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Abstract

Towards more Efficient and Performant Computations in Quantum
Chemistry with Machine Learning Kernel methods allow an efficient
solution of highly non-linear regression problems often encountered in quan-
tum chemistry. Due to its flexibility it is unclear how to design a similarity
matrix represented by the kernel which encodes a given learning problem in
a compact and beneficial way. In this thesis, we propose novel kernels for
quantum mechanical systems which are composed of two- and three-body in-
teraction terms. Specifically, we develop descriptors of molecules which are of
fixed size and invariant with respect to translation, rotation and atom indexing.
For these representations, we demonstrate their ability to accurately predict
quantum mechanical properties in combination with kernel ridge regression.
A feature importance analysis reveals insights about the two- and three-body
interactions in small organic molecules. Our descriptors are extended by novel
decomposition kernels which encode the comparison of two- and three-body
combinations of atoms directly into the similarity matrix. The special struc-
ture of these kernels is used to analyse interaction potentials for molecular
dynamics data sets. These kernel methods are complemented by a new ap-
proximate matrix inversion scheme based on banded Toeplitz matrices. For all
of these three methodologies, we demonstrate their efficiency and performance
to solve quantum chemical problems.

Zusammenfassung

Richtung effizienteren und performanten Berechnungen in der Quan-
tenchemie mit Maschinellem Lernen Kern-basierte Methoden erlau-
ben es, effizientere Lösungen von hoch nichtlinearen Regressionsproblemen zu
entwickeln, die häufig in der Quantemchemie auftreten. Wegen ihrer Flexibi-
lität, ist es unklar, wie man eine kern-basierte Ähnlichkeitsmatrix aufstellt,
die das Lernproblem in einer kompakten und nutzbaren Weise kodiert. In
dieser Arbeit schlagen wir neue Kerne für quantenmechanische Systeme vor,
die auf Zwei- und Dreikörperinteraktionstermen beruhen. Genauer entwickeln
wir Deskriptoren von Molekülen, die konstante Größe haben und invariant
sind gegenüber der Translation, Rotation und Atomindizierung. Für diese Re-
präsentationen demonstrieren wir die akkurate Vorhersage von quantenmecha-
nischen Eigenschaften in Kombination mit Gaußprozess-Regression. Eine Wich-
tigkeitsanalyse der Features enthüllt Einsichten über die Zwei- und Dreikörper-
interaktionen in kleinen organischen Molekülen. Unsere Deskriptoren werden
weiterentwickelt zu zerlegbaren Kernen, die den Vergleich zwischen Zwei- und
Dreierkörperkombinationen von Atomen direkt in der Ähnlichkeitsmatrix ko-
dieren. Die spezielle Struktur dieser Kerne wird genutzt um die Interaktions-
potentiale für moleküldynamik Datensätze zu untersuchen. Unsere Kernmodel-
le werden ergänzt durch ein approximiertes Matrix-Invertierungsverfahren für
schmalbandige Toeplitzmatrizen. Für alle diese drei Ansätze zeigen wir deren
Effizienz und Leistungsfähigkeit, quantenchemische Probleme zu lösen.
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Chapter 1

Introduction

The intersection of quantum physics and chemistry defines the underlying prin-
ciples for understanding the structure and properties of matter in everyones
lives. A profound knowledge about the behaviour of organic substances would
help in targeting the design of new compounds for applications in medicine, the
creation of new renewable power sources and fighting hunger. As the number
of potentially useful materials grows exponentially with increasing system size,
it is important to develop both accurate and efficient methods to predict the
desired properties of given substances. Although the mathematical description
of these systems is well understood since the start of quantum physics more
than 100 years ago, this turns out to be a surprisingly difficult task, in spite of
the exponential growth of hardware resources.

The goal of this thesis is to develop alternative tools to aid in the under-
standing of matter. Our methods will be characterized by being highly efficient
at the cost of a certain level of approximation while still being performant at a
specific degree of accuracy. Following recent trends, we will develop methods
for predicting the properties of quantum mechanical systems directly with ma-
chine learning. More precisely, we will rely on kernels for regression analysis
which we find a suitable choice for the highly non-linear functions typically
encountered in quantum chemistry. As a key underlying concept, we will use
decompositions of the studied systems into smaller computational units, specifi-
cally two- and three-body combinations of atoms composing a given compound.
One of the central properties of our methods will be the invariance with respect
to the translation, rotation and atom indexing. While encoding relatively little
chemical knowledge, we will investigate whether our models are in accordance
with chemical intuition.

One of our approaches will allow to explicitly construct Green's functions of
differential operators of arbitrary order. These Green's functions play a crucial
role in the understanding of quantum mechanical systems. We will achieve this
by introducing a novel matrix inversion scheme. This inversion scheme will be
applied to solve quantum-mechanical problems, specifically to compute long-
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1. Introduction

range van der Waals interactions and for the interpolation of potential energy
surfaces more efficiently. Before diving into the details, we provide the basic
knowledge needed to understand the main motivation of our approaches and
how we calculated some of the targeted quantum mechanical properties to be
predicted.

1.1 Theoretical background

A quantum mechanical system is composed of a set of elementary units called
atoms identified by the atomic number Z ∈ N and position in three-dimensional
space RRR ∈ R3 and can be represented by the set S = {(Zi,RRRi)}Ni=1 where N
is the number of atoms of the system. Such a system is described by the
nonrelativistic time-dependent Schrödinger equation

i~
∂

∂t
Ψ(rrr, t) = ĤΨ(rrr, t) (1.1)

with the Hamilton operator

Ĥ = − ~
2m
∇2 + V (rrr, t) (1.2)

where the wave function Ψ(rrr, t) describes a single particle of mass m in an
external potential V (rrr, t), i is the imaginary unit and ~ is the reduced Planck
constant, respectively. The time-dependent Schrödinger equation (1.1) can be
solved in terms of stationary states of the form

ĤΨ(rrr) = EΨ(rrr) (1.3)

where E is the energy of the state Ψ(rrr). For the wave function, a common

interpretation is |Ψ(rrr)|2 as the probability of locating the particle at position
rrr. In the Born-Oppenheimer approximation, the positions of the nuclei of the
atoms are fixed and the problem is formulated by the n electron coordinates,
replacing Ψ(rrr) with Ψ(rrr1, rrr2, · · · , rrrn). A key property of the system S is its
ground state energy which can be defined by the variational principle

Eground = min
Ψ(·)

〈
Ψ(·)|Ĥ|Ψ(·)

〉
with 〈Ψ(·)|Ψ(·)〉 = 1 (1.4)

where 〈·|·〉 denotes the expectation value. Solving the Schrödinger equation for
systems containing a number of particles greater than one is generally infeasible
due to the high-dimensional nature and non-separability of the problem. To
circumvent this problem, various types of approximations have been developed
to obtain an accurate estimate of the ground state energy of the system.

Density-functional theory

Perhaps the most popular approximation of the Schrödinger equation is pro-
vided by the density-functional theory where the key player is the electron
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1.1. Theoretical background

density defined by

n(rrr) = n

∫
d3r2 · · ·

∫
d3rnΨ∗(rrr,rrr2, · · · , rrrn)Ψ(rrr,rrr2, · · · , rrrn) (1.5)

where Ψ∗(·) denotes the complex conjugate of Ψ(·). As is turns out, the energy
minimization in Eq. (1.4) can be carried out in terms of this density n(rrr),
thereby reducing the number of free variables from 3n to 3. This allows to
formulate the many-body interactions by a set of much simpler single-particle
problems, the so-called Kohn-Sham equations which are given by[

− ~
2m
∇2 + Vs(rrr)

]
ϕi(rrr) = εiϕi(rrr) for i = 1, · · · , n (1.6)

Vs(rrr) = V (rrr) + e2

∫
n(rrr)

|rrr − rrr′|
d3rrr′ + VXC [n(rrr)] (1.7)

with the elementary charge e, the exchange-correlation potential VXC and

n(rrr) =

n∑
i=1

|ϕi(rrr)|2 (1.8)

The Kohn-Sham equations are usually solved in an iterative way, where Vs(rrr)
is calculated given the electron density n(rrr) in Eq. (1.7) and reversely the
potential Vs(rrr) defines the spectrum of energies and single-particle states εi
and ϕi(rrr) in Eq. (1.6). Most of the properties of quantum mechanical systems
in this work have been calculated using density-functional theory.

Many-body expansion

The ground-state energy is a function of the coordinates of the nuclei composing
a given physical system. This dependence can be modeled by a many-body
expansion which is a decomposition of the ground-state energy into many-body
terms

Eground =

N∑
i=1

Ei +

N∑
i=1

N∑
j=i+1

Eij +

N∑
i=1

N∑
j=i+1

N∑
k=j+1

Eijk + · · · (1.9)

where Ei depends only on the coordinates of atom i, Eij depends on the coor-
dinates of the atoms i and j and Eijk depends on the coordinates of the atoms
i, j and k, respectively. Such a decomposition is very flexible in the sense
that the many-body terms can be defined for each combination of atom-types
individually. Typically, the above expansion is applied for extensive properties
which are characterized by growing in magnitude with increasing system size
N , an example of which being the atomization energy. For the atomization
energy, we will investigate if the inclusion of up to three-body interactions can
accurately model a given system under investigation. This assumption will be
verified for systems restricted to a specific domain, e.g. stable small organic

3



1. Introduction

molecules and molecular dynamics data sets near equilibrium. Our methods
are specifically designed to learn the two- and three-body interaction potentials
occurring in Eq. (1.9) with machine learning. These interaction potentials will
be analyzed across different models and molecules for their conformity with
chemical intuition.

1.2 Integration of machine learning with quantum
chemistry

Large parts of this section have appeared in previously published work [1].

Recently, machine learning has been increasingly applied in the quantum
mechanical domain in a variety of ways [2, 3, 4, 5, 6, 7, 8]. The many-body
expansion from above can be used as the starting point to develop quantum
chemistry models based on machine learning. Although machine learning based
approaches take input data obtained from highly accurate first principles meth-
ods like density-functional theory, the generalization property inherent of these
approaches allows to reversely deduce conclusions for the data domain under
study. In this work, we will design regression methods based on kernels which
can be used to specifically analyse the two- and three-body interactions in
chemical compounds. Kernel based methods allow an efficient convex solu-
tion of highly non-linear optimization problems often encountered in quantum
chemistry. As typical settings for a chemist or physicist include a low num-
ber of data points paired with a highly non-linear learning problem, kernel
based formulations are considered as suitable and powerful methods of choice.
Motivated by the intrinsic efficiency of kernel methods, in this thesis we will
develop new kernels encoding local physical environments based on the many-
body expansion with the aim of designing accurate and performant models for
predicting quantum-mechanical properties of molecules.

In view of these considerations it is important to understand the ker-
nel properties relevant for an efficient solution in a possibly much higher-
dimensional, sometimes even unknown feature space induced by the kernel [9].
This is especially true, as it is non-trivial how a kernelized formulation can
circumvent the so-called curse of dimensionality [10, 11, 12]. In the next sec-
tion, we provide insights on how the choice of the kernel helps solving these
problems by introducing a function class of limited complexity from which the
final model is chosen.

Implicit feature mapping – the kernel trick

Kernel ridge regression (KRR) is one of the most popular methods of nonlin-
ear regression analysis in quantum chemistry. One of the main ingredients of
KRR is the representation of the underlying physical system which mainly de-
termines the performance of predicting quantum-mechanical properties based
on KRR. Several such representations have been developed for both, solids
and molecules; all of them with different advantages and limitations. In the
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1.2. Integration of machine learning with quantum chemistry

Chap. 2 of this thesis, we will propose and investigate the importance of invari-
ant two- and three-body descriptors and use these representations to analyse
two- and three-body interactions in molecules. These descriptors correspond
to a similarity measure between two chemical compounds which is represented
by the kernel. As recent approaches define the kernel directly from the under-
lying physical system, it is important to understand the properties of kernels
and how these kernel properties can be used to improve the performance of
machine learning models for quantum chemistry.

The second important ingredient of KRR (the first being the representa-
tion) is the kernel. But what is a kernel in general and how can it be useful?
With a kernel, the data can be nonlinearly mapped onto a feature space, where
the learning may become easier and where optimal generalization can be guar-
anteed. A key concept here is that this mapping can be done implicitly by
the choice of the kernel. This implicit feature mapping to a possibly much
higher dimensional space is very flexible. More intuitively, the kernel encodes
a real valued similarity measure between two chemical compounds. This simi-
larity measure is primarily encoded by the representation of the physical system
which is then used in combination with standard nonlinear kernel functions like
the Gaussian or Laplace kernel. Alternatively, the similarity measure can be
encoded directly into the kernel, leading to a variety of kernels in the chemistry
domain, e.g. for predicting the atomization energy with KRR. We will develop
a set of local kernels in the Chap. 4 of this thesis which are designed to compare
atomic environments across molecules with each other.

One way to better understand the role of the kernel is to apply existing
learning methods in a projected space φ : Rni → Rno with the input and fea-
ture dimension ni and no, respectively. Specifically, it is required that a given
algorithm (together with predictions based on this algorithm) works solely on
scalar products of type xxx>yyy which can then be translated into scalar prod-
ucts in feature space φ(xxx)>φ(yyy). Then, it turns out that such scalar products
in feature space can be done implicitly, replacing them with an evaluation of
the kernel function k(xxx,yyy) := φ(xxx)>φ(yyy) [13]. This is known as the kernel
trick [14] and interestingly enough, many algorithms can be kernelized this
way [15]. Using the kernel trick, one never has to explicitly perform the poten-
tially computationally expensive transformation φ(·).

The kernel function k(·) thus allows to reduce some of the intrinsic dif-
ficulties of the non-linear mapping φ(·). The question remains, which kernel
functions allow for such implicit feature mappings. Mercer’s theorem [16] guar-
antees that such a mapping exists, if for all elements f of the Hilbert space L2

defined on a compact set C ⊂ Rni

∫
C

f(xxx)k(xxx,yyy)f(yyy)dxxxdyyy > 0. (1.10)

From the kernel and a set of input samples {xxxi}Ni=1 we can construct a discrete
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1. Introduction

version of Mercer’s theorem by composing the matrix

K :=

k(xxx1,xxx1) · · · k(xxx1,xxxN )
...

k(xxxN ,xxx1) · · · k(xxxN ,xxxN )

 . (1.11)

Mercer’s theorem now implies that the matrixK is a Gram matrix, i.e. positive-
semidefinite for any set of inputs {xxxi}Ni=1. Thus, practically if the matrix
K would have negative eigenvalues then it will not fulfill Mercer’s theorem.
Examples of popular kernels in the quantum chemistry domain are shown in
Tab. 1.1.

Name Kernel k(xxx,yyy)

Gaussian exp(−‖xxx− yyy‖22/(2σ2))

Laplace exp(−‖xxx− yyy‖1/σ)

Polynomial (xxx> · yyy + c)d

Matérn 21−ν

Γ(ν)

(√
2ν
l ‖xxx− yyy‖

)ν
Kν

(√
2ν
l ‖xxx− yyy‖

)
Table 1.1: List of Mercer kernels often used in the quantum chemistry domain.
For the Matérn kernel, Γ denotes the Gamma function and Kν is the modified
Bessel function of the second kind, respectively. This table has appeared in
previously published work [1].

For some kernels like the Gaussian kernel, the feature map φ(·) can be
infinite dimensional. Due to the curse of dimensionality it is then a question
whether such a feature mapping to a much higher-dimensional space is a good
idea at all, especially as the training set size increases (which corresponds to the
dimension of the linear span of the projected input samples in feature space).
As it turns out, one can still leverage the feature mapping if the learning
algorithm is kept simple [15]. The intuitive complexity of the learning problem
induced by the kernel, the data and the learning algorithm is a measure of
how well a kernel matches the data. Note that translation invariant kernels
have natural regularization properties which help reducing the complexity of
a learning algorithm. The Gaussian kernel for example is smooth in all its
derivatives [17].

While there is a wide variety of representations of physical systems, it is
less obvious how to encode prior knowledge into the kernel (see Zien et al. [18]
for the first kernels engineered to reflect prior knowledge). In the quantum
chemistry domain this is typically done by limiting the similarity measure to
local information [19, 4]. The definition of such locality depends on the chemical
system as it limits correlations between such localized kernels and emphasizes
local correlations. Due to the scalar product properties of the mapping φ(·)
in feature space, these local kernels can be combined by a sum to yield a new
kernel function.

6



1.2. Integration of machine learning with quantum chemistry

validation testtraining

fold 1

fold 2

fold 3

fold 4

repeat for 
test splits 1-5

1 2 3 4 5
splits

Figure 1.1: Schematic 4-fold cross-validation (inner loop) together with 5-fold
nested cross-validation (outer loop), respectively. This image has appeared in
previously published work [1].

To conclude this section, we will describe a method for choosing a good
kernel among a set of candidate kernels for a given learning problem, a proce-
dure that is commonly called model selection [20]. Typically, a class of kernels
is defined by a set of hyperparameters which e.g. control the scaling of the
kernel with respect to the data in the chosen distance metric. These hyperpa-
rameters have to be determined (i.e. a kernel is selected from a given class) in
order to minimize the generalization error, a measure of how good unseen data
can be predicted [20]. Note that minimizing a given criterion on the training
data alone with respect to the hyperparameters usually results in poor gen-
eralization due to overfitting. The most common procedure to estimate the
generalization error is cross-validation. In cross-validation, the data set is di-
vided into k subsets of equal sample size. Then, the model is trained on the
remaining k− 1 subsets and evaluated on the k-th subset, called the validation
set. The average of the error over the k validation sets is a good estimate of the
generalization error. After heuristically choosing a set of hyperparameters (ker-
nels), this cross-validation scheme yields the best hyperparameters among the
set which are then evaluated on an unseen test set. Repeating this procedure
for different test splits is called nested cross-validation. Both, cross-validation
and nested cross-validation is schematically shown in Fig. 1.1.

Kernel methods

After reviewing key concepts of kernels, we present two practical applications
which have been extensively used in the quantum chemistry domain, one for
supervised and one for unsupervised learning, respectively.

7



1. Introduction

Kernel ridge regression

A typical setting in machine learning problems includes the prediction of re-
sponse variables {yi}Ni=1 for a set of samples {xxxi}Ni=1. The kernel trick in-
troduced in the previous section can be applied to the linear ridge regression
model. In ridge regression, a cost function typically given by

C(www) :=
1

N

N∑
i=1

(yi −www>xxxi)2 + λ · ‖www‖2 (1.12)

is minimized with respect to the weight coefficients www, where λ is a regulariza-
tion parameter of the model which penalizes the norm of the weights. Given the
regularization parameter λ, the weights which minimize Eq. (1.12) are given
by

wwwridge = (λ · I +X>X)−1X>yyy, (1.13)

with the design matrix X whose rows are composed of the inputs {xxxi}Ni=1 and
the identity matrix I, respectively. Increasing the complexity regularizer λ re-
sults in smoother functions, thereby avoiding purely interpolating the training
data and reducing overfitting (see [20]). Due to its form, the ridge regression
model often exhibits good stability in terms of generalization error. However,
for most real-world problems the linear model is not powerful enough to accu-
rately predict quantum mechanical properties as it is difficult to find features
of the underlying system which linearly correlate with the response variables
{yi}Ni=1. As the simplicity of the linear ridge regression model turns out to be
the main limitation, there is a need for a non-linear variant.

This non-linear variant can be provided by kernelizing the ridge regres-
sion model. In kernel ridge regression, the parameters of the model ααα :=
(α1, · · · , αN ) are calculated by

(λ · I +K) ·ααα = yyy, (1.14)

with the already introduced Gram matrix K and yyy := (y1, · · · , yN ), respec-
tively. From the parameters ααα, a new prediction for a sample xxx is given by

yest =

N∑
i=1

αi · k(xxx,xxxi) (1.15)

Due to its nice practical and theoretical properties, kernel ridge regression
has been extensively used in the quantum chemistry domain [21, 22, 23, 5,
24]. Note that the formally same solution of Eq. (1.14) is also obtained when
training Gaussian processes and starting from the framework of Bayesian statis-
tics [25].

Kernel principal component analysis

Kernel principal component analysis (kernel PCA) [26, 27, 28] is a kernelized
extension to one of the most popular data dimensionality reduction techniques,

8



1.3. Description of the chapters

namely principal component analysis (PCA). To recall, PCA is an unsupervised
method that uses an orthogonal transformation to project the high dimensional
data onto a linearly uncorrelated set of low dimensional variables called the
principal components. These principal components are defined in a compact
way in the sense that a given component accounts for the highest variance under
the constraint of being orthogonal to the preceding ones, the first principal
component having the largest possible variance.

PCA can be kernelized by virtue of the kernel trick: the evaluation of
the data on the m-th principal component equals the m-th eigenvector of the
kernel matrix [29]. As PCA requires the data to be centered which is not
guaranteed in feature space, one common preliminary step is to centralize the
kernel beforehand by

K ′ := K − 111N ·K −K · 111N + 111N ·K · 111N , (1.16)

where 111N is the N ×N -matrix with entries 1/N . From the normalized eigen-
vectors {uuui}Ni=1 of the centralized kernel K ′, we compute the m-th principal
component of a new sample xxx by

pm(xxx) =

N∑
i=1

uuum,i · k(xxx,xxxi), (1.17)

where uuum,i is the i-th element of the eigenvector uuum. Kernel PCA is often used
in the quantum chemistry domain to display the data in its first two principal
components [30, 31, 32, 33], along with the label information if present. Such a
projection separates the structure of the data as induced by the kernel from the
response variable, possibly learning something about the difficulties to predict
a given response variable.

Kernel PCA can be used in a supervised fashion by projecting the label
vector yyy on the normalized eigenvectors of the centralized kernel matrix

zi := uuu>i yyy i = 1, · · · , N (1.18)

where we call the {zi}Ni=1 the kernel PCA coefficients. Analyzing the kernel
PCA coefficients allows to gain additional information about the complexity of
the learning problem at hand [34].

1.3 Description of the chapters

Chapter 2 (Many-body descriptors) We design descriptors of quantum
mechanical systems which are invariant to translation, rotation and atom in-
dexing. These representations are used to analyse the importance of two- and
three-body interactions in stable small organic molecules.

Chapter 3 (Capturing intensive and extensive molecular properties
with machine learning) We analyse the ability of machine learning models

9



1. Introduction

based on our invariant molecular many-body descriptors and an artificial neural
network for their ability to predict intensive and extensive quantum-mechanical
properties.

Chapter 4 (Kernel representations of quantum mechanical systems)
We develop a similarity measure of quantum mechanical systems based on
kernels. The decomposition property of these kernels is used to construct two-
and three-body interaction potentials for molecular dynamics data sets.

Chapter 5 (Approximate banded Toeplitz matrix inversion) We anal-
yse the inverse of banded Toeplitz matrices. For a certain class of these
matrices we prove the regularity and develop an efficient algorithm to con-
struct an approximate inverse from the band. This algorithm is implemented
reversely, where we estimate the band which best reconstructs a given non-
banded Toeplitz matrix. We apply our methods to construct Green's functions
of differential operators, to approximate deconvolution operators, to compute
long-range van der Waals interactions and for the interpolation of potential
energy surfaces, respectively.

The schematic relationship between the chapters of this thesis is depicted in
Fig. 1.2. Based on the decomposition of the exemplary ethanol molecule into
smaller components, we develop many-body descriptors which are invariant
with respect to translation, rotation and atom indexing in Chap. 2. The ability
of these representations to predict intensive and extensive molecular properties
on equal footing will be subsequently analyzed in greater detail in Chap. 3. In
Chap. 4, an alternative approach using the same molecular many-body decom-
positions as in Chap. 2 is developed, where we construct similarity measures
for quantum mechanical systems directly by local kernels. In Chap. 5, we pro-
pose an approximate inversion scheme for banded Toeplitz matrices and apply
this method to interpolate potential energy surfaces including the ethanol rotor
predicted by the local kernels of Chap. 4 and examine whether we can compute
another molecular property, namely the polarizabilities including self-consistent
electrodynamic screening effects more efficiently. The methods introduces in
Chap. 5 can be used for a wider range of applications, which we demonstrate
by efficiently constructing Green's functions of differential operators.

1.4 Previously published work

Many results in this thesis have previously been published in journals and
books. They are taken from the following articles:

• W. Pronobis, A. Tkatchenko, and K.-R. Müller. ”Many-Body Descriptors
for Predicting Molecular Properties with Machine Learning: Analysis of
Pairwise and Three-Body Interactions in Molecules”. Journal of Chemi-
cal Theory and Computation 14 (6), pp. 2991–3003, 2018
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1.4. Previously published work

• W. Pronobis, K. T. Schütt, A. Tkatchenko, and K.-R. Müller. ”Capturing
intensive and extensive DFT/TDDFT molecular properties with machine
learning”. The European Physical Journal B 91 (8), p. 178, 2018

• W. Pronobis, D. Panknin, J. Kirschnick, V. Srinivasan, W. Samek, V.
Markl, M. Kaul, K.-R. Müller, and S. Nakajima. ”Sharing hash codes
for multiple purposes”. Japanese Journal of Statistics and Data Science
1 (1), pp. 215–246, 2018

• W. Pronobis, and K.-R. Müller. Kernel Methods for Quantum Chem-
istry. In: Machine Learning for Quantum Simulations of Molecules and
Materials. Springer Nature, 2020, pp. 27–40

• K. Hansen, F. Biegler, R. Ramakrishnan, W. Pronobis, O. A. von Lilien-
feld, K.-R. Müller, and A. Tkatchenko. ”Machine Learning Predictions of
Molecular Properties: Accurate Many-Body Potentials and Nonlocality
in Chemical Space”. The journal of physical chemistry letters 6 (12), pp.
2326–2331, 2015

• H. Marienwald, W. Pronobis, K.-R. Müller, and S. Nakajima. ”Tight
Bound of Incremental Cover Trees for Dynamic Diversification”. arXiv
preprint arXiv: 1806.06126, 2018

Figures and tables that are fully or partially taken from previously published
work, cite the original source.
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1. Introduction

Chap. 2: Many-body descriptors

Chap. 4: Local kernels

Chap. 3: Intensive and extensive properties

Chap. 5: Banded Toeplitz matrix inversion

energy polarizability

Exponential kernels

KRR KRR

Interpolation

SC
S

Figure 1.2: Schematic relationship between the chapters of this thesis. Based
on the decomposition of the exemplary ethanol molecule (top) into smaller
components (green ellipses), we will develop many-body descriptors which are
invariant with respect to translation, rotation and atom indexing in Chap. 2.
In Chap. 4, these decompositions are used to construct similarity measures for
quantum mechanical systems represented directly by local kernels. A set of ex-
ponential kernels on top of the descriptors of Chap. 2 and the kernels of Chap. 4
are used to predict quantum-mechanical properties with KRR. The ability of
these approaches to predict intensive and extensive molecular properties on
equal footing will be analyzed in greater detail in Chap. 3. In Chap. 5, we pro-
pose an approximate inversion scheme for banded Toeplitz matrices which we
apply to interpolate potential energy surfaces and to compute polarizabilities
including self-consistent electrodynamic screening effects more efficiently.
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Chapter 2

Many-body descriptors

Large parts of this chapter have appeared in previously published work [1, 8].
Recently, machine learning has been ubiquitously used in the industry and

sciences. The possibility of parallel implementations using GPU cards in ad-
dition to new deep learning architectures has enabled powerful learning ma-
chines which reach and even surpass human performance in a variety of applica-
tions. From imperfect information games like heads-up no-limit Texas hold’em
poker [35] over real-time strategy games like StarCraft [36], the program Al-
phaGo Zero [37] has been trained without human knowledge and is arguably
the strongest Go player in history. Machine learning approaches reach human
performance in human interaction tasks like speech recognition [38], image
recognition [39] and speech generation [40].

In this chapter, we follow one of the most intriguing applications of machine
learning in sciences: the prediction of highly complex properties of quantum
mechanical systems. Specifically, we are interested in the prediction of the
properties of small sized molecules and the analysis of the pairwise and three-
body interactions. Before proceeding, we put our work in the context of existing
literature on machine learning of molecular properties and in particular on
molecular representations.

This chapter is structured as follows. The next Section 2.1 reviews some
existing representations of physical systems. This is followed by the definition
of our invariant many-body descriptors for molecules in Sec. 2.2. Sec. 2.3 details
the data sets as well as the learning task and the prediction of several properties
of small organic molecules and contains an analysis of the importance of the
presented two- and three-body molecular features. The chapter is summarized
and discussed in Sec. 2.5.

2.1 Representations of physical systems

Recently, machine learning has been successfully used to predict the atomiza-
tion energies of small molecules [41, 20, 3, 2] and molecular dynamics simula-
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2. Many-body descriptors

tions [5, 42, 43, 44] as well as for studying properties of quantum-mechanical
densities [45, 46]. Descriptors of molecules are constructed to provide an in-
variant, unique and efficient representation as input to machine learning mod-
els [47, 48, 21, 49, 50, 44, 51]. Such representations encoding a physical system
will be defined by a set of 4-dimensional points {(Zi, rrri)}Ni=1, where Zi is the
atomic number and rrri is the position of the atom i in three-dimensional space,
respectively. While the system size N is well defined for molecules (by the total
number of atoms of the molecule), one workaround for solids is to use atomic
environment descriptors together with a cutoff distance to limit the number of
neighboring atoms used to compute the atomic representation. Alternatively,
any molecular descriptor can also be combined with a modified distance met-
ric to account for the periodic boundary conditions [52]. A raw encoding of
the physical system by the atomic positions is unsuited for use in combination
with machine learning methods as it neglects invariance with respect to basic
symmetry operations. Instead, a representation is defined

R : {(Zi,xxxi)}Ni=1 → RNF (2.1)

with the number of features NF . Such a mapping should encode the underly-
ing chemical system in a complete, unique and efficient way, including as much
problem symmetries as possible. One way to incorporate translational and
rotational invariance is to use pairwise atomic distances to construct the rep-
resentation R. For molecules, a pioneering work which utilizes this observation
is the Coulomb matrix (CM) [41] which is defined as

Cij =

{
0.5Z2.4

i , i = j
ZiZj
‖rrri−rrrj‖ , i 6= j

(2.2)

Being composed based on inverse pairwise distances, the off-diagonal elements
of the CM account well for Coulomb interaction terms of the atomization en-
ergy. The diagonal elements of the CM correspond to a polynomial fit of
atomic energies to nuclear charge [41]. From the set of all pairwise distances
a given molecule can be uniquely reconstructed, which is not the case for the
following representations of this section. For equilibrium molecules a variant
of the CM has been proposed which sorts the row (or equivalently column)
norms, and which better suits the feature comparison needed for applying ker-
nel methods [20]. The CM is a global descriptor in the sense that it lacks a
direct encoding of local atomic environment features. Due to its simplicity and
predictive power, the CM provides the basis for various following molecular
descriptors. Being composed of two-body terms, the three-body interactions
of a given molecule are implicitly learned by the intrinsic feature mapping of
the kernel (see Sec. 1.2). Although sorting of the rows solves some of its prob-
lems, one possible flaw of the CM is the comparison of different kinds of atom
combinations within the distance metric which brings us to the next descriptor.

The bag-of-bonds (BOB) molecular representation is a development of the
CM which rearranges the elements of the CM into bags defined by a given bond
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2.1. Representations of physical systems
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Figure 2.1: Molecular representations of a water molecule (left) defined by a set
of three pairwise distances. From the Coulomb matrix (CM), the off-diagonal
elements are reordered by the bag-of-bonds (BOB) descriptor. These two-body
terms are then combined to atomic index invariant two-body and three-body
features F2B and F3B, respectively. This image has appeared in previously
published work [1].

type [53]. Within each feature group, the elements of BOB are sorted, thereby
ensuring atomic permutation invariance. Due to this grouping, chemically more
similar elements are compared with each other as compared to the CM. In ad-
dition, three-body interactions in molecules can possibly be better implicitly
learned by the kernel. Similarly to the bag-of-words descriptor used in natural
language processing and information retrieval applications, BOB encodes the
frequencies of bonds present in a given molecule. As such, the BOB descrip-
tor is inspired by interatomic potentials, which model a quantum-mechanical
property as a sum over such potentials. In fact, a Taylor series expansion in
combination with kernel ridge regression yields a low-order approximation of
the BOB model by a sum over bonds and pairwise potentials [53]. This im-
portant finding indicates that the BOB model is able to learn optimal pairwise
potentials better than the CM, which is beneficial for some extensive proper-
ties like the atomization energy and the polarizability, respectively [54]. For
BOB, the Laplace kernel performs better than the Gaussian kernel, indicating
that the Laplace kernel might be superior in utilizing non-local information in
chemical compound space [53].

Shapeev et al. [55, 56] introduces systematically improvable interatomic
potential descriptors based on invariant polynomials. These moment tensor
potentials are invariant with respect to permutation, rotation and reflection
and have the advantage that the computational complexity of computing these
polynomials scales like O(N), where N is the number of atoms. One possible
limitation is that these potentials treat all atoms as chemically equivalent.
Shapeev et al. suggest a future extension to alleviate this issue, namely to let
the radial basis functions depend on the types of atoms.

15



2. Many-body descriptors

Faber et al. [3] studied a representation using the histogram of distances,
angles and dihedral angles with kernel ridge regression and achieves a mean
absolute error (MAE) of 0.58 kcal/mol on the GDB-9 set, when trained on
118000 molecules. An angle representation based on molecular atomic radial
angular distributions (MARAD) achieves a MAE of 1.2 kcal/mol with kernel
ridge regression and 4.0 kcal/mol with the linear Bayesian ridge regression
model when trained on 118000 molecules.

The recently introduced BAML (bonds angles machine learning) represen-
tation [57] can be viewed as many-body extension of BOB and constructs ar-
bitrary distance functions between pairwise distances. BAML reaches a MAE
of 1.15 kcal/mol on the GDB-7 set trained on 5000 molecules [49] and a MAE
of 1.2 kcal/mol on the GDB-9 set when trained on 118000 molecules [3].

Huo et al. [49] introduces a many-body tensor representation which im-
proves on the histogram descriptors of Faber et al. by “smearing” the his-
tograms of given many-body features. For one of their best models, a MAE
of 0.60 kcal/mol on GDB-7 using Gaussian kernel ridge regression and a MAE
of 0.74 kcal/mol using a linear model (with many-body interactions) has been
reported.

Most of the above approaches use explicit three-body (e.g. angle) or four-
body (e.g. dihedral angle) features to construct the respective representation.
In the next section, we propose novel translational, rotational and atom in-
dexing invariant molecular descriptors which build on the success of inverse
pairwise distances for predicting the atomization energy [20, 53, 41, 2, 21]. In
particular, we construct many-body interaction features of arbitrary order from
inverse pairwise distances which helps to alleviate sorting challenges encoun-
tered in e.g. CM. Similarly, our model learns e.g. a three-body interatomic
potential, which is not necessarily a function of angle. Our novel descriptors
allow to construct an invariant two-body and many-body interaction represen-
tation at fixed descriptor size. Note that fixed sized molecular descriptors are
useful in practice as they can be easily used in combination with kernel ridge
regression or deep neural networks or other models that expect fixed size input
data. Also, such fixed size representations are generally extensible to large
molecules and solids, while incorporating informative higher-order interaction
terms. Furthermore when using these novel descriptors we observe that linear
models perform only slightly worse than the non-linear methods. The latter is
helpful in practice as linear models allow to easily analyse the importance of
the proposed two-, three-body or many-body interaction features for predicting
atomization energies of the molecules. This allows to extract insights from the
learned model.

2.2 Invariant molecular many-body descriptors

We can represent a physical system with N atoms by the set S = {rrri, Zi}Ni=1

where rrri denotes the position of atom i in three-dimensional coordinate space
and Zi stands for the corresponding atomic number, respectively. A general
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2.2. Invariant molecular many-body descriptors

form of many-body interaction descriptors is defined using this set by

fZZZ,p(S) :=
∑

(j1,··· ,jk)∈G(k,N)

δZZZ(Z̄ZZ) · p(rrrj1 , Zj1 , · · · , rrrjk , Zjk) (2.3)

where Z̄ZZ := (Zj1 , · · · , Zjk), ZZZ is a given k-tuple of atomic numbers with
k ≤ N , p is a k-body interactions term, and the partial permutations set
G(k,N) consists of the sequences without repetition of k elements from the
set {1, 2, · · · , N}. The cardinality of the k-permutation of N set G(k,N) is
N !

(N−k)! . For example if k = 1, the sum in Eq. (2.3) is taken over all atoms

of the system S of a given type. The descriptors in Eq. (2.3) are intrinsically
invariant to the indexing of the atoms comprising the system S, as the sum is
formed over all elements of the set G(k,N). If the k-body interactions term
p satisfies invariance with respect to the translation and rotation of the atoms
of S, this carries over to the descriptors fZZZ,p(S). For systems with a large
number of atoms N , the sum can be limited to the largest interaction terms p
contained in Eq. (2.3). In the following, we propose a set of translational and
rotational invariant two-body and three-body interaction terms p, which will
define our invariant many-body interaction descriptors.

Invariant two-body interaction descriptors

We define the set of translational and rotational invariant two-body interaction
terms

p2B
m (rrr1, Z1, rrr2, Z2) := ‖rrr1 − rrr2‖−m (2.4)

where m ∈ N+. For a given set of n different atomic numbers An := {Zi}ni=1

with Zi 6= Zj ∀ i, j ∈ {1, · · · , n}, let S2B denote the set of all tuples (Zi, Zj)
with Zi ≤ Zj and Zi, Zj ∈ An. Let M2B denote the set {1, 2, · · · , n2B} where
n2B is a parameter of the model and defines the largest occurring exponent.
For a given physical system S, the two-body interaction descriptors F2B are
now given by

F2B :=
{
fZZZ,p2B

m
(S)
}
m∈M2B,ZZZ∈S2B

(2.5)

Typicall, the set An contains the atomic numbers present in the data set. The
dimension of the two-body interaction descriptors is n2B · n · (n + 1)/2. The
pseudocode for computing these descriptors is shown in Alg. 1.

Invariant three-body interaction descriptors

We define the set of translational and rotational invariant three-body interac-
tion terms

p̄3B
m1,m2,m3

(rrr1, Z1, rrr2, Z2, rrr3, Z3) := ‖rrr12‖−m1 · ‖rrr13‖−m2 · ‖rrr23‖−m3 (2.6)
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2. Many-body descriptors

Algorithm 1 Descriptors2B

Input:
molecule M = {(Zi, rrri)}Ni=1

maximal exponent n2B

Output: feature vector f(·)
1: f(·)← 0
2: for i, j ← atoms of molecule do
3: . each atom is represented by position rrr and atomic number Z
4: rij ← ‖rrri − rrrj‖
5: ZZZ ← sorted tuple (Zi, Zj)
6: for m = 1 to n2B do
7: f(ZZZ,m) += r−mij . feature entries are indexed by (ZZZ, m)

and

p3B
m1,m2,m3

(rrr1, Z1, rrr2, Z2, rrr3, Z3) := ‖rrr12‖−m1 · ‖rrr13‖−m2 · ‖rrr23‖−m3 (2.7)

·θ(Z1, Z2, Z3, ‖rrr12‖, ‖rrr13‖, ‖rrr23‖) (2.8)

where m1,m2,m3 ∈ N+, rrrij := rrri − rrrj for i, j = {1, 2, 3}, and the bond angle
indicator

θ(·) =


1, ‖rrr12‖ < B(Z1, Z2) ∧ ‖rrr13‖ < B(Z1, Z3)

1, ‖rrr13‖ < B(Z1, Z3) ∧ ‖rrr23‖ < B(Z2, Z3)

1, ‖rrr12‖ < B(Z1, Z2) ∧ ‖rrr23‖ < B(Z2, Z3)

0, otherwise

(2.9)

where B(Zi, Zj) := 1.1 · L(Zi, Zj) for i, j = {1, 2, 3}, and the values for the
bond length function L(·) are given in Tab. 2.1. For a given set of n different
atomic numbers An := {Zi}ni=1 with Zi 6= Zj ∀ i, j ∈ {1, · · · , n}, let S3B denote
the set of all 3-tuples (Zi, Zj , Zk) with Zi < Zj < Zk and Zi, Zj , Zk ∈ An. Let
M3B be the set of partial permutations G(3, n3B) as defined above, where n3B

is a parameter of the model and defines the largest occurring exponent for the
three-body terms. For a given physical system S, the three-body interaction
descriptors F3B and F̄3B are now given by

F3B :=
{
fZZZ,p3B

m1,m2,m3
(S)
}

(m1,m2,m3)∈M3B,ZZZ∈S3B

(2.10)

and

F̄3B :=
{
fZZZ,p̄3B

m1,m2,m3
(S)
}

(m1,m2,m3)∈M3B,ZZZ∈S3B

(2.11)

The dimension of the three-body interaction descriptors is n2·(n+1)/2· n3B!
(n3B−3)! .

The pseudocode for computing these descriptors is shown in Alg. 2.
Fig. 2.1 schematically shows the representations CM, BOB and the descrip-

tors F2B and F3B for the example of a water molecule.
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2.3. Tests on molecular data sets

Algorithm 2 Descriptors3B

Input:
molecule M = {(Zi, rrri)}Ni=1

maximal exponent n3B

Output: feature vector f(·)
1: G(3, n3B) ← sequences without repetition of 3 elements from the set
{1, 2, · · · , n3B}

2: B(·)← 1.1 · L(·)
3: f(·)← 0
4: for i, j, k ← atoms of molecule do
5: . each atom is represented by position rrr and atomic number Z
6: rij ← ‖rrri − rrrj‖
7: rik ← ‖rrri − rrrk‖
8: rjk ← ‖rrrj − rrrk‖
9: hasAngle ← False

10: if rij < B(Zi, Zj) and rik < B(Zi, Zk) then
11: hasAngle ← True

12: else if rik < B(Zi, Zk) and rjk < B(Zj , Zk) then
13: hasAngle ← True

14: else if rij < B(Zi, Zj) and rjk < B(Zj , Zk) then
15: hasAngle ← True

16: if not hasAngle then
17: continue
18: ZZZ ← sorted tuple (Zi, Zj , Zk)
19: for m1,m2,m3 ← G(3, n3B) do
20: f(ZZZ,m1,m2,m3) += r−m1

ij · r−m2

ik · r−m3

jk

21: . feature entries are indexed by (ZZZ, m1,m2,m3)

2.3 Tests on molecular data sets

We use the following two reference data sets for the evaluation of the predictive
power of machine learning models with our proposed invariant many-body
interaction descriptors.

GDB-7. The GDB-7 data set is a subset of the freely available small
molecule database GDB-13 [58] with up to seven heavy atoms CNO. For
this data set, electronic ground- and excited state properties have been cal-
culated. Hybrid density functional theory with the Perdew-Burke-Ernzerhof
hybrid functional approximation (PBE0) [59, 60] has been used to calculate the
atomization energy of the molecules. The electron affinity, ionization poten-
tial, excitation energies and maximal absorption intensity have been obtained
from ZINDO [61, 62, 63]. For the static polarizability, PBE0 and self-consistent
screening (SCS) [64] have been used. The frontier orbital (HOMO and LUMO)
eigenvalues have been calculated using PBE0, SCS and Hedin’s GW approxi-
mation [65]. The SCS, PBE0 and GW calculations have been performed using
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2. Many-body descriptors

bond-type (Z1, Z2)(Z1, Z2)(Z1, Z2) L(Z1, Z2)L(Z1, Z2)L(Z1, Z2)

H−H (1, 1) 0.74

H−C (1, 6) 1.08

H−O (1, 8) 0.96

H−N (1, 7) 1.01

C−C (6, 6) 1.51

C−O (6, 8) 1.43

C−N (6, 7) 1.47

O−O (8, 8) 1.48

O−N (8, 7) 1.40

N−N (7, 7) 1.45

F−H (9, 1) 0.92

F−C (9, 6) 1.35

F−O (9, 8) 1.42

F−N (9, 7) 1.36

F−F (9, 9) 1.42

Table 2.1: Bond lengths in Ångström (right column) for all combinations of
the elements H, C, N, O and F. Used for computing the three-body interaction
descriptors F3B. This table has appeared in previously published work [8].

FHI-AIMS [66] (tight settings/tier2 basis set), ZINDO/s calculations are based
on the ORCA [67] code.

GDB-9. The GDB-9 data set is a subset of the chemical universe database
GDB-17 [68] of 166 billion organic small molecules. The subset contains molecules
with up to nine heavy atoms CNO with corresponding harmonic frequencies,
dipole moments, polarizabilities, along with energies, enthalpies, and free ener-
gies of atomization, all calculated at the B3LYP/6-31G(2df,p) level of quantum
chemistry [69].

We evaluate the performance of predicting the properties of the molecules
of these two data sets by using our proposed invariant many-body interac-
tion descriptors F2B and F2B + F3B. Additionally, we computed the sorted
Coulomb matrices (CM) [20] and the popular bag-of-bonds (BOB) [53] molec-
ular representations. For the atomization energy, we use the models kernel-
ridge-regression (KRR) [70, 71], ridge regression (RR) [72], k-nearest neighbors
(KNN) [73] and the mean predictor (MEAN). For the other properties, we use
kernel-ridge-regression with the Laplace kernel for CM and BOB which works
better compared to the Gauss kernel for these descriptors [20], the Gauss kernel
in combination with the F2B and F2B + F3B descriptors, respectively. To fit
the model parameters (hyper parameters), we use 10-fold cross-validation [74],
see [20] for details. Unless otherwise noted, the models are trained on 5000
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2.3. Tests on molecular data sets

Method Features MAE RMSE Max. dev.

mean - 174 219 1166

RR CM 25 33 134

RR BOB 23 30 144

RR F2B 4.9 12 350

RR F2B + F3B 1.0 8.3 327

RR F2B + F̄3B 1.0 8.1 301

KNN CM 80 104 461

KNN BOB 70 102 424

KNN F2B 49 73 230

KNN F2B + F3B 10 28 306

KNN F2B + F̄3B 13 35 395

KRR (Gaussian) CM 8.6 15 433

KRR (Laplace) CM 3.7 5.8 89

KRR (Gaussian) BOB 7.6 10 99

KRR (Laplace) BOB 1.8 3.9 103

KRR (Gaussian) F2B 1.9 4.7 155

KRR (Laplace) F2B 4.2 6.1 62

KRR (Gaussian) F2B + F3B 0.83 1.5 282828

KRR (Laplace) F2B + F3B 2.4 3.8 51

KRR (Gaussian) F2B + F̄3B 0.810.810.81 1.41.41.4 31

KRR (Laplace) F2B + F̄3B 2.7 4.1 67

Table 2.2: Prediction errors of the PBE0 atomization energy of the
molecules of the set GDB-7 by various machine learning models
with random 5k train molecules and the remaining 1868 molecules
as test set. The errors are given in kcal/mol. The models used
are ridge regression (RR), kernel ridge regression (KRR) and k-
nearest neighbors (KNN). The results in this table have appeared
in previously published work [8].

random molecules. The performance is evaluated on the remaining molecules
of the respective set, by the mean absolute error (MAE), the root-mean-square
error (RMSE) and the maximum deviation (Max. dev.), respectively.

For the atomization energy, the results of the machine learning models
are given in Tab. 2.2 and 2.3. The results for predicting diverse quantum
mechanical properties are given in Tab. 2.4 and 2.5, respectively. The MAE in
dependence of the number of training samples is shown in Figs. 2.2 and 2.3,
respectively.

The F2B + F3B and F2B + F̄3B models outperforms the BOB descriptor in
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2. Many-body descriptors
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Figure 2.2: Mean absolute error of predicting the PBE0 atomization energy
of the molecules of the set GDB-7 with KRR in dependence of the number of
training samples. The errors are given in kcal/mol. For CM, BOB, F2B, F2B +
F3B and F2B + F̄3B, the Gaussian kernel has been used. The kernel parameters
have been determined by 10-fold nested cross-validation. The kernel methods
K2B, K2B +K3B and K2B + K̄3B will be presented in the Chap. 4.

the prediction of the static polarizability computed with self-consistent screen-
ing (20% improvement), the first excitation energy (20% improvement) and
the atomization energy (50% improvement) of the molecules of the GDB-7
set. Additionally, the prediction errors of the electron affinity and the HOMO
eigenvalues are improved by 5%. The largest correlation between prediction
and reference is achieved for the static polarizability computed with SCS as well
as the atomization energy. Noticeably, both models F2B + F3B and F2B + F̄3B

display similar prediction accuracies for the atomization energy, indicating that
three-body interactions are local for molecules at equilibrium.

The F2B + F3B and F2B + F̄3B models outperforms the BOB descriptor in
the prediction of the heat capacity (40% improvement), the zero point vibra-
tional energy (50% improvement), the isotropic polarizability (30% improve-
ment) and the atomization energies (60% improvement) of the molecules of
the GDB-9 set. Additionally, the prediction errors of the HOMO and LUMO
eigenvalues as well as the gap are improved by 15%, 10% and 9%, respectively.
The largest correlation between prediction and reference is achieved for the
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2.4. Feature importance analysis
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Figure 2.3: Mean absolute error of predicting the B3LYB/6-31G(2df,p) atom-
ization energy of the molecules of the set GDB-9 with KRR in dependence of
the number of training samples. The errors are given in kcal/mol. For CM,
BOB, F2B, F2B +F3B and F2B + F̄3B, the Gaussian kernel has been used. The
kernel parameters have been determined by 10-fold nested cross-validation.
The kernel methods K2B, K2B +K3B and K2B + K̄3B will be presented in the
Chap. 4.

electronic spatial extent, zero point vibrational energy, the heat capacity, the
isotropic polarizability and the atomization energies.

The prediction of the atomization energy by using the linear RR model is
comparable to the KRR model. This makes the F2B +F3B descriptors interest-
ing candidates for alternative linear regression models such as Bayesian linear
regression [75], partial least squares [76] or generalized least squares [77]. In
this work, we will utilize this fact to compute a feature ranking measure in the
next section.

2.4 Feature importance analysis

The inclusion of the three-body descriptors F3B increases the predictive power
of the KRR model by more than 50% over using the two-body descriptors F2B

for both data sets GDB-7 and GDB-9. Due to the non-linear kernels used, it
is not obvious, how the three-body features improve the performance. The fre-
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2. Many-body descriptors

Method Features MAE RMSE Max. dev.

mean - 185 235 1544

RR CM 235 308 1289

RR BOB 89 134 653

RR F2B 6.8 10 462

RR F2B + F3B 1.6 2.82.82.8 88

RR F2B + F̄3B 1.6 2.9 81

KNN CM 239 279 898

KNN BOB 231 272 758

KNN F2B 151 177 556

KNN F2B + F3B 25 42 358

KNN F2B + F̄3B 27 55 476

KRR (Gaussian) CM 17 22 181

KRR (Laplace) CM 7.9 10 129

KRR (Gaussian) BOB 11 16 253

KRR (Laplace) BOB 4.0 6.0 132

KRR (Gaussian) F2B 4.8 6.4 454545

KRR (Laplace) F2B 8.2 11 190

KRR (Gaussian) F2B + F3B 1.51.51.5 2.8 96

KRR (Laplace) F2B + F3B 4.5 6.4 147

KRR (Gaussian) F2B + F̄3B 1.51.51.5 2.72.72.7 91

KRR (Laplace) F2B + F̄3B 4.7 7.5 170

Table 2.3: Prediction errors of the B3LYP/6-31G(2df,p) atomiza-
tion energy of the molecules of the set GDB-9 by various machine
learning models with random 5k train molecules and the remain-
ing 126722 molecules as test set. The errors are given in kcal/mol.
The models used are ridge regression (RR), kernel ridge regression
(KRR) and k-nearest neighbors (KNN). The results in this table
have appeared in previously published work [8].

quencies of the bond types corresponding to three bonded atoms which have an
angle (Fig. 2.5 and Fig. 2.6 top) suggest the top-three most important connec-
tions C−C−H, H−C−H and C−C−C, respectively. On the other hand, using
the F2B descriptors in combination with the H−C−H subset of F3B features
(Fig. 2.5 and Fig. 2.6 bottom) shows negligible decrease of the mean absolute
error of the KRR model as compared to the inclusion of the C−C−H and
C−C−C subsets.

There are a number of ways to define feature importance [78, 79, 80, 81]
respectively to explain nonlinear models [82, 83, 84, 85, 86, 87, 88]. Here,
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2.4. Feature importance analysis

Property CM BOB F2BF2BF2B F2B + F3BF2B + F3BF2B + F3B F2B + F̄3BF2B + F̄3BF2B + F̄3B Unit

ae-pbe0 3.7 1.8 1.9 0.83 0.810.810.81 kcal/mol

homo-gw 0.212 0.138 0.167 0.1280.1280.128 0.130 eV

lumo-gw 0.187 0.142 0.155 0.147 0.1290.1290.129 eV

homo-pbe0 0.202 0.130 0.156 0.120 0.1180.1180.118 eV

lumo-pbe0 0.174 0.108 0.133 0.108 0.0920.0920.092 eV

homo-zindo 0.279 0.144 0.173 0.1320.1320.132 0.132 eV

lumo-zindo 0.252 0.134 0.168 0.1120.1120.112 0.115 eV

p-pbe0 0.130 0.083 0.103 0.088 0.0730.0730.073 Ångström3

p-scs 0.065 0.042 0.061 0.032 0.0220.0220.022 Ångström3

e1-zindo 0.37 0.19 0.21 0.150.150.15 0.17 eV

ea-zindo 0.29 0.15 0.18 0.130.130.13 0.14 eV

imax-zindo 0.084 0.0670.0670.067 0.074 0.071 0.072 a.u.

emax-zindo 1.47 1.20 1.29 1.26 1.151.151.15 eV

ip-zindo 0.32 0.180.180.18 0.21 0.180.180.18 0.20 eV

Table 2.4: Mean absolute errors of predicting several ground- and excited
state properties by kernel ridge regression trained on 5000 random molecules
and tested on the remaining 1868 molecules of the GDB-7 data set. The best
performing models are marked in bold. The results in this table have appeared
in previously published work [8].

we use the feature importance ranking measure (FIRM) [83], which defines
the feature importance according to the standard deviation of a conditional
expected output of the learner. FIRM can be applied to a broad family of
learning machines, the measure is robust with respect to perturbation of the
problem and invariant with respect to irrelevant transformations. In general,
the computation of the exact FIRM is infeasible. For the unregularized linear
regression model and normally distributed input features, the FIRM of a feature
f can be computed analytically [83] by

FIRM(f) :=
1

n
· 1

σ(f)
· cov(f, y), (2.12)

where n is the number of samples, σ(·) is the standard deviation, y denotes the
labels and cov(·) the covariance. In the above formula, FIRM is computed for
each feature independently. To capture the importance of the inclusion of the
three-body descriptors F3B, we propose to use FIRM on the signed deviation
of labels and prediction of the KRR model with the two-body features F2B

FIRM3B(f) :=
1

n
· 1

σ(f)
· cov(f, y − p2B), (2.13)
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2. Many-body descriptors

Property CM BOB F2BF2BF2B F2B + F3BF2B + F3BF2B + F3B F2B + F̄3BF2B + F̄3BF2B + F̄3B Unit

U0 7.9 4.0 4.8 1.51.51.5 1.51.51.5 kcal/mol

U 7.9 4.0 4.8 1.51.51.5 1.51.51.5 kcal/mol

H 7.9 4.0 4.8 1.51.51.5 1.51.51.5 kcal/mol

G 7.9 4.0 4.8 1.51.51.5 1.51.51.5 kcal/mol

HOMO 5.8 4.3 4.7 3.63.63.6 3.9 kcal/mol

LUMO 8.9 5.7 6.0 5.15.15.1 5.4 kcal/mol

gap 11 6.8 7.9 6.26.26.2 6.6 kcal/mol

alpha 1.00 0.63 0.72 0.490.490.49 0.58 Bohr3

mu 0.77 0.65 0.67 0.61 0.610.610.61 Debye

r2 16 8.5 7.37.37.3 9.0 11.5 Bohr2

zpve 0.33 0.20 0.18 0.100.100.10 0.100.100.10 kcal/mol

A 0.42 0.370.370.37 0.40 0.42 0.45 GHz

B 0.12 0.100.100.10 0.12 0.13 0.11 GHz

C 0.052 0.045 0.046 0.050 0.0420.0420.042 GHz

cv 0.38 0.20 0.21 0.12 0.110.110.11 cal/(mol K)

Table 2.5: Mean absolute errors of predicting several properties calculated at
the B3LYP/6-31G(2df,p) level of quantum chemistry and predicted by kernel
ridge regression trained on 5000 random molecules and tested on the remaining
126722 molecules of the GDB-9 data set. The best performing descriptors are
marked in bold. The results in this table have appeared in previously published
work [8].

where p2B is the prediction of the KRR model using the F2B descriptors, see
also [89]. Additionally, we compute the product of the above FIRM3B of the
feature f with the frequency of its corresponding bond-type

FIRMfreq(f) := freq(f) · 1

n
· 1

σ(f)
· cov(f, y − p2B), (2.14)

where freq(f) is the frequency of the bond-type corresponding to the feature f .
Fig. 2.5 and Fig. 2.6 show the FIRM, FIRM3B and FIRMfreq for the three-body
descriptors F3B for both data sets GDB-7 and GDB-9. Additionally, we show
the frequency of the bond-type corresponding to the feature f and the error
improvement of using the KRR model with the F2B features augmented with
the corresponding subset of three-body features F3B.

The FIRM3B indicates low importance of the H−C−H and increased im-
portance of the C−C−C features, which correlates with the error improvement
by using these features in combination with the F2B descriptors. This indi-
cates, that three-body interactions relevant for prediction improvement are
more dominant for the C−C−C bond type as compared to the H−C−H bond
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2.4. Feature importance analysis

property description

ae-pbe0 atomization energy (DFT/PBE0)

homo-gw highest occupied molecular orbital (GW)

lumo-gw highest unoccupied molecular orbital (GW)

homo-pbe0 highest occupied molecular orbital (DFT/PBE0)

lumo-pbe0 highest unoccupied molecular orbital (DFT/PBE0)

homo-zindo highest occupied molecular orbital (ZINDO/s)

lumo-zindo highest unoccupied molecular orbital (ZINDO/s)

p-pbe0 polirazability (DFT/PBE0)

p-scs polarizability (self-consistent-screening)

e1-zindo first excitation energy (ZINDO)

ea-zindo electron affinity (ZINDO/s)

imax-zindo excitation energy at maximal absorption (ZINDO)

emax-zindo maximal absorption intensity (ZINDO)

ip-zindo ionization potential (ZINDO/s)

Table 2.6: Description of the molecular properties contained in the
data set GDB-7. This table has appeared in previously published
work [8].

type, where the correlation with the atomization energy can be captured by
using the corresponding two-body features F2B.

The measure FIRM3B reduces the importance of the hydrogen type bonds
in favour of the non-hydrogen features, as compared to FIRM. The correlation
of a molecular descriptor with the target (atomization energy) is not neces-
sarily a good predictor variable in presence of other features. In this sense,
FIRM3B captures the importance of the three-body descriptors F3B in the
presence of the two-body interactions modelled by the two-body descriptors
F2B. For the non-hydrogen type three-body features, FIRM indicates approx-
imately equal importance of the C−C−C, C−C−N and N−C−O bonds, in
contrast to FIRM3B, which lifts the C−C−C importance. This shows, that for
non-hydrogen bonds, our set of descriptors are better able to capture three-
body interactions of the C−C−C type as compared to the other bond types.
In spite of the 5 times lower frequency of the N−C−O bond compared to
C−C−N, both, the error improvement and FIRM3B show approximately equal
importance of these three-body interactions.

For the three-body features, we can use the parameters of the linear RR
model to compute the energy of a given bond-type

E3B(b) :=

N∑
i=1

δb(bond(i)) · ci · fi, (2.15)
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2. Many-body descriptors

property description

U0 internal energy at 0 K

U internal energy at 298.15 K

H enthalpy at 298.15 K

G free energy at 298.15 K

HOMO energy of highest occupied molecular orbital

LUMO energy of lowest unoccupied molecular orbital

gap gap, difference between LUMO and HOMO

alpha isotropic polarizability

mu dipole moment

r2 electronic spatial extent

zpve zero point vibrational energy

A rotational constant A

B rotational constant B

C rotational constant C

cv heat capacity at 298.15 K

Table 2.7: Description of the molecular properties contained
in the data set GDB-9. This table has appeared in previously
published work [8].

where ci are the coefficients of the trained RR model, fi are the three-body
features, N are the number of three-body features, b is the bond-type under
examination and bond(i) indicates the bond-type corresponding to the feature
fi. Fig. 2.4 shows E3B in dependence of the bond angle exemplary for the
C−C−C type bond type of the GDB-7 and GDB-9 set, respectively.

Physically, these results indicate, that for intermediate size molecules, the
interaction of the hydrogen atom with all other atoms (of type C, N, O) can
be captured effectively by pairwise interactions. In fact, if we use the F2B

features in combination with the non-hydrogen subset of F3B, we get a mean
absolute error of 0.9 kcal/mol for the GDB-7 set and 1.8 kcal/mol for the
GDB-9 set on the rest of the molecules, respectively. In view of the fact,
that the hydrogen atom constitutes by far the dominant atom type for both
data sets, the errors degrade by 13% and 20% as compared to the full F2B +
F3B descriptors, respectively. This intriguing result lets us formulate to the
following conjecture:

For the accurate prediction of the atomization energy of intermediate size
molecules, the interaction potential of the hydrogen atom with all other atoms
can be effectively approximated as a pairwise interaction potential.

The interatomic interaction between non-hydrogen atoms goes beyond pair-
wise interactions. Interestingly, for the C−C−C bond-type, the energy E3B
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Figure 2.4: E3B by Eq. (2.15) in dependence of the bond angle for the C−C−C
bond type for the molecules of the set GDB-7 (left) and GDB-9 (right) along
with the distribution of the angles (top). These images have appeared in pre-
viously published work [8].

shows a clear dependence of the bond angle, as compared to the other bond-
types. This result indicates, that there is a simple relation between the angle
at the C-atom of the C−C−C bond-type and the atomization energy. Between
the angles π/4 and π/2, there exist two branches of the dependence of the
atomization energy of the angle. This indicates, that for C−C−C, our model
learns two angle-type functions, distinguishing single-double and single-single
C−C−C bonds, see the C−C−C angle dependence of E3B in Fig. 2.4.

2.5 Summary and discussion

In this chapter we have developed representations of physical systems com-
posed of atoms which have a fixed size and are translation, rotation and atom
indexing invariant. We have used these descriptors to predict quantum me-
chanical properties of a set of small organic molecules containing the heavy
atoms CNO with kernel ridge regression in combination with the Gaussian
kernel. On these data sets our best models outperform the CM and BOB, the
improvement ratio being better for extensive than for intensive properties. A
more detailed analysis in the next chapter, where we compare our models with
an artificial neural network approach which learns atom-wise decompositions
directly from first principles shows the difficulty in using our descriptors for
predicting highly non-local properties like transition energies. Using a linear
model which performs only slightly worse compared to kernel ridge regression
with our descriptors, a feature importance analysis has indicated that for the
accurate prediction of the atomization energy of small sized molecules, the in-
teraction potential of the hydrogen atom with all other atoms can be effectively
approximated as a pairwise interaction potential.

Although our proposed molecular descriptors display a superior perfor-
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2. Many-body descriptors

mance compared to CM and BOB for predicting the atomization energy of
stable molecules, a possible difficulty is the number of features which grows ex-
ponentially for increasing the maximal exponent in the respective definitions.
This can be a problem for molecular dynamics data sets where a larger ex-
ponent is expected to better model the highly non-linear energy surfaces. We
tackle this problem in Chap. 4, where we not only solve this issue, but design
an even more performant similarity measures for quantum mechanical systems
based on kernels.
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2.5. Summary and discussion

Figure 2.5: FIRM by Eq. (2.12), (second from top), FIRM3B by Eq. (2.13)
(third from top), and FIRMfreq by Eq. (2.14) (fourth from top) for the F3B

descriptors of the data set GDB-7. Additionally, the frequency of the corre-
sponding bond-type (top) and the error improvement by using KRR with the
F2B features in combination with the bond-type subset of the F3B descriptors
(bottom) are shown. This image has appeared in previously published work [8].
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2. Many-body descriptors

Figure 2.6: FIRM by Eq. (2.12), (second from top), FIRM3B by Eq. (2.13)
(third from top), and FIRMfreq by Eq. (2.14) (fourth from top) for the F3B

descriptors of the data set GDB-9. Additionally, the frequency of the corre-
sponding bond-type (top) and the error improvement by using KRR with the
F2B features in combination with the bond-type subset of the F3B descriptors
(bottom) are shown. This image has appeared in previously published work [8].
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Chapter 3

Capturing intensive and extensive
molecular properties with machine

learning

Large parts of this chapter have appeared in previously published work [54].

Recently, machine learning has been successfully applied to the fast and ac-
curate prediction of molecular properties across chemical compound space [41,
20, 90, 3, 2, 91] and molecular dynamics simulations [52, 42, 43, 92] as well
as for studying properties of quantum-mechanical densities [45, 46]. An indis-
pensable ingredient to most machine learning models are molecular descriptors,
which are constructed to provide an invariant, unique and efficient represen-
tation as input to machine learning models [47, 48, 21, 49, 50, 44, 51]. A
popular molecular descriptor is the bag-of-bonds (BOB) model [53], which is
an extension of the Coulomb matrix (CM) approach [41] and groups the pair-
wise distances according to pairs of atom types. In the previous chapter, we
have demonstrated how machine learning can be successfully applied to the
prediction of chemical properties of small organic molecules such as energies or
polarizabilities using a set of translation, rotation and atom indexing invariant
two- and three-body descriptors.

Compared to these properties, the electronic excitation energies pose a much
more challenging learning problem. Studying the valence electronic spectra of
small molecules can yield insights into the properties and discovery of solar
cell materials [93] and organic diodes [94]. Attractive candidates for comput-
ing such properties are time-dependent DFT or wavefunction-based methods.
One popular method is to use linear response time-dependent density func-
tional theory (LR-TDDFT) within the adiabatic approximation [95]. Although
less computationally expensive than corresponding coupled-cluster approaches,
computing the spectra via LR-TDDFT is still a demanding task, in particular
across chemical compound space, where the properties of a diverse data set of
compounds need to be obtained in a fast and reliable manner.
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3. Capturing intensive and extensive molecular properties with
machine learning

In this chapter, we examine how recent machine learning approaches can be
transferred to predicting intensive properties, in particular the singlet-singlet
transition energies computed with TDDFT. Intensive properties are character-
ized by being independent of the system size, as opposed to extensive proper-
ties, which increase with increasing system size. To trace the source of possible
difficulties back to intensiveness or descriptor, we choose a set of different types
of properties to be predicted with machine learning. Specifically, we select the
atomization energy and the isotropic polarizability as extensive property. In
addition, we choose three intensive properties: the gap between the highest oc-
cupied and lowest unoccupied molecular orbital energies (HOMO-LUMO gap),
together with the transition energy of the ground state (S0) to the lowest two
vertical electronic excited states (S1 and S2), E1 and E2, respectively.

On these selected quantum mechanical properties, we perform experiments
with various types of molecular descriptors. We examine the two- and three-
body translational and rotationally invariant molecular descriptors used in the
previous chapter which are especially suited for this study as they are invariant
w.r.t. atom indexing and independent of the size of the molecule. Thus they
can easily be used in combination with kernel ridge regression and artificial
neural networks. Furthermore, the used molecular representation is extensible
to large molecules and solids as well as to incorporate higher-order interaction
terms. Additionally, we examine and compare the performance with the neural
network SchNet [96], which learns a local representation of the property under
investigation.

The chapter is structured as follows. In Sec. 3.1 we introduce the methods
used to predict intensive and extensive quantum-mechanical properties. This
is followed by the experiment Sec. 3.2. The summary and discussion in Sec. 3.3
concludes this chapter.

3.1 Methods

Invariant two-body interaction descriptors

We use the translation, rotation and atom indexing invariant two-body descrip-
tors already encountered in the previous chapter. To recall, for two atoms of
the molecule with the atomic numbers and coordinates (Z1, rrr1) and (Z2, rrr2),
the set of two-body descriptors is given by

F2B,Z1,Z2
:=
{
‖rrr1 − rrr2‖−m

}
m=1,··· ,M (3.1)

where we choose M = 15 for this study. For the whole set of two-body de-
scriptors F2B, we concatenate the descriptors F2B,Z1,Z2

for the set of pairs of
atomic numbers (Z1, Z2) present in the data set.

Invariant three-body interaction descriptors

We use a variant of the translation, rotation and atom indexing invariant three-
body descriptors already encountered in the previous chapter. To recall, for
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3.2. Experiments

three atoms of the molecule with the atomic numbers and coordinates (Z1, rrr1),
(Z2, rrr2) and (Z3, rrr3), the set of three-body descriptors is given by

F3B,Z1,Z2,Z3
:=

{
1

‖rrr12‖m1‖rrr13‖m2‖rrr23‖m3

}
(3.2)

where m1,m2,m3 = 1, · · · , P and we choose P = 7 for this study. In Eq. (3.2),
all combinations of three atoms of the molecule are taken into account. In this
chapter, we use the local variant of F3B,Z1,Z2,Z3

(see Sec. 2.2), where we select
three-body interactions, which are formed by two sets of bonded atoms which
have a common atom. We define two atoms to be bonded, if their euclidean
distance is smaller than the threshold function B(Z1, Z2) := 1.1 ·L(Z1, Z2) and
the values for the bond length function L given in Tab. 2.1. For the whole set
of three-body descriptors F3B, we concatenate the descriptors F3B,Z1,Z2,Z3

for
the set of 3-tuples of atomic numbers (Z1, Z2, Z3) present in the data set.

SchNet

The neural network SchNet [97] is a variant of the earlier proposed deep tensor
neural networks [2] and is based on the principle of learning atom-wise repre-
sentations directly from first-principles. Given the atoms of type Z1, . . . , ZN ,

initial atom embeddings x
(0)
Zi
∈ RnF , where nF is the dimension of the feature

space, depend only on the atom type. Then, a series of pairwise interaction
refinements

xt+1
i = xti +

∑
j 6=i

V t(xtj , ‖rij‖)

introduces information about the chemical environment into the embeddings.
In SchNet, this is modeled using continuous-filter convolutions with filter-
generating networks [91]. Through multiple of these corrections, SchNet is
able to include complex many-body terms in the representation. Finally,
an output neural network O predicts atom-wise property contributions, such

that the final prediction is ŷ =
∑N
i=1O(x

(nT )
i ) for extensive properties and

ŷ = 1
N

∑N
i=1O(x

(nT )
i ) for intensive properties. During training, the initial em-

bedding vectors x
(0)
Zi

as well as the parameters of the interaction network V and
the output network O are optimized. In this chapter, we use nT = 6 interaction
refinements and nF = 64 feature dimensions.

3.2 Experiments

We use the 21786 molecules from the GDB-9 benchmark dataset with up to
8 heavy atoms of type CNOF. GDB-9 includes relaxed geometries and prop-
erties computed using DFT at the B3LYP/6-31G(2df,p) level of theory [69].
This data set was previously used to predict deviations from reference second-
order approximate coupled-cluster (CC2) singles and doubles spectra from their
TDDFT counterparts [22]. The singlet-singlet transition energies from the
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3. Capturing intensive and extensive molecular properties with
machine learning

Method U0U0U0 ααα gap E1E1E1 E2E2E2

mean pred. 185.0 6.27 25.4 22.4 18.0

CM 4.8 0.60 7.8 12.7 10.2

BOB 2.3 0.36 4.8 11.5 9.6

F2B 2.9 0.45 5.8 11.6 9.5

F3B 2.9 0.45 5.3 11.3 9.4

F2B + F3B 1.1 0.33 4.6 11.111.111.1 9.29.29.2

SchNet 1.01.01.0 0.220.220.22 3.43.43.4 11.4 10.0

Table 3.1: Mean absolute errors of predicting the atomization energy (U0),
isotropic polarizability (α), difference between the HOMO and LUMO energies
(gap) and the transition energy to the first (E1) and second (E2) electronic ex-
cited singlet state. The properties U0, α and gap were calculated with DFT
at the B3LYP/6-31G(2df,p) level of theory, the transition energies were calcu-
lated with LR-TDDFT at the PBE0/def2TZVP level of theory. The energy
units are kcal/mol, the polarizability is given in units Bohr3. Best results are
marked bold. The results in this table have appeared in previously published
work [54].

ground state to the first and second excited state were calculated at the LR-
TDDFT [98] level employing the hybrid XC functional PBE0 [59, 99] with
def2TZVP basis set [100]. Instead of applying the delta learning approach [22],
we attempt to learn the transition energies directly. We additionally use the
atomization energy U0, isotropic polarizability α and HOMO-LUMO gap from
GDB-9 for evaluation.

For all models, we use 10k random molecules for training and the remaining
unseen 11786 molecules for computing the prediction errors. The results are
listed in Tab. 3.1. For the CM and BOB descriptors, the Laplace kernel has
been used. For the two- and three-body descriptors F2B and F3B, the Gaussian
kernel achieves smaller prediction errors.

The mean predictor (mean pred.) is given by the average value of the
property to be predicted. In general, the mean predictor yields an upper bound
of the mean absolute prediction error of the machine learning models under
investigation. While the Coulomb matrix (CM) uniquely encodes the structure
of a given molecule, it performs worst of the evaluated descriptors. A major
reason for this is that it implies a similarity measure of atom types based on
the Coulomb interaction of the atomic nuclei, which does not reflect chemistry
well. The bag-of-bonds (BOB) model is an extension to the Coulomb matrix
where atom types are sorted into bags, thereby avoiding an unsuited atom
similarity. This significantly boosts the performance compared to the CM for
the atomization energy, polarizability and gap. Still, the bags are not invariant
to atom indexing, which allows for multiple possible descriptors of the same
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3.3. Summary and discussion

molecule.

The F2B descriptors solve some of the sorting problems encountered in the
CM and BOB representation. The prediction error of the F2B descriptors is
significantly better than the CM result, while being slightly worse compared
to the BOB model. Combining the local three-body descriptors F3B with the
two-body descriptors F2B significantly increases the predictive performance of
the atomization energy, polarizability and the HOMO-LUMO gap (62%, 27%
and 21% improvement, respectively). For the transition energies E1 and E2,
only a minor performance gain is observed by including the local three-body
descriptors F3B. SchNet slightly improves upon the descriptors F2B + F3B for
the prediction of the atomization energy, polarizability and gap, indicating that
these properties can be well-represented by atom-wise contributions.

For the transition energies, the two- and three-body descriptors do not im-
prove upon the performance of the baseline methods BOB and CM as much
as for the extensive properties. Moreover, SchNet only achieves a performance
that lies on the level of CM and BOB. As SchNet is able to include complex
many-body terms in the representation, the non-locality of the transition en-
ergies do not allow a decomposition into atomic contributions. This indicates
the need for much more complex global many-body terms for predicting tran-
sition energies, possibly encoding higher order interactions with order larger
than three.

As most descriptors are either size-dependent or encode a sum or average
term over local many-body interactions, they are naturally better suited to pre-
dict extensive properties. Such descriptors are typically limited by the order of
the explicitly included many-body interactions. This can be a problem for pre-
dicting more complex quantum mechanical properties as demonstrated by the
HOMO-LUMO gap, where SchNet performs better than explicit pairwise and
three-body interaction descriptors. For the transition energies, SchNet does not
improve upon the F2B + F3B result. Even though the three-body descriptors
are only applied to local bond angles, they perform better than two-body de-
scriptors. In light of the SchNet results, this indicates that explicit many-body
terms are more suitable to model transition energies using machine learning.
As SchNet is designed to include high-order local interactions, we speculate on
the need to develop global descriptors for intensive properties. As such prop-
erties are in general more difficult to predict than their localized counterparts,
we conjecture that such kind of descriptors will describe both extensive and in-
tensive properties on equal footing. In addition, as seen by the learning curves
in Fig. 3.1, more data may be exceedingly helpful for further improving the
predictive performance of the intensive properties under investigation.

3.3 Summary and discussion

We have evaluated a variety of machine learning techniques for intensive and
extensive properties. As expected, all of them perform better on extensive
properties than on intensive quantities. For the gap, SchNet performs 25%
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3. Capturing intensive and extensive molecular properties with
machine learning

Polarizability HOMO-LUMO gap

Transition energy E1 Transition energy E2

Figure 3.1: Mean absolute error of predicting the B3LYP/6-31G(2df,p) polar-
izability in Bohr3 (top left), the B3LYP/6-31G(2df,p) HOMO-LUMO gap in
kcal/mol (top right), the singlet-singlet transition energy TDPBE0/def2TZVP-
E1 (bottom left) and TDPBE0/def2TZVP-E2 (bottom right) in kcal/mol in
dependence of the number of training samples. The model hyperparameters
have been determined by 10-fold cross validation. These images have appeared
in previously published work [54].

better than the explicit combination of pairwise and three-body descriptors.
As SchNet is able to include complex many-body terms in principle, this result
indicates the need for descriptors with many-body interactions with order larger
than three for predicting the HOMO-LUMO gap. For the intensive properties
E1 and E2, the three-body descriptors work best, in particular combined with
the two- body terms. In contrast, the decomposition into atom-wise contribu-
tions of SchNet, while working well for extensive properties, can be considered
a drawback when attempting to predict transition energies by the averaging
approach in the last output layer of SchNet.

Still, even with the best-performing descriptors the error of transition en-
ergy prediction may still be too high for any practical use. More advanced
non-local descriptors will be necessary to predict transition energies more ac-
curately, possibly encoding higher many-body terms or electronic state infor-
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3.3. Summary and discussion

mation. In addition, as seen by the learning curves, more data may be exceed-
ingly helpful for further improving the predictive performance of the intensive
properties under investigation.

39





Chapter 4

Kernel representations of quantum
mechanical systems

Kernel based learning methods [101, 102, 15, 103, 104] allow an efficient con-
vex solution of highly non-linear optimization problems often encountered in
quantum chemistry. One possible advantage of using kernels is the relatively
low number of training samples to achieve a certain accuracy as compared to
highly parametric models like artificial neural networks. Additionally it might
be easier for a chemist of physicist to incorporate domain-specific knowledge
into the model, especially in view of the possibility of kernel compositions which
can comply well with the many-body expansion of certain quantum-mechanical
properties. A common task for the practitioner is to find a (kernel) represen-
tation of the problem at hand which encodes the distribution of the data in
a complete, unique and efficient way [48], favorably taking into account the
inherent symmetries of the system such as rotational, translational and atomic
indexing invariance. As typical settings for a chemist or physicist include a low
number of data points paired with a highly non-linear learning problem, kernel
based formulations are considered as suitable and powerful methods of choice.

In the previous two chapters, we have developed a set of molecular descrip-
tors which have been used in combination with exponential kernels like the
Gaussian and Laplace kernel to predict various quantum-mechanical proper-
ties with kernel ridge regression (KRR). The invariant many-body descriptors
presented in Chap. 2 are composed of two-and three-body combinations of
atoms which are combined by taking the sum over their respective feature
representation to ensure invariance with respect to atom indexing. Here, we
investigate how these many-body decompositions can be used to construct a
similarity measure represented by the kernel directly. The Figs. 4.1 and 4.2
schematically show these two conceptually different approaches. Such com-
posite kernels have appeared previously in the literature [105, 44, 106, 4] and
typically encode prior knowledge about the learning problem at hand.

In this chapter, we propose novel composite kernels which contain relatively
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4. Kernel representations of quantum mechanical systems

Exp. KernelRepr. Repr.

Figure 4.1: Schematic construction of an exponential kernel (Exp. Kernel)
as similarity measure between two linear C-C-C carbon chains using many-
body descriptors. From the decomposition of these exemplary molecules (green
ellipses), local features are computed which are then combined by a sum to yield
the final feature vector or representation (Repr.). The resulting feature vectors
of both molecules are compared by an exponential kernel like the Gaussian or
the Laplace kernel, respectively.

little prior chemical knowledge. Intuitively, our similarity measures will dis-
tinguish chemical environments by the set of atom types composing the two-
and three-body terms which will be defined in the next section. By doing so,
correlations between groups of atoms with different types are attenuated and
the computation of our kernels is faster compared to the case including explicit
correlation terms, as less many-body combinations have to be compared with
each other. As we will see, in spite of encoding relatively little prior chemical
knowledge, our models are able to learn interaction potentials which comply
with chemical intuition.

This chapter is structured as follows. In Sec. 4.1, our local kernels are
proposed. We extensively test kernel methods based on these local kernels in
Sec. 4.2 on both stable molecules and molecular dynamics data sets as well as
on more controlled experiments for an ethanol data set, where we analyse the
interaction potentials learned by our models. The summary and discussion in
Sec. 4.3 completes the chapter.

4.1 Local invariant kernels

We propose a set of kernels which are composed of many-body interaction
terms and which are invariant in terms of the indexing of the atoms of both
participating compounds. Similarly to the previous Chap. 2, we define a phys-
ical system by the set S = {rrri, Zi}Ni=1 where N is the total number of atoms.
Associated with this system, we denote the set of all combinations of k-tuples
of atoms by

Tk(S) := {((Zi1 , rrri1), (Zi2 , rrri2), · · · , (Zik , rrrik))}(i1,i2,··· ,ik)∈G(k,N) (4.1)

where G(k,N) is the k-permutation of N set as defined in Sec. 2.2. Along with
an element of this set of tuples t = ((Zi1 , rrri1), (Zi2 , rrri2), · · · , (Zik , rrrik)) ∈ Tk(S)
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4.1. Local invariant kernels

+ + + Local Kernel

Figure 4.2: Schematic construction of a local kernel as similarity measure be-
tween two linear C-C-C carbon chains. From the decomposition of these exem-
plary molecules (green ellipses), local features are computed and all pairwise
combinations of these features are compared with each other using an expo-
nential kernel of choice like the Gaussian or the Laplace kernel, respectively.
These local similarity measures are then combined by a sum to yield the final
local kernel.

we define

RRR(t) :=
{
‖rrrip − rrriq‖−1

}
p,q∈G(2,k)

(4.2)

ZZZ(t) := (Zi1 , Zi2 , · · · , Zik)sorted (4.3)

where Zi1 ≤ Zi2 ≤ · · · ≤ Zik . The vector RRR(t) comprises the set of inverse
pairwise distances of the given k-tuple of atoms t. For example if k = 2
we get RRR(t) =

{
‖rrri1 − rrri2‖−1

}
and in the case of k = 3 we have RRR(t) ={

‖rrri1 − rrri2‖−1, ‖rrri1 − rrri3‖−1, ‖rrri2 − rrri3‖−1
}

, respectively. The general form of
our proposed local kernels is now given by

K(S1, S2) :=
∑

t1∈Tk(S1)
t2∈Tk(S2)

δZZZ(t1),ZZZ(t2) ·D(RRR(t1)) ·D(RRR(t2)) ·Kexp(‖RRR(t1)−RRR(t2)‖)

(4.4)

with the kernel function Kexp(·) which can be an arbitrary exponential kernel
and a damping function D(·) which can be viewed as a weighting term and will
be defined in the next section.
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4. Kernel representations of quantum mechanical systems

Algorithm 3 Kernels2B

Input:
molecule M1 = {(Zi, rrri)}n1

i=1

molecule M2 = {(Z̄i, r̄rri)}n2
i=1

σ . kernel parameter
cT . cutoff distance

Output: K2B(M1,M2)
1: K2B ← 0
2: for i, j ← G(2, n1) do
3: Rij ← ‖rrri − rrrj‖
4: Dij ← fcT (Rij)

5: for p, q ← G(2, n2) do
6: R̄pq ← ‖r̄rrp − r̄rrq‖
7: D̄pq ← fcT (R̄pq)

8: for i, j ← G(2, n1) do
9: for p, q ← G(2, n2) do

10: ZZZ ← sorted tuple (Zi, Zj)
11: Z̄ZZ ← sorted tuple (Z̄p, Z̄q)
12: if ZZZ == Z̄ZZ then
13: K2B += Dij · D̄pq · e−‖Rij−R̄pq‖

2/(2·σ2)

14: return K2B

Two-body kernels

For the two-body kernels, our intuition is to model the interaction potential
for a given pair of atom types as an univariate function of the corresponding
pairwise distance. Our two-body kernels are defined by

K2B(S1, S2) :=
∑

t1∈T2(S1)
t2∈T2(S2)

δZZZ(t1),ZZZ(t2) ·D(RRR(t1)) ·D(RRR(t2)) · e−‖RRR(t1)−RRR(t2)‖2/(2·σ2)

(4.5)

where for a given element t = ((Zi1 , rrri1), (Zi2 , rrri2)) ∈ T2(S) we set

RRR(t) = ‖rrri1 − rrri2‖−1 (4.6)

D(RRR(t)) := fcT (‖rrri1 − rrri2‖) (4.7)

fcT (x) :=

{
cos2

(
x
cT
· π2
)

x ≤ cT
0 otherwise

(4.8)

with the cutoff distance cT and the Gaussian kernel parameter σ, respectively.
The pseudocode for generating these kernels for molecules is given in Alg. 3.
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4.2. Tests on molecular data sets

Three-body kernels

Similarly to the two-body case, we model the interaction potential for a given
triple of atom types as a function of the corresponding triple of pairwise dis-
tances. While the use of inverse pairwise distances naturally induces a damp-
ing of larger distances, we find it beneficial to explicitly include the damping
function D(·), as the number of three-body combinations rapidly grows for
increasing system size. The sorting of the triple of atomic numbers ZZZ in nec-
essary to compare pairwise distances of according atom types with each other.
In the three-body case, the similarity measure between two systems S1 and S2

is defined by

K3B(S1, S2) :=
∑

t1∈T3(S1)
t2∈T3(S2)

δZZZ(t1),ZZZ(t2) ·D(RRR(t1)) ·D(RRR(t2)) · e−‖RRR(t1)−RRR(t2)‖2/(2·σ2)

(4.9)

with t = ((Zi1 , rrri1), (Zi2 , rrri2), (Zi3 , rrri3)) ∈ T3(S) and

D(RRR(t)) := fcT (‖rrri1 − rrri2‖) · fcT (‖rrri1 − rrri3‖) · fcT (‖rrri2 − rrri3‖) (4.10)

with the cutoff distance cT and the Gaussian kernel parameter σ, respectively.
Being composed of a possibly large sum of three-body terms, we potentially
smear useful structural information about the quantum mechanical system.
However, the convex nature of the optimization problem defined by kernel
ridge regression can be viewed as simultaneously optimizing the composite
kernels. The pseudocode for generating the three-body kernels for molecules is
presented in Alg. 4.

4.2 Tests on molecular data sets

In a first experiment, we test our kernels on the sets of stable organic molecules
already used in the previous chapters GDB-7 and GDB-9, respectively. There,
our invariant many-body descriptors have provided accurate models for the
atomization energy by using a combination of two- and three-body features.
Encoding two- and three-body interactions directly into the similarity measure
makes our proposed kernels particularly suitable for these data sets. Specifi-
cally, we hope to circumvent the problem of generating a potentially large num-
ber of features while maintaining a good prediction accuracy using our kernels.
More specifically, we investigate the conjecture of Sec. 2.4 which states that for
the atomization energy, the interaction potential of the hydrogen atom with all
other atoms can be effectively modeled as a pairwise potential. To this end,
we define a local kernel variant by explicitly excluding interactions containing
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4. Kernel representations of quantum mechanical systems

Algorithm 4 Kernels3B

Input:
molecule M1 = {(Zi, rrri)}n1

i=1

molecule M2 = {(Z̄i, r̄rri)}n2
i=1

σ . kernel parameter
cT . cutoff distance

Output: K3B(M1,M2)
1: K3B ← 0
2: for i, j ← G(2, n1) do
3: Rij ← ‖rrri − rrrj‖
4: Dij ← fcT (Rij)

5: for p, q ← G(2, n2) do
6: R̄pq ← ‖r̄rrp − r̄rrq‖
7: D̄pq ← fcT (R̄pq)

8: for i, j, k ← G(3, n1) do
9: for p, q, r ← G(3, n2) do

10: ZZZ ← sorted tuple (Zi, Zj , Zk)
11: Z̄ZZ ← sorted tuple (Z̄p, Z̄q, Z̄r)
12: if ZZZ == Z̄ZZ then
13: D ← Dij ·Dik ·Djk · D̄pq · D̄pr · D̄rq

14: K3B += D · e−((Rij−R̄pq)2+(Rik−R̄pr)2+(Rjk−R̄qr)2)
2
/(2·σ2)

15: return K3B

hydrogen in the three-body kernel

K̄3B(S1, S2) :=
∑

t1∈T3(S1)
t2∈T3(S2)

θ(ZZZ(t1)) · θ(ZZZ(t2)) · δZZZ(t1),ZZZ(t2)

·D(RRR(t1)) ·D(RRR(t2)) · e−‖RRR(t1)−RRR(t2)‖2/(2·σ2) (4.11)

with the indicator function

θ ((Z1, Z2, Z3)) :=

{
0 Z1 = 1 ∨ Z2 = 1 ∨ Z3 = 1

1 otherwise
(4.12)

To predict molecular properties, we apply the KRR technique as described in
Sec. 1.2 paired with our local kernels as defined in Sec. 4.1. For kernel ridge re-
gression, a common preprocessing step is to subtract the mean of the predicted
target variable which originates from the stochastic framework of Gaussian pro-
cesses which assumes a prior zero-mean distribution of the estimated functions.
However, using our local kernels we observe that this step can be omitted, in-
dicating that these kernels intrinsically encode chemically suitable information
about a given molecular property. We apply 10-fold nested cross validation
as describes in Sec. 1.2 to select the parameters of our kernels and sample
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4.2. Tests on molecular data sets

Property F2B + F3BF2B + F3BF2B + F3B K2BK2BK2B K2B +K3BK2B +K3BK2B +K3B K2B + K̄3BK2B + K̄3BK2B + K̄3B Unit

ae-pbe0 0.8 2.9 0.500.500.50 0.75 kcal/mol

homo-gw 0.130.130.13 0.45 0.17 0.23 eV

lumo-gw 0.15 0.22 0.140.140.14 0.16 eV

homo-pbe0 0.120.120.12 0.36 0.15 0.19 eV

lumo-pbe0 0.11 0.18 0.0860.0860.086 0.11 eV

homo-zindo 0.130.130.13 0.50 0.21 0.28 eV

lumo-zindo 0.110.110.11 0.31 0.20 0.23 eV

p-pbe0 0.088 0.16 0.0560.0560.056 0.062 Ångström3

p-scs 0.0320.0320.032 0.12 0.038 0.055 Ångström3

e1-zindo 0.150.150.15 0.64 0.43 0.48 eV

ea-zindo 0.130.130.13 0.37 0.24 0.28 eV

imax-zindo 0.071 0.086 0.069 0.0680.0680.068 a.u.

emax-zindo 1.261.261.26 1.54 1.30 1.34 eV

ip-zindo 0.180.180.18 0.51 0.26 0.32 eV

Table 4.1: Mean absolute prediction errors of several ground- and excited
state properties by kernel ridge regression trained on 5000 random molecules
and tested on the remaining 1868 molecules that were not used for training or
validation of the GDB-7 data set. The properties are described in Tab. 2.6.
The best performing models are marked in bold.

the molecules for training randomly. The results of predicting the molecular
properties of the data sets GDB-7 and GDB-9 are shown in Tabs. 4.1 and 4.2,
respectively.

For the atomization energy, the local kernel K2B + K3B outperforms the
CM, BOB and our methods based on invariant two- and three-body descriptors
F2B +F3B, respectively. Specifically, this model achieves a mean absolute error
of 0.50 kcal/mol for the molecules of the GDB-7 set and 0.88 kcal/mol for the
molecules of the GDB-9 set when trained on 5000 random molecules and testes
on the remaining molecules which corresponds to an 60% improvement over
the F2B + F3B descriptors. These results suggest that local kernels are more
efficient for predicting extensive properties compared to our invariant two- and
three-body descriptors for equilibrium molecules. A similar performance gain
is achieved for the zero point vibrational energy (zpve), where K2B + K3B

reaches 0.066 kcal/mol. On the other hand, for the properties based on the
energies of the HOMO and the LUMO, the invariant descriptors F2B + F3B

outperform the local kernels K2B +K3B with exception of the property lumo-
pbe0 of the molecules of the set GDB-7. This indicates that the invariant
descriptors F2B+F3B have an improved ability to capture non-local information
as compared to the kernel K2B + K3B. This effect is even more dominant
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4. Kernel representations of quantum mechanical systems

Property F2B + F3BF2B + F3BF2B + F3B K2BK2BK2B K2B +K3BK2B +K3BK2B +K3B K2B + K̄3BK2B + K̄3BK2B + K̄3B Unit

U0 1.5 4.5 0.880.880.88 1.2 kcal/mol

U 1.5 4.5 0.890.890.89 1.2 kcal/mol

H 1.5 4.5 0.890.890.89 1.2 kcal/mol

G 1.5 4.4 0.900.900.90 1.2 kcal/mol

HOMO 3.63.63.6 7.6 4.2 5.3 kcal/mol

LUMO 5.15.15.1 7.9 6.0 6.2 kcal/mol

gap 6.26.26.2 11.4 7.5 8.4 kcal/mol

alpha 0.490.490.49 0.82 0.50 0.51 Bohr3

mu 0.610.610.61 0.80 0.67 0.71 Debye

r2 9.09.09.0 83 46 70 Bohr2

zpve 0.10 0.17 0.0660.0660.066 0.097 kcal/mol

A 0.420.420.42 0.62 0.54 0.57 GHz

B 0.130.130.13 0.26 0.17 0.22 GHz

C 0.0500.0500.050 0.17 0.097 0.13 GHz

cv 0.12 0.30 0.110.110.11 0.18 cal/(mol K)

Table 4.2: Mean absolute prediction errors of several properties calculated at
the B3LYP/6-31G(2df,p) level of quantum chemistry and predicted by kernel
ridge regression trained on 5000 random molecules and tested on the remaining
126722 molecules that were not used for training or validation of the GDB-
9 data set. The properties are described in Tab. 2.7. The best performing
descriptors are marked in bold.

for the properties e1-zindo, ea-zindo and ip-zindo of the molecules of the set
GDB-7 and the properties r2, A, B and C of the molecules of the GDB-9 set,
respectively. The two models F2B + F3B and K2B +K3B perform with similar
mean absolute error for the polarizabilities p-pbe0 and p-scs, imax-zindo and
emax-zindo of the GDB-7 molecules and the properties mu, r2 and cv of the
molecules of the GDB-9 set. We already showed the learning curves for all our
models in the previous Chap. 2. Figs. 4.3 and 4.4 show the mean absolute
error of predicting the atomization energy of the data sets GDB-7 and GDB-9
for the four combinations of two- and three-body models F2B +F3B, F2B + F̄3B,
K2B + K3B and K2B + K̄3B in dependence of the number of training samples
in greater detail.

The best overall performing model K2B + K3B achieves the chemical ac-
curacy of 1 kcal/mol at 1500 and 4000 number of training molecules for the
GDB-7 and GDB-9 set, respectively. The proposed local kernel K2B + K̄3B

which models the interactions of the hydrogen atom with all other atoms ex-
clusively by pairwise potentials performs only slightly worse compared to the
full kernel variant K2B +K3B. This substantiates our conjecture of Sec. 2.4 as
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Figure 4.3: Mean absolute error of predicting the PBE0 atomization energy
of the molecules of the set GDB-7 with KRR in dependence of the number
of training samples. The errors are given in kcal/mol. For F2B + F3B and
F2B + F̄3B, the Gaussian kernel has been used. The kernel parameters have
been determined by 10-fold nested cross-validation.

this result indicates that it is possible to improve the performance even with
such a considerable model restriction.

Equilibrium molecules form an important domain in chemical compound
space as nature is dominated by stable molecules. However, for useful quantum
chemistry models it is essential to additionally study non-equilibrium molecules
which allows a wider range of applications and properties to be predicted. In
a sense, the task of predicting equilibrium properties is of limited practical use
except as a benchmark, as the data domain of such data sets lies outside the
range of important quantum chemistry applications. Examples include the re-
laxation of geometries, generation of new molecules and the prediction of molec-
ular forces. For the forces, recently more sophisticated models based on the
Coulomb matrix have been designed [5, 6, 7]. We rely on the molecular dynam-
ics (MD) data used in their work where ab initio molecular dynamics-quality
thermodynamic observables using path-integral MD for organic molecules con-
taining the four chemical elements C, N, O and H have been computed. The
atomization energy for the alkanes in this work has been computed analogously.

As the indexing of the atoms of the molecules in the respective data set
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Figure 4.4: Mean absolute error of predicting the B3LYB/6-31G(2df,p) atom-
ization energy of the molecules of the set GDB-9 with KRR in dependence
of the number of training samples. The errors are given in kcal/mol. For
F2B + F3B and F2B + F̄3B, the Gaussian kernel has been used. The kernel
parameters have been determined by 10-fold nested cross-validation.

are fixed, we use a variant of the CM which is composed of inverse pairwise
distances, thereby uniquely identifying the atomic positions of the molecule.
The Gaussian kernel performs better than the Laplace kernel for CM and
BOB which indicates a better conditioned learning problem than for the stable
molecules sets due to the lack of somewhat artificially sorting the features en-
tries in the descriptors. For our invariant two- and three-body descriptors we
use the non-local variant F2B + F3B due to the lack of the concept of bonding
distances for the molecular dynamics data sets. We use a maximum exponent
of 9 for both the F2B and the F3B descriptors, emphasizing the three-body
interactions more than in the stable molecules sets GDB-7 and GDB-9. We
adopt KRR to predict the atomization energy of the molecules along a molec-
ular dynamics (MD) trajectory, where we apply 10-fold nested cross validation
to select the parameters of our kernels and sample the molecules for training
randomly. The results for predicting the atomization energy of the remaining
molecules of the respective data set are shown in Tab. 4.3.

Our local kernel K2B + K3B outperforms the other models for most of
the molecules with the exceptions of the salicylic and uracil set, where the
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4.2. Tests on molecular data sets

data set std CM BOB F2BF2BF2B F2B + F3BF2B + F3BF2B + F3B K2BK2BK2B K2B +K3BK2B +K3BK2B +K3B

aspirin 6.1 3.7 3.1 3.3 1.2 3.0 1.01.01.0

benzene 5.5 0.170.170.17 0.60 0.69 0.22 0.66 0.18

azobenzene 6.5 3.2 1.7 2.0 0.77 1.9 0.600.600.60

ethanol 4.1 0.73 1.35 1.7 0.46 1.6 0.360.360.36

malonaldehyde 4.2 0.60 1.33 1.4 0.65 1.4 0.480.480.48

paracetamol 5.8 3.2 2.4 2.7 1.0 2.5 0.810.810.81

resorcinol 4.9 0.62 1.7 2.0 0.48 1.9 0.460.460.46

salicylic 5.5 0.480.480.48 1.8 2.1 0.66 1.8 0.56

naphthalene 5.5 0.52 1.1 1.4 0.51 1.2 0.370.370.37

toluene 4.9 0.64 1.1 1.4 0.50 1.3 0.400.400.40

uracil 4.9 0.300.300.30 1.4 1.4 0.33 1.3 0.44

methane 4.2 0.129 0.370 0.53 0.037 0.55 0.0330.0330.033

ethane 4.2 0.24 0.68 0.80 0.24 0.79 0.110.110.11

propane 4.7 0.78 0.94 1.1 0.39 1.1 0.250.250.25

butane 5.2 2.0 1.2 1.4 0.51 1.3 0.290.290.29

pentane 5.8 3.5 1.7 1.7 0.70 1.5 0.370.370.37

hexane 6.1 4.3 1.7 1.7 0.85 1.6 0.430.430.43

heptane 6.5 4.6 2.0 1.8 0.87 1.7 0.460.460.46

octane 6.8 5.1 2.0 2.0 0.90 1.8 0.490.490.49

Table 4.3: Mean absolute prediction errors of the atomization energy of the
molecules along a MD trajectory by kernel ridge regression using the Gaussian
kernel for the CM, BOB, F2B and F2B + F3B descriptors. The models have
been trained on 1000 random molecules and tested on the remaining molecules
of the respective data set. The first column std denotes the standard deviation
of the target atomization energy. The best performing methods are marked
in bold. Note that gradient-domain machine learning models including sym-
metries (sGDML) outperform our best models, as these models include forces
in their learning procedure [6].

CM achieves a better performance and benzene, where both models CM and
K2B + K3B have similar mean absolute error when trained on 1000 random
molecules. In contrast to the stable molecules sets, the BOB descriptor per-
forms worse than the CM, indicating the disadvantageous feature sorting of
BOB for the MD sets. Although the CM perform well for most of the molecules,
it is challenged by larger molecules like aspirin, paracetamol and azobenzene,
where the error is only slightly worse than the standard deviation of the target
atomization energy. Some of the problems of the CM can be seen exemplary
in the error dependence of the number of training samples for the benzene and
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Figure 4.5: Mean absolute prediction errors of the atomization energy of the
molecules of the MD benzene (left) and MD azobenzene set (right) with KRR
in dependence of the number of training samples. The errors are given in
kcal/mol. For the CM, BOB, F2B and F2B + F̄3B, the Gaussian kernel has
been used. The kernel parameters have been determined by 10-fold nested
cross-validation.

azobenzene molecule in Fig. 4.5. For benzene the learning curve is an order
of magnitude steeper, which we attribute to the CM smearing the different
oscillatory motions of azobenzene into the pairwise distances. Although the
performance of the best model K2B +K3B decreases accordingly, our local ker-
nels have less problems in distinguishing these oscillations, as it is far easier to
learn three-dimensional compared to 3n-dimensional energy surfaces, where n
is the number of atoms of the molecule. By summing over sets of many-body
interactions in the kernel definition, training the model can be viewed as si-
multaneously learning the corresponding interaction potentials. This is even
more apparent for the alkane sets, where the performance of the CM quickly
decreases for increasing the molecule size, indicating problems of the CM with
linear chain molecules. The error of the local kernel K2B + K3B grows much
slower, showing superior learning efficiency for alkanes.

Our local kernels show good performance for the analyzed MD data sets
in spite of encoding relatively little chemical knowledge. However, due to the
decomposition into independent sums of kernels, our methods are more widely
applicable. Specifically, we use our local kernels to analyse the two- and three-
body interactions in chemical compounds in greater detail. To this end, we
study the local energy surfaces learned by our models which are functions of
the types of atoms defining the interaction given by the sorted tuple of atomic
numbersZZZ and their corresponding set of pairwise distancesRRR. The interaction
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energies are defined by

E(RRR,ZZZ) :=

N∑
i=1

αi ·
∑

t1∈Tk(Si)

δZZZ(t1),ZZZ ·D(RRR(t1)) ·D(RRR) · e−‖RRR(t1)−RRR‖2/(2·σ2)

(4.13)

where the {αi}Ni=1 are the model parameters trained on the full kernel and the
{Si}Ni=1 comprise the training set of molecules, respectively. The total predicted
energy can be expressed as the sum over these interaction energies. However,
as sums of energies are somewhat difficult to interpret, we investigate these
interaction energies for models trained with different combinations of kernels.
Specifically, we analyse the two-body interactions for a model trained with the
two-body and mixed kernel K2B and K2B + K3B, respectively. Similarly, we
investigate the three-body interactions for the K3B and K2B +K3B kernels.

To help with the interpretation of the interaction energies, we compute the
density at a given point defined by ZZZ and RRR by a common technique called
kernel density estimation which is defined by

KDEk(RRR,ZZZ) :=
1

N

N∑
i=1

∑
t1∈Tk(S)

1

N(ZZZ(t1))
· δZZZ(t1),ZZZ · e−‖RRR(t1)−RRR‖2/(2·σ2) (4.14)

where k = 2 for the two-body and k = 3 for the three-body density estimates
and N(ZZZ(t1)) is a normalization factor, respectively. In the following, we apply
these methods for studying interaction potentials for a variety of molecules. To
increase the reproducibility of the learned interaction energies, we perform an
average over an ensemble of 30 models trained on 1000 random molecules from
a total number of 30000 molecules in the data set.

First, we apply the above methods exemplary to some extent for the ethanol
molecule for which the learning curve is shown in Fig. 4.6. The gradient of
the learning curve for the K2B and K2B + K3B kernels is relatively flat at
1000 training points which indicates the models have converged at learning
interaction potentials. These interaction potentials for ethanol are shown in
Fig. 4.7, where we have selected the three-body interactions H-H-C, H-C-C and
H-H-O for displaying purposes. In this notation, the two former atoms have
the distance r1 and r2 to the latter atom and form a fixed angle of 120◦ unless
mentioned otherwise. Noticeably, both the two- and three-body interaction
energies decay to zero for large distances. This shows the ability of our models
to learn chemically plausible energy surfaces, even at locations with a low
number of data points.

Now, we analyse the two-body interactions in greater detail. For densities
containing larger distances, the interaction energy shows lower variation, which
indicates that our kernel models emphasize local interactions more. The bond
length between two hydrogen atoms is approximately 0.74 Ångström. However,
the H-H interaction energy of the two-body model K2B displays a local min-
imum around 1.1 Ångström, which equals the C-H bonding distance. This is
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Figure 4.6: Mean absolute prediction errors of the atomization energy of the
molecules of the ethanol data set with KRR in dependence of the number
of training samples. The errors are given in kcal/mol. For the CM, BOB,
F2B + F3B and F2B + F̄3B, the Gaussian kernel has been used. The kernel
parameters have been determined by 10-fold nested cross-validation.

possibly due to the two-body model K2B mapping a part of the C-H on the H-H
interactions for the molecules of the ethanol data set. The local minimum at
1.1 Ångström for the H-H interaction vanishes if the two- and three-body ker-
nel K2B +K3B is used, indicating that the local minimum for the pairwise H-H
interaction is a mapped three-body interaction containing carbon and hydro-
gen atoms, respectively. In contrast, the distance 1.1 Ångström remains a local
minimum for the C-H interaction energy by using the combined kernel. For the
C-C and C-O interactions, the two-body model learns a local minimum at 1.5
and 1.4 Ångström, which corresponds well with the true bonding distances in
Tab. 2.1. However, these minima vanish as we include the three-body model,
which we attribute to these interactions being better modeled by three-body
terms. In contrast, the C-H and O-H interactions can be partially expressed by
two-body terms. Interestingly, the two-body potentials display local minima at
distance larger than 1.5 Ångström. We interpret these minima as the tendency
of our models to pull the atoms together and thereby forming the molecule.
This can be useful for applications in MD simulations as this property will keep
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4.2. Tests on molecular data sets

the models from diverging away from potentially non-interesting data regimes.
While the two-body interaction potentials change significantly by adding

the three-body kernel, this effect is less dominant for the three-body potentials.
Examples include the H-H-C and the H-H-O interactions at the selected angle
of 120◦ in Fig. 4.7. When both distances are at 1.0 Ångström in the H-H-C
energy surface (the bottom left corner of the heat map), the pure three-body
kernel model K3B is repulsive, indicating a mapping of two-body interactions.
This effect vanishes by inclusion of the two-body kernel, enforcing the above
statement, that the C-H interaction in ethanol can be modeled by a pairwise
potential. The H-C-C interaction displays a structural change around the high-
density region around the point with the coordinates at 1.5 and 1.0 Ångström
which corresponds to the transformation of the two-body interaction C-H.

To better interpret the interaction potentials, we next examine molecules
with a limited number of two- and three-body interactions, namely benzene
and toluene together with the two alkanes propane and octane. Toluene is
structurally similar to benzene, where one of the H atoms is replaced by a CH3

group. Propane and octane are linear chain alkanes. The corresponding results
are shown in Figs. 4.8, 4.9, 4.10 and 4.11, respectively.

For benzene and toluene, the local minima of the C-H and C-C interaction
potentials lie at approximately 1.0 and 1.2 Ångström when trained with the
two-body kernel K2B. By using the mixed model K2B + K3B the local C-H
minimum becomes less dominant, indicating that for benzene and toluene the
C-H interactions are better mapped by three-body terms. For propane and
octane, this effect appears for both the C-H and C-C interaction potentials
for which the minima lie at 1.0 and 1.4 Ångström when trained with the K2B

model. Both of these local minima vanish by using the combined kernel K2B +
K3B, indicating that these interactions are better modeled by three-body terms
in alkanes. Noticeably, the interaction potentials for benzene and toluene and
accordingly for propane and octane are qualitatively similar. This demonstrates
the ability our local kernel models to learn similar energy surfaces for chemically
related molecules.

To gain even further understanding of our learned models, we perform more
controlled experiments on the stable ethanol molecule where we selectively
vary a single fixed structural degree of freedom. Specifically, we examine the
following three cases

1. move a selected hydrogen atom along the corresponding C-H connection

2. rotate the dihedral angle of the CH3-group

3. vary the angle between two of the hydrogen atoms of the CH3-group

The corresponding results for the two- and three-body interaction potentials to-
gether with the total two- and three-body energies and kernel density estimates
according to Eq. (4.14) are shown in Figs. 4.12, 4.13 and 4.14, respectively.

In the first experiment of varying the C-H distance in Fig. 4.12, both two-
and three-body energies show a local minimum at 1.1 Ångström, approximately
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4. Kernel representations of quantum mechanical systems

the C-H bond length. However, at large distances the two-body model displays
the lowest energy and therefore prefers the selected hydrogen atom to be re-
moved from the ethanol molecule which is somewhat unphysical. This effect
is corrected by adding three-body terms which lifts this asymptotic energy, re-
sulting in a global minimum at the bond length of 1.1 Ångström. This further
demonstrates, that our models learn chemically reasonable interaction poten-
tials. If we look at the three-body interaction potentials, this global minimum
is modeled dominantly by H-H-C interactions as perhaps chemically expected.
Interestingly, the O-H interaction shows significantly less variation than the
H-H and C-H potentials which is not encoded into the model directly. This
indicates that in this experiment the energies are dominated by H-H and C-H
interactions, respectively.

A similar phenomenon is observed in the varying H-C-H angle experiment
in Fig. 4.14, where the two-body model learns the lowest total energy at larger
angles and the combined two- and three-body kernel displays a global minimum
around the equilibrium angle zero.

For the dihedral angle rotation experiment in Fig. 4.13, both local kernels
show exact periodicity which is directly encoded into the kernels as the sum
is taken over all permutations of the respective many-body interactions. By
including the three-body terms, the average magnitude of the O-H energy gets
lowered as compared to the H-H energy which we attribute to this interaction
being partially modeled by the H-H-O term. Fig. 4.15 shows the comparison
with the untrained model, where we set αi = 1 for i = 1, · · · , N in Eq. (1.15).
Although we encode relatively little chemical information into our kernels, even
the untrained model shows the expected threefold periodicity. We attribute this
to a chemically plausible smoothness for the interaction potentials induced
by our kernels. Training the models shifts the local minima to the correct
equilibrium position at ϕ = 0 and lowers the amplitude of the oscillations.

4.3 Summary and discussion

In this chapter, we have developed new kernels for quantum chemistry which
are based on many-body interactions between the atoms forming a given com-
pound. Except for the decomposition into the different types of two- and three-
body interactions, these kernels encode no additional chemical knowledge, for
example angles and bond lengths are not a priori included in the computation
of the kernel. Nevertheless, our best model K2B + K3B outperforms the CM,
BOB and the invariant descriptors F2B +F3B of the previous chapter for stable
molecules and molecular dynamics data sets when predicting the atomization
energy with kernel ridge regression. The superior prediction error is a conse-
quence of the kernel decompositions into much lower dimensional interaction
potentials, making the model learning more efficiently in practice than for ex-
ample global descriptors like the CM, a phenomenon most dominant for a low
number of training points.

We have analyzed the two- and three-body interaction potentials for a set
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of non-equilibrium molecules with models trained by two-body kernels, three-
body kernels and a combination of the two. This analysis has shown that our
local kernels can learn models which are in agreement with chemical intuition.
In a more controlled experiment where we varied a single degree of freedom of
the ethanol molecule, we have enforced this tendency, as the model K2B +K3B

learns the global energy minimum near the true equilibrium position.
Paired with the high learning efficiency, our local kernels can potentially

be used to study the relation of interaction potentials with the type, size and
composition of molecules. In particular, we pose the question whether there
are global interaction potentials for a set of structurally similar molecules and
whether transfer learning between these molecules is feasible. In fact, our
analysis indicates such possibilities for alkanes.
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Figure 4.7: Interaction potentials of ethanol according to Eq. (4.13). Two-body
potentials for a model trained with the two-body kernel K2B (top left) and the
mixed kernel K2B +K3B (top right), respectively. The three-body potentials of
the H-H-C (top row), H-C-C (middle row) and H-H-O (bottom row) potentials
are shown for a model trained with the three-body kernel K3B (middle column)
and the mixed kernel K2B + K3B (right column). The left column shows the
kernel density estimate according to Eq. (4.14). All models have been trained
on 1000 random molecules and the kernel parameters have been determined by
10-fold nested cross-validation. The interaction potentials have been averaged
by an ensemble of 30 models to increase reproducibility.
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Figure 4.8: Interaction potentials of benzene according to Eq. (4.13). Two-
body potentials for a model trained with the two-body kernel K2B (top left)
and the mixed kernel K2B + K3B (top right), respectively. The three-body
potentials of the C-C-C (top row), H-C-C (middle row) and H-H-C (bottom
row) potentials are shown for a model trained with the three-body kernel K3B

(middle column) and the mixed kernel K2B + K3B (right column). The left
column shows the kernel density estimate according to Eq. (4.14). All models
have been trained on 1000 random molecules and the kernel parameters have
been determined by 10-fold nested cross-validation. The interaction potentials
have been averaged by an ensemble of 30 models to increase reproducibility.
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Figure 4.9: Interaction potentials of toluene according to Eq. (4.13). Two-body
potentials for a model trained with the two-body kernel K2B (top left) and the
mixed kernel K2B +K3B (top right), respectively. The three-body potentials of
the C-C-C (top row), H-C-C (middle row) and H-H-C (bottom row) potentials
are shown for a model trained with the three-body kernel K3B (middle column)
and the mixed kernel K2B + K3B (right column). The left column shows the
kernel density estimate according to Eq. (4.14). All models have been trained
on 1000 random molecules and the kernel parameters have been determined by
10-fold nested cross-validation. The interaction potentials have been averaged
by an ensemble of 30 models to increase reproducibility.
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Figure 4.10: Interaction potentials of propane according to Eq. (4.13). Two-
body potentials for a model trained with the two-body kernel K2B (top left)
and the mixed kernel K2B + K3B (top right), respectively. The three-body
potentials of the C-C-C (top row), H-C-C (middle row) and H-H-C (bottom
row) potentials are shown for a model trained with the three-body kernel K3B

(middle column) and the mixed kernel K2B + K3B (right column). The left
column shows the kernel density estimate according to Eq. (4.14). All models
have been trained on 1000 random molecules and the kernel parameters have
been determined by 10-fold nested cross-validation. The interaction potentials
have been averaged by an ensemble of 30 models to increase reproducibility.
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Figure 4.11: Interaction potentials of octane according to Eq. (4.13). Two-
body potentials for a model trained with the two-body kernel K2B (top left)
and the mixed kernel K2B + K3B (top right), respectively. The three-body
potentials of the C-C-C (top row), H-C-C (middle row) and H-H-C (bottom
row) potentials are shown for a model trained with the three-body kernel K3B

(middle column) and the mixed kernel K2B + K3B (right column). The left
column shows the kernel density estimate according to Eq. (4.14). All models
have been trained on 1000 random molecules and the kernel parameters have
been determined by 10-fold nested cross-validation. The interaction potentials
have been averaged by an ensemble of 30 models to increase reproducibility.
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Figure 4.12: Interaction potentials for varying the C-H distance in ethanol as
indicated by the green arrow (top left). For these configurations, the predicted
total energies of the two- and three-body model is shown together with the
kernel density estimate according to Eq. (4.14) (top right). The two-body
(middle row) and three-body (bottom row) interaction potentials are shown
for models trained with the two-body kernel K2B (middle left), the three-body
kernel K3B (bottom left) and the mixed kernel K2B + K3B (right column),
respectively. All models have been trained on 1000 random molecules and
the kernel parameters have been determined by 10-fold nested cross-validation.
The interaction potentials have been averaged by an ensemble of 30 models to
increase reproducibility.
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Figure 4.13: Interaction potentials for varying the dihedral angle of the CH3

group in ethanol as indicated by the green arrow (top left). For these configu-
rations, the predicted total energies of the two- and three-body model is shown
together with the kernel density estimate according to Eq. (4.14) (top right).
The two-body (middle row) and three-body (bottom row) interaction poten-
tials are shown for models trained with the two-body kernel K2B (middle left),
the three-body kernel K3B (bottom left) and the mixed kernel K2B + K3B

(right column), respectively. All models have been trained on 1000 random
molecules and the kernel parameters have been determined by 10-fold nested
cross-validation. The interaction potentials have been averaged by an ensemble
of 30 models to increase reproducibility.
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Figure 4.14: Interaction potentials for varying the H-C-H angle in ethanol as
indicated by the green arrow (top left). For these configurations, the predicted
total energies of the two- and three-body model is shown together with the
kernel density estimate according to Eq. (4.14) (top right). The two-body
(middle row) and three-body (bottom row) interaction potentials are shown
for models trained with the two-body kernel K2B (middle left), the three-body
kernel K3B (bottom left) and the mixed kernel K2B + K3B (right column),
respectively. All models have been trained on 1000 random molecules and
the kernel parameters have been determined by 10-fold nested cross-validation.
The interaction potentials have been averaged by an ensemble of 30 models to
increase reproducibility.
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Figure 4.15: Atomization energies for varying the dihedral angle of the CH3

group in ethanol predicted using the two-body kernel K2B (blue) and mixed
two- and three-body kernel K2B + K3B (orange) for the untrained (left) and
trained model (right). For the untrained model, we set αi = 1 for i = 1, · · · , N
in Eq. (1.15). The trained model has been averaged by an ensemble of 30 models
to increase reproducibility. In the bottom, the molecule for the dihedral angle
ϕ = 0 rad (left) and ϕ = π/3 rad (right) is shown.
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Chapter 5

Approximate banded Toeplitz
matrix inversion

Many real-world problems can be formulated in terms of a special structure
called Toeplitz matrix. These matrices naturally arise from discretizing differ-
ential equations and convolution operators. Positive definite covariance ma-
trices are typically represented by a Toeplitz matrix in stationary stochastic
processes. A Toeplitz matrix is characterized by constant entries along the
diagonals. For such matrices, more efficient algorithms as compared to the
case of general matrices can be designed, for example to find the determi-
nant [107, 108, 109], to solve matrix equations, i.e. Toeplitz systems [110,
111, 112, 113], to invert general Toeplitz matrices [114] and to compute ma-
trix decompositions [115, 116, 117], respectively. A recent review on Toeplitz
matrices is given by Gray [118]. So-called banded Toeplitz matrices allow even
more efficient algorithms, the elements of these matrices are equal to zero if the
absolute difference between row and column indices exceeds a certain positive
number [119, 120, 121]. The problem of inverting banded Toeplitz matrices has
been discussed by many authors [122, 123, 124, 125, 126]. Banded matrices
which are not in Toeplitz form but instead have Toeplitz inverses have been
analyzed in the literature [127, 128, 129].

Most of the above methods are exact in the sense that their solution depends
on the matrix dimension. Intuitively, the matrix dimension should play a minor
role for large matrices as the structure of these matrices is qualitatively similar.
In this chapter, we propose to model the inverses of banded Toeplitz matrices
by matrices which are themselves Toeplitz. Specifically, we develop methods
to construct the unique Toeplitz matrices which approximate the inverses of
a specific class of banded Toeplitz matrices as the matrix dimension tends to
infinity. A characteristic of our method is that the computation time for a
single element of the inverse is independent of the defining matrix dimension.
Besides the proof of regularity of this class of banded Toeplitz matrices, we
provide insights about the relationship between the matrices involved and their
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5. Approximate banded Toeplitz matrix inversion

corresponding inverses and show how they can be transformed into one another.
The chapter is structured as follows. We propose our main algorithms in

the next Sec. 5.1. Our main theorems are provided in Sec. 5.2. This is followed
by a more detailed list of proofs in Sec. 5.3. We apply our method to the special
case of tridiagonal matrices, where we obtain analytical solutions in Sec. 5.4.
In Sec. 5.5, we evaluate the time complexity by comparing to state-of-the-art
methods for inverting banded Toeplitz matrices. Our approach can be applied
to efficiently construct the Green's functions of one-dimensional linear differ-
ential operators with constant coefficients, which is demonstrated in Sec. 5.6.
In another application, we show how to obtain a banded approximation of de-
convolution operators, where we use one of our methods in reverse fashion in
Sec. 5.7. We apply our method to compute van der Waals interactions including
long-range electrodynamic response screening more efficiently in Sec. 5.8. This
is followed by another application for quantum chemistry in Sec. 5.9, where
we interpolate potential energy surfaces including the CH3 ethanol rotor al-
ready encountered in the previous chapter. Finally, we conclude the chapter in
Sec. 5.10.

5.1 Method

Let Mn be a n× n banded Toeplitz matrix

Mn :=



m0 m1 · · · ms 0 · · · 0

m−1

...
... 0

m−r

···········································

ms

0
...

... m1

0 · · · 0 m−r · · · m−1 m0


defined by the band mi ∈ C for i = −r, · · · , 0, · · · , s with m−r,ms 6= 0 and
r, s ∈ N+. The inverse M−1

n of Mn cannot be Toeplitz (see Proofs section).
However, for a specific class of matrices of form Mn which we will define later,
the inverse M−1

n exists and can be approximated by a Toeplitz matrix

M−1
n ≈ M̄−1

n :=



φ0 φ1 · · · φn−2 φn−1

φ−1 φ0 · · · · · · φn−2

...
. . .

. . .
. . .

...

φ−n+2 · · ·
. . .

. . . φ1

φ−n+1 φ−n+2 · · · φ−1 φ0


as the matrix dimension tends to infinity in the following sense

lim
n→∞

(
M−1
n − M̄−1

n

)
ba·nc+i,ba·nc+j = 0 (5.1)
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for any given i, j ∈ N+ and a ∈]0, 1[. In the next section, we propose an
efficient algorithm to construct the Toeplitz matrix M̄−1

n from Mn. In the
reverse application of this algorithm, we show how to estimate the parameters
r and s and to construct the band {mi}si=−r starting from the Toeplitz matrix
M̄−1
n .

Constructing approximate inverses from banded Toeplitz
matrices

The band {mi}si=−r defines the polynomial

P (x) :=

r+s∑
i=0

mi−r · xi = ms ·
r+s∏
i=1

(x− zi) (5.2)

where the {zi}r+si=1 ∈ C denote the complex roots of P (·) and we assume

|z1| ≤ |z2| ≤ · · · ≤ |zr+s| (5.3)

without loss of generality. From these roots we define the two polynomials

A(x) :=

r∑
i=0

ar−i · xi =

r∏
i=1

(x− zi) (5.4)

B(x) :=

s∑
i=0

bi · xi = ms ·
s∏
i=1

(x− zr+i) (5.5)

with the coefficients {ai}ri=0 and {bi}si=0 and A(x) ·B(x) = P (x). The Toeplitz
matrix (M̄−1

n )i,j =: φi−j is constructed by the set of two recurrence relations

φk = − 1

a0
·
r∑
i=1

aiφk−i s ≤ k ≤ n− 1 (5.6)

φ−k = − 1

b0
·
s∑
i=1

biφ−k+i r ≤ k ≤ n− 1 (5.7)

with the initial values (φ−r+1, · · · , φ0, · · · , φs−1)> given by solving the system
of linear equations

r∑
i=0

aiφk−i = 0 1 ≤ k ≤ s− 1 (5.8)

s∑
i=0

biφ−k+i = 0 1 ≤ k ≤ r − 1 (5.9)

r−1∑
i=0

b0aiφ−i −
s∑
i=1

arbiφ−r+i = 1 (5.10)
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5. Approximate banded Toeplitz matrix inversion

Algorithm 5 Band2Toeplitz

Input:
~m = (m−r, · · · ,ms)

Output:
~ϕ = (φ−r+1, · · · , φs−1)

1: z1, z2, · · · , zr+s ← ordered roots of the polynomial
r+s∑
i=0

m−r+i · xi

2: a0, a1, · · · , ar ← such that
r∑
i=0

ar−i · xi =
r∏
i=1

(x− zi)

3: b0, b1, · · · , bs ← such that
s∑
i=0

bi · xi = ms ·
r+s∏
i=r+1

(x− zi)

4: y0 ← 1
5: for i = 1 to r + s− 2 do
6: yi ← 0

7: for i = 0 to r + s− 2 do
8: M0,i ← 0 . The dimension of M is (r + s− 1, r + s− 1)

9: for i = 0 to r − 1 do
10: M0,r−1−i ←M0,r−1−i + b0 · ai
11: for i = 1 to s do
12: M0.i−1 ←M0.i−1 − as · bi
13: for i = 1 to s− 1 do
14: for j = 0 to r do
15: Mi,r−1+i−j ← aj

16: for i = 1 to r − 1 do
17: for j = 0 to s do
18: Ms−1+i,i−r+1+j ← bj

19: ~ϕ← solve M · ~ϕ = ~y
20: return ~ϕ

The pseudocode for obtaining the initial values (φ−r+1, · · · , φs−1)> from the
band {mi}si=−r is is given in Alg. 5. The total sequenceφφφ = (φn−1, · · · , φ−n+1)>

which defines the inverse M̄−1
n can be calculated by applying the recurrence

relations (5.6) - (5.7).
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5.1. Method

Constructing approximate banded inverses from Toeplitz
matrices

The parameters r and s can be estimated independently by using the functions

f(r̄) := min
aaa∈Rr̄

n−1∑
k=r̄

(
r̄∑
i=1

ai · φk−i − φk

)2

(5.11)

g(s̄) := min
bbb∈Rs̄

n−1∑
k=s̄

(
s̄∑
i=1

bi · φ−k+i − φ−k

)2

(5.12)

which for given r̄ and s̄ are minimized by a least squares solution

aaa := (X>a Xa)−1X>a ϕϕϕr̄,n−r̄ (5.13)

bbb := (X>b Xb)
−1X>b ϕϕϕs̄,n−s̄ (5.14)

with

ϕϕϕk,l := (φk, φk+1, · · · , φk+l)
> (5.15)

and

Xa := (ϕϕϕ0,−r̄,ϕϕϕ1.−r̄, · · · ,ϕϕϕn−r̄,−r̄)> (5.16)

Xb := (ϕϕϕ0,s̄,ϕϕϕ1,s̄, · · · ,ϕϕϕn−s̄,s̄)> (5.17)

The parameters r and s can be determined by

s := arg min
s̄

f(s̄) (5.18)

r := arg min
r̄

g(r̄) (5.19)

(5.20)

In practice, we suggest to select the values for r and s at which the functions
f(·) and g(·) exceed a given small value, for example a numerical precision
threshold of 10−14. Using these parameters r and s, solve the system of linear
equations given the sequence (φ−r, · · · , φs)> in terms of the variables {āi}ri=0

and {b̄i}si=0

r∑
p=0

āpφk−p = 0 1 ≤ k ≤ s (5.21)

s∑
p=0

b̄pφ−k+p = 0 1 ≤ k ≤ r (5.22)

r−1∑
p=0

āpφ−p −
s∑
p=1

b̄pφr+p = 1 (5.23)

ār = b̄0 (5.24)
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5. Approximate banded Toeplitz matrix inversion

Using the variable transformation ai = āi/ā0 for i = 0, · · · , r and bi = b̄i · ā0/b̄0
for i = 0, 1, · · · , s the band is now obtained by

mi =


min(r+i,s)∑

k=0

ak−i · bk −r ≤ i ≤ 0

min(r,s−i)∑
k=0

ak · bk+i 0 ≤ i ≤ s
(5.25)

The pseudocode of obtaining the band {mi}si=−r from the sequence (φ−r, · · · , φs)>
is given in Alg. 6.

5.2 Main theorems

The roots of the polynomial P (·) play a crucial role in understanding the prop-
erties of the inverse M−1

n . Based on these roots, we define a sufficient condition
for the applicability of our method for constructing approximate Toeplitz in-
verses from banded Toeplitz matrices.

Theorem 1. If

|z1| ≤ |z2| ≤ · · · ≤ |zr| < 1 < |zr+1| ≤ · · · ≤ |zr+s| (5.26)

then there exists a unique Toeplitz matrix M̄−1
n that approximates M−1

n in the
sense given by (5.1).

The construction of the matrix M̄−1
n has been shown in the previous section.

At first glance, the condition (5.26) looks very specific. In practice however,
the inverses of banded Toeplitz matrices often decay to zero, as one moves
away from the main diagonal. In fact, the practical usefulness of our method
is provided by the following

Theorem 2. If the inverse M−1
n of a banded Toeplitz matrix of form Mn decays

to zero as one moves away from the main diagonal in the limit

lim
|k|→∞

lim
n→∞

(M−1
n )bn/2c,bn/2c+k = 0 (5.27)

then the condition (5.26) holds for the band of Mn.

The relation of the four matrices Mn,M
−1
n , M̄n, M̄

−1
n is schematically de-

picted in Fig. 5.1.

Solving linear matrix equations

In practice, one often solves matrix equations of the form Mn · xxx = yyy with
given Mn and yyy. Using our approximate Toeplitz inverse M̄−1

n , we propose the
approximate solution

x̄xx := M̄−1
n · yyy = φφφ ∗ yyy (5.28)
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Mn Mn

MnMn

-1

-1

Banded Decaying

≅≅

-1 -1

-1
Toeplitz

Figure 5.1: Relationship of the four matrices Mn,M
−1
n , M̄n, M̄

−1
n . The ma-

trices Mn and M̄n are banded. Their corresponding inverses M−1
n and M̄−1

n

decay crosswise to the main diagonal in the sense given by Eq. (5.27). The
matrices in the bottom row M̄n and M̄−1

n are approximations of the respective
matrices Mn and M−1

n in the top row and vice versa. The matrices on the
diagonal of the figure Mn and M̄−1

n are Toeplitz and are the main focus of this
chapter.

where ∗ denotes the convolution operator. More specifically, our approximate
solution is given by

(x̄xx)i =

n−1∑
k=0

φk−i · (yyy)k (5.29)

Computational complexity analysis

The computational complexity of our method is dominated by the parame-
ters r and s. The roots {zi}r+si=1 of the polynomial P (·) in Eq. (5.2) can be
determined in O((r + s)3), for example by using the companion matrix [130].
Similarly, computing the coefficients {ai}ri=0 and {bi}si=0 and the initial values
(φ−r+1, · · · , φs−1)> in Alg. 5 takes O((r + s)3). The construction of the total
sequence φφφ = {φk}n−1

k=−n+1 can be done in O((r+ s)3 + (r+ s) ·n). We empha-
size that the complexity of our method is independent of the matrix order n in
the sense that a single element φk can be calculated in O((r + s)3) which can
be seen by Eqs. (5.49) and (5.50), respectively. Computing the approximate
solution of the linear matrix equation x̄xx can be done in O((r + s)3 + n2). As
the elements of φφφ decay to zero in the limit lim

|k|→∞
φk = 0 if the condition (5.26)

holds, one can perform the convolution step in (5.29) more efficiently in prac-
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5. Approximate banded Toeplitz matrix inversion

tice. Estimating the parameters r and s can be done in O(n · (r3 + s3)). To
obtain the band from a Toeplitz matrix takes O((r + s)3) for solving the lin-
ear matrix equations (5.21) - (5.24) and O((r + s)2) to compute the band in
Eq. (5.25), respectively.

5.3 Proofs

First, we summarize the results from a previous work by the following

Theorem 3 (Greville et al. [127]). The matrix M̄n is banded and the inverse
of a Toeplitz matrix if and only if the matrix-vector product M̄n · xxx with xxx :=
(x0, x1, · · · , xn−1)> can be represented by

(M̄n · xxx)i :=


A(x)

i∑
j=0

bi−jx
j 0 ≤ i ≤ s− 1

xi−sA(x)B(x) s ≤ i ≤ n− r − 1

xi−sB(x)
n−1−i∑
j=0

ajx
j n− r ≤ i ≤ n− 1

(5.30)

with arb0 6= 0 and the polynomials A(x) =
r∑

k=0

ar−kx
k and B(x) =

s∑
k=0

bkx
k

are relatively prime.

We rely on their approach to efficiently construct the matrix M̄−1
n from

the coefficients {ai}ri=0 and {bi}si=0 in Sec. 5.1. From now on, we move to our
results for analyzing the properties of banded Toeplitz matrices. If we choose
the coefficients defined by Eqs. (5.4) and (5.5) for constructing the matrix M̄n,
the resulting matrix equals the matrix Mn with exception of the upper left s×s
and bottom right r× r corner block matrices. We define C and C̄ as the upper
left s × s block matrix of Mn and M̄n, respectively. Let D := C − C̄ and Dp

be the difference of the corresponding bottom-right r× r block matrices of Mn

and M̄n, respectively. Let U> := (Is×s, 0s×(n−s)) and V > := (0r×(n−r), Ir×r)
where Is×s and Ir×r is the s × s and r × r identity matrix, 0s×(n−s) is the
s× (n−s) zero matrix and 0r×(n−r) is the r× (n−r) zero matrix, respectively.
Using the Woodbury matrix identity [131] the relation between M−1

n and M̄−1
n

can be written as

M−1
n =(M̄n + UDU> + V DpV

>)−1 (5.31)

=(M̄n + UDU>)−1 − (M̄n + UDU>)−1V

· (D−1
p + V >(M̄n + UDU>)−1V )−1V >(M̄n + UDU>)−1 (5.32)

=M̄−1
n −XD − (M̄−1

n −XD)V

· (D−1
p + V >(M̄−1

n −XD)V )−1V >(M̄−1
n −XD) (5.33)

=M̄−1
n −XD − M̄−1

n V (D−1
p + V >M̄−1

n V )−1V >M̄−1
n (5.34)

=M̄−1
n −XD −XDp (5.35)
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with

XD := M̄−1
n U(D−1 + U>M̄−1

n U)−1U>M̄−1
n (5.36)

XDp := M̄−1
n V (D−1

p + V >M̄−1
n V )−1V >M̄−1

n (5.37)

and we utilized U>M̄−1
n V = V >M̄−1

n U = 0 in the above steps. The matrix
M−1
n exists if the matrices D, (D−1 +U>M̄−1

n U), Dp and (D−1
p + V >M̄−1

n V )

are invertible. The regularity of the matrices D and (D−1 + U>M̄−1
n U) is

shown in Lemmas 1 and 2, respectively. The proofs for the regularity of the
matrices Dp and (D−1

p +V >M̄−1
n V ) are analogous and therefore omitted. Note

that while the matrices M−1
n and M̄−1

n depend on n, the elements of the two
matrices D and (D−1 + U>M̄−1

n U) are independent of n. We will utilize this
fact in Lemma 3.

Lemma 1. The matrix D = U>(Mn − M̄n)U is regular.

Proof. As A(x) · B(x) = P (x), we can express the element of Mn at the i-th
row and j-th column in terms of the coefficients {ai}ri=0 and {bi}si=0 by

(Mn)i,j = mj−i =


min(r+j−i,s)∑

k=0

ak+i−j · bk j ≤ i
min(r,s−j+i)∑

k=0

ak · bk+j−i j > i

(5.38)

where we set
∑i2
i1

= 0 for i1 > i2. Similarly, we can express the element of M̄n

at the i-th row and j-th column in terms of these coefficients by

(M̄n)i,j =


j∑

k=0

ak+i−j · bk j ≤ i
i∑

k=0

ak · bk+j−i j > i

(5.39)

For simplicity of the proof, we assume r = s. Then, we can express D in terms
of the coefficients {ai, bi}si=0 from Eqs. (5.38) and (5.39) by

(D)i,j =


s−i∑
k=1

ak+i · bk+j j ≤ i
s−j∑
k=1

ak+i · bk+j j > i

(5.40)

The matrix D can we written as

D =

s∑
m=1

Tm (5.41)

where

(Tm)i,j :=

{
am+i · bm+j i, j ≤ s−m
0 otherwise

(5.42)
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From the linear dependence of the rows of D follows Ts = 0 ⇒ as · bs = 0.
This is in contradiction to our assumption m−r,ms 6= 0, as m−r = ar · b0 and
ms = a0 · bs. This completes the proof of Lemma 1.

Lemma 2. There exists a n̄ ≥ r + s such that the matrix (D−1 + U>M̄−1
n̄ U)

is regular.

Proof. In the framework of infinite Toeplitz matrices [132], it can be shown
that

lim
n→∞

detMn =

r∏
i=1

s∏
j=1

(
1− |zi|
|zs+j |

)−1

6= 0 (5.43)

This means there exists a n̄ ≥ 2s for which Mn̄ is regular. For this n̄ we have

XD = M̄−1
n̄ −M−1

n̄ −XDp (5.44)

U(D−1 + U>M̄−1
n̄ U)−1U> = M̄n̄(M̄−1

n̄ −M−1
n̄ )M̄n̄ − V (D−1

p + V >M̄−1
n̄ V )−1V >

(5.45)

(D−1 + U>M̄−1
n̄ U)−1 = U>M̄n̄U − U>M̄n̄M

−1
n̄ M̄n̄U (5.46)

where we utilized U>U = I and U>V = V >U = 0. This completes the proof
of Lemma 2.

Now we are ready to formalize the existence of the matrix M−1
n is the

following

Lemma 3. If the condition (5.26) holds for Mn, then the matrix Mn is regular
for all n ≥ r + s.

Proof. Both the matrices D and (D−1 + U>M̄−1
n U)−1 are independent of n

for n ≥ r + s which can be seen from the construction of the matrix M̄n.
Their existence has been shown for a given n̄ ≥ r+ s in Lemma 1 and 2. This
completes the proof of Lemma 3.

After we have shown that our main matrix of interest M−1
n exists, we move

to the main

Proof of Theorem 1. The characteristic polynomials of the recurrence relations (5.6) -
(5.7) are

Ac(x) = xr + 1/a0 ·
r∑
p=1

apx
r−p (5.47)

Bc(x) = xs + 1/b0 ·
s∑
p=1

bpx
s−p (5.48)
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which have the roots {zi}ri=1 and {1/zi}r+si=r+1, respectively. The elements of
M̄−1
n can be expressed as a linear combination of these roots by

φk =(c0z
k
1 + c1kz

k
1 + · · ·+ cw1

kw1−1zk1 ) + · · ·
+ (cr−wr+1z

k
a + cr−1k

wr−1zka) (5.49)

φ−k =(c∗0z
−k
r+1 + c∗1kz

−k
r+1 + · · ·+ c∗wr+1

kwr+1−1z−kr+1) + · · ·

+ (c∗s−wr+s+1z
−k
r+b + c∗s−1k

wr+s−1z−kr+b) (5.50)

for k = 0, 1, · · · , n− 1 and where a and b denote the number of distinct roots
of A(·) and B(·) and wi stands for the multiplicity of the root zi, respectively.
The coefficients {ci}r−1

i=0 and {c∗i }
s−1
i=0 can be determined from the initial values

(φ−r+1, · · · , φs−1)> with the additional requirement φ0 = φ−0 in Eqs. (5.49)
and (5.50), respectively. From Eqs. (5.49) and (5.50) follows φk = O(e−α|k|)
for some positive α which implies lim

|k|→∞
φk = 0, where we utilized Eq. (5.26).

With Eq. (5.36), this translates into

∃α > 0 : ∀n ≥ r + s,∀i, j = 0, · · · , n− 1 : (XD)i,j = O(e−α·(i+j)) (5.51)

and similarly

∃β > 0 : ∀n ≥ r + s,∀i, j = 0, · · · , n− 1 : (XDp)i,j = O(e−β·(n−i+n−j))
(5.52)

Now, for any given i, j ∈ N+ and a ∈]0, 1[ it holds

lim
n→∞

(M−1
n − M̄n

−1
)ba·nc+i,ba·nc+j = lim

n→∞
(O
(
e−α·(a·n+i+a·n+j)

)
+O

(
e−β·(n−a·n−i+n−a·n−j)

)
) (5.53)

= lim
n→∞

(O
(
e−α·(a·n+i+a·n+j)

)
+O

(
e−β·((1−a)·n−i+(1−a)·n−j)

)
) (5.54)

= 0 (5.55)

This completes the proof of Theorem 1.

The approximation behaviour for increasing matrix dimension is schemati-
cally depicted in Fig. 5.2. As a useful side-product, we show the following

Corollary 1. The inverse of the banded Toeplitz matrix Mn cannot be Toeplitz
for n ≥ r + s.

Proof. As the matrix Mn has Toeplitz inverse, it is of form M̄n with the coef-
ficients {ai}ri=0 and {bi}si=0 defined from the band of Mn. For n ≥ r + s this
implies D = 0 which is a contradiction to Lemma 1. This completes the proof
of Corollary 1.
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n1 < n2 < n3

M 1
n1

M 1
n2

M 1
n3

M 1
n

Figure 5.2: Schematic main diagonal of the matrices M−1
n1

, M−1
n2

, M−1
n3

with

n3 > n2 > n1 and of the approximate inverse M̄n
−1

. The diagonals of the in-
verse M−1

n converge to a constant value which corresponds to the main diagonal

of M̄n
−1

for lim
n→∞

with exception of the borders.

Proof of Theorem 2. The upper left s × s and bottom right r × r corners of
the matrix Mn can be modified based on two polynomials A(x) and B(x) of
order r and s such that the inverse of the resulting matrix M̄n is Toeplitz. Let
|z1|, |z2|, · · · , |zr| denote the roots of the polynomial A(x) and |zr+1|, · · · , |zr+s|
the roots of the polynomial B(x), respectively. The condition (5.27) implies

lim
|k|→∞

lim
n→∞

(M̄−1
n )bn/2c,bn/2c+k = 0 (5.56)

as can be seen by Eq. (5.35). Then, the decay lim
|k|→∞

φk = 0 implies

|z1|, |z2|, · · · , |zr| < 1 and 1/|zr+1|, · · · , 1/|zr+s| < 1, respectively. This com-
pletes the proof of Theorem 2.

5.4 Analytic solution of the tridiagonal case

In this section we assume Mn to be tridiagonal

Mn =



m1 m2 0 · · · 0

m0 m1 m2
. . .

...
...

. . .
. . .

. . . 0
...

. . . m0 m1 m2

0 · · · 0 m0 m1
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5.4. Analytic solution of the tridiagonal case

In this case, the approximate Toeplitz inverse (M̄n)i,j = φi−j has the property

φk = K1 · φk−1 1 ≤ k ≤ n− 1 (5.57)

φ−k = K2 · φ−k+1 1 ≤ k ≤ n− 1 (5.58)

and we can express K1,K2 and φ0 in terms of the coefficients m0,m1 and m2,
respectively. The polynomial P (x) = m0 +m1 · x+m2 · x2 has the two roots

p1,2 = −1

2
· m1

m2
±

√(
1

2
· m1

m2

)2

− m0

m2
(5.59)

The condition (5.26) implies both roots to be real which means

m2
1 > 4 ·m0 ·m2 (5.60)

Let z1, z2 be the small and large root in absolute value of P (·), respectively.
These roots can be expressed in terms of the sign of m1 ·m2

z1 = −1

2
· m1

m2
+ sign(m1 ·m2) ·

√(
1

2
· m1

m2

)2

− m0

m2
(5.61)

z2 = −1

2
· m1

m2
− sign(m1 ·m2) ·

√(
1

2
· m1

m2

)2

− m0

m2
(5.62)

With

A(x) = a1 + a0 · x = x− z1 (5.63)

B(x) = b0 + b1 · x = m2 · (x− z2) (5.64)

and with the recurrence relations (5.6) - (5.7) follows

K1 = −a1/a0 = z1 (5.65)

K2 = −b1/b0 = 1/z2 (5.66)

(5.67)

and we can simplify the expression for K2 by

1/z2 =
z1

z2 · z1
(5.68)

=
m2

m0
· z1 (5.69)

= −1

2
· m1

m0
+ sign(m1 ·m2) ·

√(
1

2
· m1

m0

)2

− m2

m0
(5.70)

Finally, for φ0 we have due to Eq. (5.9)

φ0 = 1/(a0b0 − a1b1) (5.71)

=
1

m2
· 1

z1 − z2
(5.72)

=
1

2
· sign(m1 ·m2) ·

(
m2

1/4−m0 ·m2

)−1/2
(5.73)
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Figure 5.3: Second quartile (median) of the error ∆n/2 in dependence of the
bandwidth s and matrix dimension n. The bottom and top caps indicate the
first and third quartile of the error ∆n/2.

5.5 Time complexity experiments

In this section, we evaluate the accuracy of our approximate matrix inversion
scheme in dependence of the bandwidth parameter s = r and matrix dimension
n. To this end, we generate a set of random banded Toeplitz matrices with mi

i.i.d. from the uniform distribution U(0, 1) for i = −s, · · · , s. We select the
subset of these matrices which meet the criterion (5.26). For these matrices, we
compute the exact inverse with a state-of-the-art method for inverting banded
Toeplitz matrices by Trench et al. [125]. We evaluate the accuracy of our
approximate inverse by the mean absolute error of the row n/2 of the difference
to the true inverse

∆n/2 :=
1

n
·
n−1∑
i=0

∣∣(M−1
n )n/2,i − (M̄−1

n )n/2,i
∣∣ (5.74)

For the experiment, we have choosen s = r and the bandwidths s = 3, 5, 7, 9
and a set of matrix dimensions ranging from n = 100 to n = 2000, respectively.
To get a more stable estimate of the error ∆n/2, we repeat the experiment 100
times for each combination of s and n. The result of the first three quartiles
of the error ∆n/2 is shown in Fig. 5.3. As expected, the error ∆n/2 decreases
with increasing matrix dimension. However, the convergence rate is slower for
larger bandwidths. We attribute this to a larger probability of a root of the
polynomial P (·) in Eq. (5.2) being closer to one for larger s for our input matrix
distribution. The complexity of constructing the row n/2 of our approximate
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5.6. Constructing Green's functions

inverse is O(s3 + s · n). In contrast, the implemented exact method by Trench
et al. [125] computes s quotients of two s× s determinants for each element of
the inverse and therefore takes O(s4 · n). In a second experiment, we evaluate
the time complexity for the set of bandwidths s = {2, 5, 10, 15, 20, 25, 30} and
a fixed matrix dimension of n = 100000. We have repeated the experiment
100 times to get a more robust time estimate. The comparison of the time
complexity is shown in Fig. 5.4.
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Figure 5.4: Time complexity of an exact banded Toeplitz matrix inversion
scheme by Trench et al. (blue) and our approximate inversion scheme (green)
in dependence of the matrix bandwidth s for a fixed matrix dimension of n =
100000.

In addition to having a larger slope, the method by Trench et al. is at least
one order of magnitude slower compared to our method for small bandwidths s.
The error of our method in this experiment is close to numerical precision which
is attributed to the large matrix dimension of n = 100000. This experiment
confirms the preferable theoretical time complexity of our method.

5.6 Constructing Green's functions

Typically, finding a Green's function G(x, s) of a given differential operator
L(x) is a difficult task and can be solved only for special cases. The Green's
function is defined by any solution of

L(x)G(x, s) = δ(x− s) (5.75)

with the Dirac delta function δ(·). If L(x) is translation invariant, i.e. it
has constant coefficients with respect to x, the corresponding Green's function
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5. Approximate banded Toeplitz matrix inversion

G(x, s) can be interpreted as a convolution operator G(x, s) = G(x− s). Using
finite-difference methods, the discretized operator of L results in a banded
Toeplitz matrix form as the corresponding differential operator has finite order.
Let {mi}si=−s denote the band of the discretized operator of L with order s after
applying a central difference scheme of desired accuracy. If the criterion (5.26)
is conformed for this band, we propose to obtain the discrete Green's function
in the interval [xl, xr] by the Alg. 7.

Typically, the Green's function is not unique. Our proposed approximate
Green's function ggg meets the boundary condition lim

|k|→∞
gggk = 0. Any other

Green's function of the operator L can be constructed using the general homo-
geneous solution of Lxxx = 0. A particular solution of Lxxx = yyy is readily obtained
by the convolution operation xxx = ggg ∗ yyy (see Eq. (5.28)).

Analytic derivation of Green's functions

The method in Alg. 7 allows to construct Green's functions given a stepsize h
which is used to obtain the discretized band of the differential operator L. This
is useful in practice as numerical methods typically intrinsically incorporate
such a stepsize parameter. However, we can go one step further and derive the
theoretical Green's functions with our approach directly.

The principal idea is to perform the limit h→ 0. We exemplify the deriva-
tion for the differential operator of order one L(x) = d

dx + γ with the Green's
function G(x) = Θ(x)e−γx. The band of the discretized operator is given by
~m = (−1/(2h), γ, 1/(2h))> and the corresponding matrix is tridiagonal. For
tridiagonal matrices our methods have been analytically solved in the previous
Sec. 5.4. With h = x/n we can derive the theoretical Green's function with
our method by

G(x) = lim
n→∞

(
1

h
· φ0 · zn1

)
(5.76)

= lim
n→∞

1

2
· 1√

γ2h2

4 + 1
4

· zn1

 (5.77)

= lim
n→∞

zn1 (5.78)

= lim
n→∞

(
−γx
n

+

√(γx
n

)2

+ 1

)n
(5.79)

= lim
n→∞

(
−γx
n

+ (1 +O(1/n2))
)n

(5.80)

= lim
n→∞

(
1− γx

n

)n
(5.81)

= e−γx (5.82)

which corresponds to the theoretical result. The 1
h term in Eq. (5.76) is due

to the discrete representation of the Dirac delta function δ(·). The step from
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5.7. Banded approximation of deconvolution operators

Name Operator L Green's function G Parameters

Critically damped ∂2
t + 2γ∂t + γ2 Θ(t)te−γt γ = 5

harmonic oscillator
Overdamped ∂2

t + 2γ∂t + ω0 Θ(t)e−γt sin(ωt)/ω ω0 = 15, γ = 5,

harmonic oscillator ω :=
√
ω2

0 − γ2

Screened Poisson ∂2
t − k2 − 1√

2π
t
kK−1/2(kt) k = 2.5

equation

Table 5.1: Differential operators used in the experiment with their correspond-
ing Green's functions and parameters.

Eq. (5.80) to Eq. (5.81) can be shown by Bernoulli's inequality. The exact
derivation of the Green's functions can be performed for second order differen-
tial operators as there is a closed form solution of the roots of quartic functions
(polynomials of degree four). We leave the derivation for differential operators
of order higher than two for future work.

Experiments

We apply the Alg. 7 to three differential operators with well known non-trivial
Green's functions. The operators and their corresponding Green's functions
and parameters used are listed in Tab. 5.1, where Θ(·) is the Heaviside step
function andKν(·) is a modified Bessel function of the second kind, respectively.
We measure the accuracy by the integrated error

∆Green = h ·
bxr/hc∑
i=0

(G(h · i)− (ggg)i)
2 (5.83)

where we used the list of stepsizes h = {0.1, 0.05, 0.01, 0.005, 0.001} and the
interval [0, xr] with xr = 10 in the Alg. 7 to obtain ggg, respectively. The results
in dependence of the stepsize h are shown in Fig. 5.5. It can be seen, that
our approximate Green's functions converge to the theoretical solution as the
stepsize h decreases.

A more complex experiment is shown in Sec. A.1, where we apply our
approximate deconvolution operations on blurred images in two dimensions
which demonstrates the application of our methods on real-world image data.

5.7 Banded approximation of deconvolution operators

Toeplitz matrices can be viewed as one-dimensional convolution operators. The
functions with which we perform convolutions often decay to zero in practice, as
often there is a natural correlation between the geometric distance of sampled
points and the covariance of the corresponding random variables. In principal,
this suggests to approximate such correlation functions or kernels by a banded
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Figure 5.5: Error of approximate Green's functions in dependence of the step-
size h. The errors are relative to the theoretical Green's function.

Toeplitz matrix. However, this distorts the convolution function at the cutoff
which introduces building errors in the recurrence relations. Instead, we pro-
pose to model the inverse procedure, the deconvolution operation, by a banded
Toeplitz matrix. In this way, we construct an approximate deconvolution oper-
ator which best reconstructs the original local kernel around the position zero,
thereby circumventing a signal distortion. This can be done with the Alg. 6.

Experiments

We use the base convolution functions (or kernels) listed in Tab. 5.2 to construct
the corresponding deconvolution operators as the inverse of K + λ · I with the
regularization parameter λ. We measure the error of our approximation by the
relative error

∆band =

√
1

2s+1

s∑
i=−s

(dn/2+i −mi)2

√
1

2s+1

s∑
i=−s

(dn/2+i)2

(5.84)

where di := ((K + λ · I)−1)n/2,i and we used n = 5000 in our experiment. The
results for a set of regularization parameters λ in dependence of the bandwidth
s expressed in terms of the standard deviation of the convolution operator
xcutoff · σ := s/n are shown in Figs. 5.6, 5.7 and 5.8, respectively.
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Figure 5.6: Error of Gaussian deconvolutions for different regularization param-
eters in dependence of the assumed bandwidth of the deconvolution operator
expressed in terms of the scale of the kernel.

Name Kernel K(x) Parameters

Gauss e−
x2

2σ2 σ = 0.1

Laplace e−
|x|
σ σ = 0.1

Matérn (1 +
√

5|x|
σ + 5x2

3σ2 ) · e−
√

5|x|
σ σ = 0.1

Table 5.2: Base kernels used in the experiment to compute the respective
deconvolution operators.

For the Gaussian kernel, the error increases with decreasing the regularizer
λ. The error is worse compared to the Laplace and Matérn case, as the Gaussian
deconvolution operators are not well approximated by a banded matrix. For
the Laplace and Matérn deconvolutions, the error rapidly decreases as one
both, decreases the regularization or increases the bandwidth, respectively.
Intriguingly, we only need the knowledge of a small portion of the Laplace and
Matérn convolution operator around zero to compute its inverse operator.

5.8 Many-body van der Waals interactions

In this section, we apply our matrix inversion scheme to the computation of
long-range dispersion or van der Waals interactions in molecules and condensed
matter. Van der Waals interactions play a crucial role in a variety of fields
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Figure 5.7: Error of Laplace deconvolutions for different regularization param-
eters in dependence of the assumed bandwidth of the deconvolution operator
expressed in terms of the scale of the kernel.
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Figure 5.8: Error of Matérn deconvolutions for different regularization param-
eters in dependence of the assumed bandwidth of the deconvolution operator
expressed in terms of the scale of the kernel.

such as supramolecular chemistry, structural biology, nanotechnology, surface
science and condensed matter physics. The nature of the van der Waals force is
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5.8. Many-body van der Waals interactions

attractive for distances between particles larger than typical covalent bonding
distances and becomes repulsive for smaller distances. Originating from corre-
lations of fluctuating instantaneous polarizations, these many-body dispersion
effects can only be described by quantum dynamics.

The frequency-dependent polarizability in molecules and materials with a
finite electronic gap can be accurately computed by a many-body dispersion
method which uses a system of coupled quantum harmonic oscillators (QHOs)
within the random-phase approximation in combination with density functional
theory [133], where each of the QHO represents an atom in a molecular system
of interest. This method starts from the ground state and the corresponding
charge density of a QHO which is a spherical Gaussian function, from which
the Coulomb interaction between two QHOs is derived as

νpq =
erf(Rpq/σpq)

Rpq
(5.85)

with the Gauss error function erf(·), the distance between the QHOs Rpq and

the effective width σpq =
√
σ2
p + σ2

q obtained from the widths of the QHOs

σp and σq, respectively. These widths are related to the polarizabilities by

σp = (
√

2/π · αp/3)1/3 in a classical electrodynamics treatment. The dipole-
dipole interaction tensor can be now derived as

T abpq =−
3RaRb −R2

pqδab

R5
pq

×
(

erf(Rpq/σpq)−
2√
π

Rpq
σpq

exp
(
−(Rpq/σpq)

2
))

+
4√
π

RaRb
σ3
pqR

2
pq

exp
(
−(Rpq/σpq)

2
)

(5.86)

where a and b represent the Cartesian coordinates {x, y, z} and Ra, Rb are
the respective components of the QHO distance Rpq. In the Tkatchenko-
Scheffler scheme, the local chemical environment is accounted for by modeling
the frequency-dependent polarizability by

αp(iω) =
α0
p

1 + (ω/ωp)2
(5.87)

where the static dipole polarizability α0
p[n(rrr)] and the effective excitation fre-

quency ωp[n(rrr)] are functionals of the ground-state electron density n(rrr) of the
system. This model for the frequency-dependent polarizability lacks to capture
long-range electrodynamic response screening and anisotropy effects which can
be included by self-consistently solving the system of linear equations for a
given frequency ω

ᾱp(iω) = αp(iω)− αp(iω)

N∑
q 6=p

Tpqᾱp(iω) (5.88)

for p = 1, 2, · · · , N where N denotes the number of QHOs and the ᾱp(iω)
are the polarizabilities of the system that account for both short-range and
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5. Approximate banded Toeplitz matrix inversion

long-range electrodynamic response screening effects. The Eqs. (5.88) can be
solved by constructing the Hermitian matrix A which contains the inverse of
the frequency-dependent polarizability tensors α−1

p (iω) on the diagonal 3 × 3
subblocks and the dipole-dipole interaction tensor Tpq on the non-diagonal 3×3
subblocks. By inverting the matrix A, the screened set of polarizability tensors
are obtained by

ᾱp(iω) =

N∑
q

Bpq (5.89)

We now proceed to solve the Eqs. (5.88) for a model system of QHOs by using
our matrix inversion scheme introduced in Sec. 5.1.

Linear chain of QHOs

We compute the set of screened polarizabilities for a system which is com-
posed of a linear chain of atoms where neighboring atoms are separated by
a distance d. Due to the equivalence of the atoms of the chain, we model
both the frequency-dependent polarizability and it’s screened counterpart as
independent of the QHO index a(iω) := ap(iω) and ā(iω) := āp(iω) for all
p = 1, 2, · · · , N . For simplicity we analyse a single component of the polariz-
abilities by replacing the 3× 3 tensor by real numbers a(iω), āp(iω) ∈ R for a
given frequency ω. The self-consistency cycle is now given by

1. select a fixed frequency and corresponding polarizability a(iω) and choose
the starting ā(iω) randomly

2. construct the matrix A from the polarizability a(iω) and the dipole-dipole
interaction tensor Tpq which is a function of ā(iω)

3. compute B = A−1 and the screened polarizability ā(iω) =
N∑
q
Bpq for

p = N/2

4. iterate steps (2.) - (3.) until convergence of ā(iω)

To apply our matrix inversion scheme, we introduce a banded variant of the
matrix A by

(ĀnB )ij :=

{
(A)ij |i− j| ≤ nB
0 otherwise

(5.90)

which corresponds to a cutoff distance d · nB for which the dipole-dipole inter-
action tensor Tpq becomes zero, if the distance between the oscillators p and q
exceeds that distance. The number 2 ·nB corresponds to the maximal number
of interacting oscillators.

We apply the self-consistency cycle above to solve the system of linear
Eqs. (5.88) for N = 150 using the full matrix A and the banded variants ĀnB
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5.8. Many-body van der Waals interactions

for nB = 5, 10, 15. We use our approximate matrix inversion scheme of Sec. 5.1
to compute the inverses B̄nB = Ā−1

nB in the self-consistency cycle. The result
for the screened polarizability ā(iω) in dependence of QHO distance d for a
polarizability of a(iω) = 12 Bohr3 is shown in Fig. 5.9.
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Figure 5.9: Screened polarizability in dependence of the QHO distance
d of the full model (blue) and approximate matrix inversion schemes for
nB = 5, 10, 15 at the frequency-dependent polarizability of a(iω) = 12
Bohr3.

The screened polarizability is in good agreement with the full model by
taking a small number of interacting oscillators into account nB � N and the
local minimum around 4 Bohr is qualitatively reconstructed by all models used.
For larger number of interacting oscillators nB , the screened polarizability con-
verges to the full model of using the matrix A to solve the Eqs. (5.88). The
convergence rate is better for larger distances d, indicating the importance of
many-body effects for small distances between the particles of the system to
accurately compute dispersion effects.

Fig. 5.10 shows the screened polarizability ā(iω) in dependence of the fre-
quency or equivalently the polarizability a(iω) at a QHO distance of d = 4
Bohr. The convergence rate is better for larger frequencies (or equivalently
smaller polarizabilities a(iω)), indicating the importance of many-body effects
for small frequencies to accurately compute dispersion effects.

The complexity of our approximate matrix inversion scheme is O(n3
B) which

drastically improves upon the complexity of the full model O(N3) for nB � N .
However, as the system of QHOs is qualitatively similar by decreasing the total
number of oscillators N , there is the question how well an exact but smaller
model Nsmall < N can approximate the full problem at N = 150. Especially, we
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Figure 5.10: Screened polarizability in dependence of the frequency-
dependent polarizability of the full model (blue) and approximate ma-
trix inversion schemes for nB = 5, 10, 15 at a QHO distance of d = 4
Bohr.

compare the setting where both, the smaller exact model and our approximate
scheme share the same time complexity Nsmall = nB . Fig. 5.11 shows the
accuracy of a set of smaller exact and approximate models for computing the
full screened polarizability of our initial setting at N = 150 in dependence of
the number of interacting oscillators used (Nsmall for the small exact and nB
for the approximate model, respectively) which dictate the time complexity.
The result shows the true benefit of our method as the accuracy is one order
of magnitude better compared to the exact smaller model at the same time
complexity.

5.9 Interpolation of potential energy surfaces

In this section, we apply our approximate matrix inversion scheme to the inter-
polation of potential energy surfaces. In polynomial interpolation, the values
of a function of interest at a set of positions is predicted based on a polynomial
which passes through a set of training points. The interpolation technique
used depends on the assumptions which are made about the defining poly-
nomials and can incorporate prior knowledge about the data. Common ap-
plications include the interpolation of potential energy surfaces like molecular
potential energies [134, 135, 136], reaction surfaces [137, 138, 139] and energy-
minimization, where spline interpolation [140, 141] and variants like discrete
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Figure 5.11: Accuracy of the small exact (blue) and approximate
(green) model in dependence of the time complexity which is dictated
by the number of interacting oscillators (Nsmall for the full and nB for
the approximate model, respectively).

splines [142] has been used in the literature.
In cubic spline interpolation, a set of points {(xi, yi)} for i = 0, 1, · · · , n

is interpolated by a set of piecewise polynomials of order three called splines.
These splines are constructed to be twice continuously differentiable at the in-
terpolation points {xi}ni=0. For simplicity, we assume equidistant interpolation
points with separation distance h for which the splines are constructed by

si(x) =
1

6h
·
(
(xi+1 − x)3 ·Mi + (x− xi)3 ·Mi+1

)
+ ci · (x− xi) + di (5.91)

for i = 0, 1, · · · , n− 1 and x ∈ [xi, xi+1] with the moments {Mi}ni=0 and

di := yi −
h2

6
·Mi (5.92)

ci :=
yi+1 − yi

h
− h

6
· (Mi+1 −Mi) (5.93)

The moments ~M := (M0,M1, · · · .Mn)> can be obtained by solving the system
of linear equations

T · ~M = ~Y (5.94)

where T is the tridiagonal Toeplitz matrix with the value 4 on the main
diagonal and the value 1 on the first left and right sub-diagonal and ~Y :=
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5. Approximate banded Toeplitz matrix inversion

(Y0, Y1, · · · , Yn)> is defined by

Yi =


6
h2 · (yi+1 − 2 · yi + yi−1) i = 1, 2, · · · , n− 1
6
h2 · (y1 − y0) i = 0
6
h2 · (yn−1 − yn) i = n

(5.95)

Note that for the tridiagonal matrix T the corresponding linear matrix equa-
tions can be efficiently solved by the Thomas algorithm. However, for com-
puting the interpolated function value at a given point x, the exact Thomas
algorithm has the time complexity O(n) which depends on the number of in-
terpolation or training points n. Intuitively, the function values at the position
x are dominated by its nearest neighbors. Our matrix inversion scheme imple-
ments this intuition by computing the inverse of T which is Toeplitz efficiently
around the main diagonal. As the matrix T is strongly diagonally dominant,
i.e. the diagonal entry is larger in magnitude than the sum of the non-diagonal
entries, the inverse T−1 decays quickly which suggests an accurate approxima-
tion of our method. We propose approximate cubic splines by introducing a
cutoff number nB of the nearest neighbors taken into account for computing
the convolution operation in Eq. (5.29) by

M̄i :=

nB−1∑
k=0

φk−i · Yk (5.96)

for i = 0, 1, · · · , n which defines the approximate moments {M̄i}ni=0 of the cubic
splines.

We apply our approximate spline interpolation on the potential energy sur-
faces of the ethanol molecule, where we rotate the CH3-group (methyl group)
and the OH-group (hydroxy group) along an angle between [0, 2π] from the
equilibrium position, where the C-C axis is fixed for the methyl group and the
C-O axis is fixed for the hydroxy group, respectively. Each point represents
the energy of the molecule for a fixed angle of the respective functional group
while all other degrees of freedom have been relaxed. The energies have been
computed using all-electron coupled cluster with single, double, and pertur-
bative triple excitations (CCSD(T)) with the Dunning’s correlation-consistent
basis set cc-pVTZ.

Fig. 5.12 shows the potential energy surfaces (left) along with the interpo-
lation points and the approximate spline interpolation of the remaining points
together with the mean absolute prediction error (right) by increasing the num-
ber of nearest neighbors nB , respectively. The mean absolute prediction error
rapidly decreases and saturates at nB = 2 at the prediction error of the exact
spline interpolation.

In a second experiment, we apply our approximate spline interpolation on
minimum energy paths of reactions of the kind X−+H3C-Y→X-CH3+Y− for
all combinations of X,Y∈ {F,Cl,Br, I}. The reaction coordinate of this reaction
is defined as rCY− rCX. Figs. 5.13 and 5.14 show minimum energy paths (left)
along with the interpolation points and the approximate spline interpolation of
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Figure 5.12: Approximate spline interpolation (middle) for nB = 3 of the
potential energy surfaces obtained by rotating the CH3-group (top) and the
OH-group (bottom) of ethanol from equilibrium position. The reference CCS-
DFT energy in kcal/mol (blue solid line) is shown along with the interpolation
points (red crosses) and the approximate spline interpolation of the remaining
points (green dashed line). The mean absolute error of approximate spline in-
terpolation is given in kcal/mol in dependence of the number of interpolation
points nB (right).

the remaining points together with the mean absolute prediction error (right)
by increasing the number of nearest neighbors nB , respectively.

The mean absolute prediction error rapidly decreases and saturates at nB =
3 at the prediction error of the exact spline interpolation. A larger number
of neighbors nB have to be taken into account compared to the ethanol rotor
energy surfaces which we attribute to more complex functions at equal sampling
density.

The results of both experiments indicate that our approximate cubic spline
interpolation can be used to accurately predict potential energy surfaces by
taking into account a low number of training points. This can potentially
be useful for energy-minimization applications which typically involve a low
number of sample points at which the energy is evaluated.

5.10 Summary and discussion

In this chapter, we have developed algorithms to efficiently approximate the
inverses of a special class of banded Toeplitz matrices in a numerically stable
way. Specifically, we have approximated these inverses by matrices which are
themselves Toeplitz. We have provided sufficient and necessary conditions
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5. Approximate banded Toeplitz matrix inversion

when this is possible in terms of the roots of a polynomial which is given
by the band defining the original matrix. This criterion can be efficiently
computed without having to construct the involved matrices which potentially
saves storage space and computational cost in practice.
Our approach can be used to construct the Green's functions of one-dimensional
operators with constant coefficients. To the knowledge of the author, this is a
new approach for computing the Green's functions of differential operators of
arbitrary order in a direct and explicit way. In another application, we have
demonstrated the applicability of our method to approximate the inverses of
convolution kernel functions while retaining a certain reconstruction accuracy.
We have applied our method to compute the polarizabilities including long-
range electrodynamic response screening effects more efficiently. Finally, we
have proposed approximate cubic spline interpolation using our matrix inver-
sion scheme to accurately predict potential energy surfaces using a small num-
ber of training points, an approach which can potentially be useful for energy
minimization strategies.
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5.10. Summary and discussion

Algorithm 6 Toeplitz2Band

Input:
~ϕ = (φ−r, · · · , φs)

Output:
~m = (m−r, · · · ,ms)

1: y0 ← 1
2: for i = 1 to r + s+ 1 do
3: yi ← 0

4: for i = 0 to s− 1 do
5: M0,i ← ϕs+1+i . The dimension of M is (r + s+ 2, r + s+ 2)
6: M0,2s+1−i ← −ϕs+1+i

7: M1,r ← 1
8: M1,r+1 ← −1
9: for i = 1 to s do

10: for j = 0 to r do
11: M1+i,j ← ϕr+i−j

12: for i = 1 to r do
13: for j = 0 to s do
14: M1+s+i,r+1+j ← ϕ−r+i+j

15: ~x← solve M · ~x = ~y
16: for i = 0 to r do
17: ai ← xi/x0

18: for i = 0 to s do
19: bi ← xr+1+i · x0/xr

20: for i = 0 to r + s do
21: mi ← 0

22: for i = 0 to s do
23: ms ← ms + ai · bi
24: for i = 1 to r do
25: l← min(r − i, s)
26: for j = 0 to l do
27: mi−1 ← mi−1 + ai+j · bj
28: for i = 1 to s do
29: l← min(r, s− i)
30: for j = 0 to l do
31: mr+i−1 ← mr+i−1 + bi+j · aj
32: return ~m
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5. Approximate banded Toeplitz matrix inversion

Algorithm 7 PronobisGreens

Input:
~m = (m−s, · · · ,ms)
h . stepsize parameter
xl, xr . lower and upper bounds

Output:
~g . Green's function in the interval [xl, xr]

1: ~ϕ← Band2Toeplitz(~m)

2: z1, z2, · · · , z2s ← ordered roots of the polynomial
2s∑
i=0

m−s+i · xi

3: a0, a1, · · · , as ← such that
s∑
i=0

as−i · xi =
s∏
i=1

(x− zi)

4: b0, b1, · · · , bs ← such that
s∑
i=0

bi · xi = ms ·
2s∏

i=s+1

(x− zi)

5: nl ← xl/h
6: nr ← xr/h
7: for i = 1 to s− 1 do
8: ai ← −ai/a0

9: bi ← −bi/b0
10: gnl ← ϕs
11: for i = 1 to s− 1 do
12: gnl+i ← ϕs+i/h
13: gnl−i ← ϕs−i/h

14: for i = s to nr − 1 do
15: for j = 1 to s do
16: gnl+i ← gnl+i + aj · gnl+i−j
17: for i = s to nl − 1 do
18: for j = 1 to s do
19: gnl−i ← gnl−i + bj · gnl−i−j
20: return ~g
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Figure 5.13: Approximate spline interpolation (middle) for nB = 3 of
the minimum energy paths of the reaction X−+H3C-Y→X-CH3+Y−

(left) for (X,Y) = { (F-I), (F-F), (F-Cl), (F-Br), (Cl-Br) }. The
reference energy in kcal/mol (blue solid line) has been computed at
the DSD-BLYP-D3(BJ)/def2-TZVP level of theory [139] and is shown
along with the interpolation points (red crosses) and the approxi-
mate spline interpolation of the remaining points (green dashed line).
The mean absolute error of approximate spline interpolation is given
in kcal/mol in dependence of the number of interpolation points nB
(right).
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Figure 5.14: Approximate spline interpolation (middle) for nB = 3 of
the minimum energy paths of the reaction X−+H3C-Y→X-CH3+Y−

(left) for (X,Y) = { (I-I), (Cl-I), (Cl-Cl), (Br-I), (Br-Br) }. The
reference energy in kcal/mol (blue solid line) has been computed at
the DSD-BLYP-D3(BJ)/def2-TZVP level of theory [139] and is shown
along with the interpolation points (red crosses) and the approxi-
mate spline interpolation of the remaining points (green dashed line).
The mean absolute error of approximate spline interpolation is given
in kcal/mol in dependence of the number of interpolation points nB
(right).
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Chapter 6

Conclusions

The goal of this thesis has been to develop alternative efficient and perfor-
mant tools for application in quantum chemistry. We have achieved this goal
using three distinct methodologies: our set of invariant molecular many-body
descriptors, our decomposition kernels and our approximate banded Toeplitz
matrix inversion scheme.

In our first approach, we have developed representations of quantum me-
chanical systems which are invariant with respect to translation, rotation and
atom indexing. This invariance has been achieved by summing over the per-
mutations of two- and three-body combinations of atoms composing a physical
system, potentially saving storage space in practice if the number of features is
low for a given learning. For these descriptors, a linear ridge regression model
has performed only slightly worse compared to the non-linear kernelized vari-
ant for stable small organic molecules and molecular dynamics data sets. This
characteristic of our molecular representations potentially allows a practitioner
to apply linear analysis tools for exploration of important features. In fact,
our feature importance analysis has indicated that the interactions of hydro-
gen with all other atoms can be effectively modeled as a pairwise potential for
stable small organic molecules. One limitation of these descriptors is the ex-
ponential growth of the number of features for increasing the highest exponent
in their respective definition.

This problem has been circumvented by our second methodology, where
we have proposed a similarity measure of physical systems encoding two- and
three-body environments directly into the kernel, which can save even more
storage space in practice, as the set of local many-body descriptors do not
need to be stored explicitly. We have demonstrated that these decomposition
kernels perform even better than our invariant descriptors for predicting the
atomization energy for both stable small organic molecules and molecular dy-
namics simulation sets. The decomposition property of these kernels not only
allows more efficient learning as demonstrated by the learning curves, it also
allows us to model two- and three-body interaction potentials for which we
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6. Conclusions

have shown to agree with chemical intuition. In future projects, we plan to use
these kernels to investigate the possibility of transfer learning of interaction
potentials across chemical compound space. We speculate on the need of inter-
action terms which model the interaction between specific two- and three-body
atom combinations for this purpose.

In our third methodology, we have developed an approximate inversion al-
gorithm for banded Toeplitz matrices which is designed to compute the inverses
in a computationally efficient and robust way. Specifically, our matrix inver-
sion scheme allows to uniquely approximate the inverse of a certain class of
banded Toeplitz matrices. This class has been defined by a criterion which is
independent of the matrix dimension and can therefore be readily verified. The
proposed algorithms have been theoretically underpinned by a proof of regular-
ity of the matrices of this class. We have demonstrated the applicability of our
matrix inversion methods for quantum chemistry, where we have computed the
polarizabilities including long-range electrodynamic response screening effects
more efficiently. Finally, we have proposed approximate cubic spline interpola-
tion using our matrix inversion scheme to accurately predict potential energy
surfaces using a small number of training points, an approach which can po-
tentially be useful for energy minimization procedures.

A limitation which prohibits the wider applicability of our matrix inversion
method is the constant entries along the diagonals of the Toeplitz matrices.
In the future, we plan to lift this assumption and investigate other extensions,
e.g. the two- and three-dimensional case and sub-bandwidth time complexity,
respectively.
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Appendix A

Supplemental results

A.1 Image filtering experiments

In this experiment, we demonstrate the applicability of our approximate ma-
trix inversion scheme of Chap. 5 outside the quantum chemistry domain on
real-world image data. Specifically, we compute two-dimensional image con-
volutions where the filter kernel can be separated into a product of two one-
dimensional functions using the kernel functions encountered in Sec 5.7. The
two-dimensional convolutions are defined by

Iblurred(i, j) :=

n∑
k1=−n

n∑
k2=−n

Iin(i− k1, j − k2) ·K(h · k1) ·K(h · k2) (A.1)

where Iin is a single-channel input image, Iblurred is the resulting blurred fil-
tered image, K(·) is a kernel with size 2n + 1 and h is a stepsize parameter,
respectively. The time complexity for the convolution step in Eq. (A.1) depends
quadratically on the kernel size given by n. For increasing image resolutions,
the parameter n has to increase accordingly to achieve the same filtering effect.
To circumvent this problem, we apply our approximation scheme to perform
the inverse operation

Irecon(i, j) :=

s∑
k1=−s

s∑
k2=−s

Iblurred(i− k1, j − k2) · K̄s(k1) · K̄s(k2) (A.2)

with inverse kernel sizes given by s � n. The functions K̄s(·) are obtained
from Alg. 6 applied on the original kernels K(·) in Tab. 5.2 with kernel param-
eters listed in Tab. A.1. The results with different inverse kernel sizes s are
shown in Fig. A.1.

Our method can be used to efficiently revert the filtering operation with one
order of magnitude smaller kernel sizes s � n. The inverse Gaussian kernels
have problems to fully reconstruct the original image which is in accordance
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A. Supplemental results

Kernel n h σ λ

Gauss 301 10.0 10.0 0.1
Laplace 301 0.033 2.0 0.0
Matérn 301 0.033 0.1 0.0

Table A.1: Base kernels used in the experiment to compute the respective
deconvolution operators.

with the results of the one-dimensional deconvolution experiments in Sec. 5.7.
Interestingly, the inverse Laplace kernel has the smallest possible kernel size
s = 1 for the most drastically blurred image which potentially can be used in
combination with image compression algorithms.
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A.1. Image filtering experiments

Originalblurred s=1
Laplace

Gaussian

Matérn
blurred

blurred

s=10 s=15

s=6 s=8

Figure A.1: Image convolutions (left) column from the original image
(top right) according to Eq. (A.1) using the Laplace kernel (top row),
Matérn kernel (middle row) and Gaussian kernel (bottom row) with the
parameters listed in Tab. 5.2. The deconvolution is shown according to
Eq. (A.2) for kernel widths s = 1 for the Laplace kernel, s = 10, 15 for
the Matérn kernel and s = 6, 8 for the Gaussian kernel, respectively.
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Vorveröffentlichungen und
Eigenanteile

Publikation:
W. Pronobis, A. Tkatchenko, and K.-R. Müller. ”Many-Body Descriptors for
Predicting Molecular Properties with Machine Learning: Analysis of Pairwise
and Three-Body Interactions in Molecules”. Journal of Chemical Theory and
Computation 14 (6), pp. 2991–3003, 2018
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