of higher-order multipole interactions

The present work employed the dipole-dipole coupling approximation to the

Coulomb interaction between atoms or molecules. Such an approximation is

valid only when the external (and the vacuum radiation) fields are uniform

and constant over the whole volume of atoms or molecules. To go beyond this

approximation one has to take into account higher-order multipole couplings

for atom-atom and atom-fields interactions. For instance, when the applied

external electric field has large gradient, field-induced quadruples of interacting

atoms can be considerably large and result in significant dipole-quadruple

and quadruple-quadruple contributions to the interactions between atoms or

molecules.

• Study the dynamics of interacting nanostructures in external fields

As it was discussed in Section 5.3, the interplay between the field-induced and

dispersion forces has an intricate behavior and highly depends on the field-

chains alignment. However, the forces that where considered and discussed

in the aforementioned section were averaged over the chains. Considering the

fact that the delocalization of the charge distribution fluctuations along the

chains cause a non-uniform distribution of polarizabilities along the chains

(large polarizabilities at the middle of the chains and small polarizabilities as

we move to the edges), one has to note that the magnitude of field-induced and

dispersion forces acting on atoms can significantly change depending on the

position of atoms on the chains. A similar argument is valid for 2D structures.
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Therefore, the dynamics of interacting 1D or 2D nanostructures in external

fields are quite complicated and can be important in practical applications of

external fields like field-assisted exfoliation of nanomaterials.



Appendices

A1 Anisotropic QDOs

In order to extend the results of Chapter 4 for the interaction energy given by

equation (4.28), to the case of anisotropic molecules, like benzene, one has to take

into account anisotropy of the polarizability of QDOs. This quantity plays the role

of a coupling constant of an atom or molecule to an electric field. Generally, the

dipole polarizability is a second-rank tensor, which can be diagonalized using the

principal axes. By choosing the Cartesian coordinate system along such axes, one

obtains

∆E = +
1

[4πε0]R3

{
α(1)
xxα

(2)
xx E2x + α(1)

yy α
(2)
yy E2y − 2α(1)

zz α
(2)
zz E2z

}

− ~
4[4πε0]2R6

(
ω1ω2

ω1 + ω2

){
α(1)
xxα

(2)
xx + α(1)

yy α
(2)
yy + 4α(1)

zz α
(2)
zz

}

− 1

2[4πε0]2R6

{
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xxα

(2)
xx [α(1)

xx + α(2)
xx ] E2x + α(1)

yy α
(2)
yy [α(1)

yy + α(2)
yy ] E2y

+ 4α(1)
zz α

(2)
zz [α(1)

zz + α(2)
zz ] E2z

}
, (A.1)

for the nonretarded interaction energy between two molecules. Here, α
(n)
ii denotes

ii Cartesian component of the polarizability tensor of the nth molecule. Equation

(A.1) as well as its retarded counterpart, straightforwardly obtained by a similar

generalization of equation (4.78), were used in Section 4.6 to compute dispersion

forces for the benzene dimers.

A2 Dissimilar Local Fields

If the two interacting QDOs undergo locally different static fields, E1 = (E1x, E1y, E1z)
and E2 = (E2x, E2y, E2z), the field–induced contributions to the interaction energy of
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equations (4.28), (4.48), (4.56), and (4.78) take the following forms

∆EFI =∆E el
FI + ∆E pol

FI

= +
1

[4πε0]R3

{
(α1E1x) (α2E2x) + (α1E1y) (α2E2y)− 2 (α1E1z) (α2E2z)
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− 1
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]}
, (A.2)

where, for simplicity, both QDOs are assumed to be isotropic with polarizabilities

α1 = α
(1)
xx = α

(1)
yy = α

(1)
zz and α2 = α

(2)
xx = α

(2)
yy = α

(2)
zz .

A3 Dissimilar Local Fields Applied to Anisotropic

QDOs

Finally, the most general case describes two interacting anisotropic QDOs undergo-

ing locally different static fields. For this situation, the corresponding field-induced

interactions present in equation (4.28), (4.48), (4.56), and (4.78) transform to
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1
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,

(A.3)

which can be simply obtained as a combination of equations (A.1) and (A.2). Equa-

tion (A.3), together with the dispersion contribution (A.1) or its retarded coun-

terpart, provides one with a practical tool to study intermolecular interactions in

various nucleo-electronic systems mentioned in Section 4.6.
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5.6 Total interaction energy (per atom) between two carbyne chains each composed of

N carbon atoms distributed along the x-axis with the carbon-carbon separation

rc−c = 1.4Å. The chains are held apart at a distance of R and the external

field is applied perpendicularly to the inter-chain distance but aligned with the

chains (E = Ex). The inset in each case shows the same curves as the main plots

but with the focus being on larger inter-chain distances at which the interaction

energies approach zero. Increasing the number of atoms per chain considerably

changes the form of energy–distance dependence. At short distances, i.e. R < 2Å,

the balance between the field-induced and dispersion interactions can result in a

minimum for the sum of the dispersion and field-induced interaction energies

when the number of atoms per chain is large enough, as it can be seen in (b), (c),

and (d) but not in (a). At long distances, the interplay between the field-induced

and dispersion interactions can yield a maximum for the total interaction energy.

For any given magnitude of the external field, the maximum of the curves shifts

towards larger distances N increases. These extrema correspond to the points

at which the system reaches a balance between the field-induced and dispersion

forces and the total inter-chain force vanishes. . . . . . . . . . . . . . . . . . 85

5.7 Total interaction energy between two carbyne chains each composed of N car-

bon atoms distributed along the x-axis with the carbon-carbon separation rc−c =

1.4Å. The chains are held apart at a distance of R and the external field is applied

perpendicularly to the inter-chain distance as well as to the chains (E = Ey). In-

creasing the number of atoms per chain considerably changes the form of energy–

distance dependence. The interplay between the field-induced and dispersion

interactions can yield a maximum for the total interaction energy when N is

large enough, as can be seen in (d) with N = 3000. These extrema correspond to

the points at which the system reaches a balance between the field-induced and

dispersion forces and the total inter-chain force vanishes. . . . . . . . . . . . . 86
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5.8 Field-induced interaction energies (per atom) between two carbyne chains each

composed of N carbon atoms distributed along the x-axis with the carbon-carbon

separation rc−c = 1.4Å. The chains are separated at a distance of R and the

external fields is applied perpendicularly to the inter-chain distance as well as to

the chains (E = Ey). For chains with N = 1000 and N = 3000 carbon atoms,

(c) and (d) respectively, the field-induced interactions can be either attractive or

repulsive while in the case of smaller chains with N = 10 and N = 100 atoms, (a)

and (b) respectively, the field-induced interactions are always attractive. For the

former cases, there are inter-chain distances like R
(FI)
0 at which the field-induced

interaction energies vanish regardless of the magnitude of the applied field. For

N = 1000 in (c) one can see that R
(FI)
0 ≈ 2.2 , 6.7 Å while for N = 3000 in (d)

such situations occur at R
(FI)
0 ≈ 2.1 , 15.6 Å. . . . . . . . . . . . . . . . . . . 87

5.9 Total interaction energies (per atom) between two carbyne chains each composed

of N carbon atoms distributed along the x-axis with the carbon-carbon separa-

tion rc−c = 1.4Å. The chains are separated at a distance of R and the applied

external field is parallel to the inter-chain distance but perpendicular to the chains

(E = Ez). Increasing the number of atoms in chains decreases the field-induced

contributions to the total interaction energy per atom. However, the total inter-

action energy for the whole chains increases with N . The field always enhances

the binding energy of the two chains. . . . . . . . . . . . . . . . . . . . . . 88

5.10 Total interaction energy and force between two carbyne chains, each comprising

N = 3000 carbon atoms spread over the x-axis, in an external static electric field.

The chains are separated along the z-axis, i.e. R = Rẑ. When the field is applied

along ŷ the interplay between the dispersion and field-induced interactions can

result in a local minimum for the interaction energy at large inter-chain distances.

For the fields E = Ey = 0.8V/Å, E = Ey = 1V/Å, and E = Ey = 1.2V/Å, such

local minima occur at R = 26.6Å, R = 28.5Å, and R = 29.3Å, respectively, while

a minimum does not exist at such large distances for E = Ey = 0.4V/Å. . . . . 89

5.11 Total inter-chain forces in three different chains-field configurations for two car-

byne chains each composed of N = 2500 carbon atoms distributed along the

x-axis with the carbon-carbon separation rc−c = 1.4Å. The total forces in the

three cases are of similar order of magnitude. . . . . . . . . . . . . . . . . . 91
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