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Abstract

Biological, chemical and physical processes involve mechanisms that happen at differ-

ent energetic, spatial and time scales. The interpretation of these phenomena requires

the assistance of numerical calculations that help distinguish the origin and impor-

tant properties observed in the experimental findings. Yet, in order to model such

complexity, it is necessary to overcome the computational limits of even the most effi-

cient high-performance computing facilities. For this purpose numerical methods based

on the partitioning of the system of interest in different subspaces, each treated at a

different level of theory and thus of accuracy are introduced. Such partitioning, also

called embedding, allows to study large systems including for example solvation of large

molecules and proteins.

In the most common of embedding approaches, the molecular fragment of interest

is described via accurate ab initio quantum methods (QM), while the environment or

the protein backbone is modelled via molecular mechanics (MM) with empirical Force-

Fields (FF), or other coarse-grained methods, that by approximating the interactions,

make the treatment of the entire system feasible. Unfortunately, these approximations

often result in neglecting important intra and intermolecular interactions, especially

those arising from polarization or dispersion effects. In this Thesis, we developed a

new embedding method, in which molecular systems described through first-principle

quantum methods are embedded in an accurate model environment, that explicitly

includes important long-range dynamical correlation effects between the various sub-

systems.

For the first time, we propose an explicitly quantum model environment, con-
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structed via point charges and Coulomb interacting quantum Drude oscillators (QDO),

ie charged quantum harmonic oscillators, designed to reproduce the electrostatics, po-

larization and dispersion interactions between the molecules of the environment and

the electrons of an ab initio molecular sub-system in the non-covalent regime. We con-

struct a single many-body Hamiltonian coupling the quantum electronic and drudonic

degrees of freedom via Coulomb interactions and define a variational ansatz for the to-

tal system, which is integrated and optimized through quantum Monte Carlo (QMC)

methods, which are able to capture the correlation effects within and between the two

subsystems. In particular, we employ two of the most common QMC methods, namely

variational (VMC) and diffusion Monte Carlo (DMC), which are implemented specif-

ically to tackle these mixed systems of heterogeneous fermionic and distinguishable

particles. This novel El-QDO embedding approach is first applied to describe disper-

sion interactions in a set of noble gas dimers, ie Ne, Ar, Kr and Xe. Afterwards, a

more general QDO model for the water molecules is used to study the prototype hy-

drogen bond in the water dimer. Finally, the El-QDO method is applied to study the

solvation end excitation energies of small molecules in a water environment, displaying

remarkable agreement with accurate ab initio calculations. These first results prove

the capability of the method to correctly describe the electrostatics, polarization, and

dispersion effects within the QDO environment and between the QDO environment

and the first-principle molecular sub-systems.

Finally, in the last application presented in this Thesis, we employ Density Func-

tional Theory (DFT) together with an existing QDO-based dispersion method, ie the

many-body dispersion (MBD) method, to study the thermochemistry of the diphenyl-

methyltelluronium cation interacting with the triphenylphosphine oxide in the ethylene

dichloride solution, in order to interpret the experimental measurements of enthalpies

obtained with Isotherm Titration Calorimetry (ITC). By comparing the results ob-

tained with the MBD method with other pairwise dispersion methods, and accurate

DMC and Coupled Cluster results, we again recognize the need for a correlated and

computationally feasible embedding method like the El-QDO one, to describe molec-

ular systems in complex environments including dynamical correlation effects that are

crucial for the correct description of the supramolecular binding mechanisms in a sol-

vent.

v



vi



Preface

Acknowledgements

First of all, I would like to thank my supervisor, Prof Alexandre Tkatchenko, for

giving me the opportunity to do the Ph.D. in his group, for his ideas, and for all

the discussions we had during the last four years. I would also like to thank Dr.

Matteo Barborini for all his help and especially for all the hours he spent by editing

the text I wrote into a readable form; all the other members of the TCP group at

the University of Luxembourg; and people who inspired me to study physics, namely:
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ĤC QDO Hamiltonian with the Coulomb potential
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Chapter 1

Introduction

Biological, chemical and physical processes, such as the adhesion properties of liquids on

solid surfaces [174], the catalytic reactions in proteins or membranes [82], the solvation

properties of molecules in solutes at different temperatures and pressure [23, 76], usually

involve mechanisms that happen at different energetic, spatial and time scales. The

interpretation of these complex processes, captured through a variety of spectroscopic

techniques [131], often requires the assistance of numerical calculations in order to

interpret the various findings and distinguish the origin and time evolution of the

phenomena.

Yet, in order to model such complexity, overcoming the computational limits of

the most efficient high-performance computational (HPC) facilities, numerical methods

based on the partitioning of the system of interest into different subspaces, each treated

with a different level of theory and thus a different accuracy have to be introduced.

Usually, the partitioning of the systems is made on the basis of the different intra and

intermolecular interactions that characterize the binding energies and thus the dynam-

ics of the various sub-systems (Fig. 1.1). In particular, the intramolecular interactions,

which include strong covalent or ionic bonds, are characterized by the sharing of elec-

trons and thus display higher binding energies and vibrational frequencies, while the

intermolecular interaction, such as electrostatic interactions, polarization, dispersion,

or hydrogen bonds are all characterized by lower binding energies and lower vibrational

frequencies.
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Figure 1.1: Energy scale of single inter- and intramolecular interactions between small molecules

and atoms. The strength and order of the interactions can vary substantially in the case of larger

and more complex systems.

This suggests that the systems can be partitioned into sub-systems based on the

strength of their interactions, each treated with a different computational approach.

These partitioning methods, usually referred to as embedding approaches, are based on

a combination of different quantum mechanics (QM) methods, that explicitly tackle

the description of the electronic Schrödinger equation, and molecular mechanics (MM)

methods that approximate the interaction between atoms or molecular fragments via

classical coarse-grained Force-Fields (FFs). While the QM methods, referred to as

ab initio, try to give at least an approximate solution to the Schrödinger equation

that describes the dynamics of the electrons as quantum particles, the classical FFs

are built as approximations of the quantum environment, in which the intramolecular

bonds are represented via harmonic springs that are tuned to reproduce the main

vibrational motions of the molecules [199]. If the molecules present intrinsic dipoles,

such as in the case of the water molecule, in FFs these are taken into account through

classical point charges [92] that are essential to model the electrostatic intermolecular

interactions. Furthermore, in order to recover intermolecular long-range dispersion, van

der Waals (vdW) interactions or even hydrogen bonds, the FFs also include empirical

vdW potentials [93] and in some cases explicit polarizable dipoles [200], that have the

role of capturing the dynamical response of the environment.

Consequently, the standard embedding methods can be divided essentially into two

groups. The first group is characterized by the joined usage of quantum mechanics and

molecular mechanics (QM:MM) methods, that have been developed by the Nobel prize
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winners, Karplus, Levitt, and Warshel amongst others [48]. These methods separate

the systems into an environment, described via classical FF, and a target subsystem

described at the quantum level, through ab initio methods usually Density Functional

Theory (DFT) [177, 90]. These methods have been successfully applied to interpret

or model a huge variety of phenomena, such as functional materials [101, 181], catal-

ysis [212, 135, 134, 21], biochemical systems [61, 158, 3, 81, 7, 162], enzymes [11],

proteins [124], DNA [151, 56] and also Raman spectroscopy [110, 140].

The second group is represented by the QM:QM methods, where the main fragment

is embedded into the electron density of the environment, enabling charge transfer or

charge delocalization between the two. In this group, we can include both Green’s

function methods for studying the spectroscopic and thermal quantities like dynamical

mean-field theory [108] or self-energy embedding theory [111] and the wavefunction/density-

based methods for studying ground state properties like density matrix embedding the-

ory [105] or DFT embedding [203, 118, 122]. These QM:QM methods have been applied

to a wide range of different systems and phenomena that include periodic graphene [96],

catalysis [53, 159, 194, 83, 114, 34], spectroscopy [137, 85, 45, 46], defects [18], sur-

faces [113, 157], strongly correlated states in materials [121], perovskites [144, 206],

complex oxides [138], nickelates [29] and variety of other real materials [139]. Here the

two subsystems can be mutually polarized, usually in a self-consistent way.

While the more expensive QM:QM methods capture the mutual polarization of the

main fragment and the environment more accurately than the QM:MM methods based

on preparametrized FFs, the many-body dispersion effects are still approximated in

both approaches. Some exceptions can be found in various perturbative approaches

for QM:QM [183], but unfortunately these methods have a high computational cost.

For this reason, in this Thesis we propose a novel embedding method, named the

QDO method, in which the main fragment described at the full electronic level is

embedded into charged quantum harmonic oscillators, ie quantum Drude oscillators

(QDOs) [197, 167, 88]. The QDO model, first applied by F. London to describe disper-

sion interactions between atoms and molecules[119], was derived from P. Drude’s[39]

classical model of absorption and refraction[40, 77] introduced in 1900. Each QDO con-

sists of a single negatively charged quantum particle called drudon, oscillating around

a positively charged classical center, bounded together via a quadratic potential well.
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This coarse-grained system with only one quantum particle can mimic the response of

the valence electrons of a real atom or molecule, for an appropriate parametrization

deduced from first principles [88].

The QDO model is at the basis of the many-body dispersion (MBD) method [179, 9],

in which the Coulomb interactions between oscillators are approximated by the first-

order dipole-dipole interactions, leading to a quadratic Hamiltonian, which can be

exactly diagonalized and used for the long-range many-body dispersion interactions in

Quantum Chemistry methods such as DFT. On the other hand, many Coulomb inter-

acting QDOs have been used as a coarse-grained model for atomic systems within the

framework of diffusion Monte Carlo (DMC) and path integral Monte Carlo (PIMC)

to study the dispersion interactions in noble gas dimers [88], solid [87] and fluid

xenon [204], and applied to study the dynamics of liquid water [86, 166, 31, 89]. A

different framework in which Coulomb interacting QDOs have been studied is that of

the full Configuration Interaction (FCI) method, in which the oscillators are expanded

in a basis set of Gaussian functions, and applied to prototype systems for dispersion

interactions [152].

In this Thesis, we use for the first time the QDO model as an embedding envi-

ronment for molecular systems described at the fully quantum level to study solvation

properties of molecules in water, and to study how the environment affects molecular

bindings and excitations. In the El-QDO method, we define a unique single many-body

Hamiltonian describing the mixed system of electrons and the QDOs representing the

environment [38]. The electronic and drudonic degrees of freedom are integrated on a

collective variational ansatz within the framework of the quantum Monte Carlo (QMC)

methods [52, 95, 14].

The QMC methods are an ensemble of stochastic methods used to integrate the

time-independent Scrhödinger equation over a chosen wavefunction approximating the

system’s ground state. In particular, in this Thesis, we use the variational (VMC)

and the diffusion Monte Carlo (DMC) methods that we generalize to integrate the

full El-QDO Hamiltonian on an ansatz introduced to recover all dominant dynamical

correlation effects between the two types of quantum particles (electrons and drudons).

Within the VMC framework, we use an energy minimization scheme to optimize the

variational parameters of our approximate wavefunction. Afterwards, in order to im-
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prove the estimation of the energy, we apply the DMC projection algorithm that is

able to select the ground state component of a system from an approximate initial trial

wavefunction.

Our novel procedure is applied to study the interaction energies of a set of four no-

ble gas dimers (Ne2, Ar2, Kr2, Xe2), computing the potential energy surfaces along the

bond length and comparing the results with accurate Coupled Cluster (CC) references

and with the corresponding symmetry-adapted perturbation theory (SAPT) decom-

posed energies [161]. Afterwards, we compute the binding energies of the water dimer

in two different structural configurations, reconstructing the binding curves and again

compare them with accurate references, in order to demonstrate the generalization of

our approach beyond the dispersion-dominated noble gases dimers, to stronger interac-

tions like the hydrogen bond. Finally, we apply the El-QDO approach to calculate the

solvation energies of small molecules (benzene, benzene dimer, ortho-benzyne) in an

environment composed of up to 50 water molecules, and the singlet-triplet adiabatic

excitation energy of ortho-benzyne in a water environment. For these systems, we

obtained excellent agreement with the reference ab initio calculations, while the com-

parison with a standard QM:MM method demonstrates the ability of our procedure

to more accurately include correlation effects between the environment and electronic

subsystem, that go beyond the approximate pairwise description of the dispersion of

traditional FFs. We conclude that our El-QDO embedding is able to describe electro-

statics, polarization and dispersion between the main fragment and the environment

at the many-body level, for a cost comparable with calculations in the vacuum, as

discussed in the text. The El-QDO embedding could replace the standard QM:MM ap-

proaches for highly correlated computational methods, which are necessary to capture

important correlation effects between the environment and the electronic subsystem.

After verifying the efficiency of the El-QDO approach to model long-range interac-

tions, we proceed to discuss the necessary implementations to describe the bonds at

all possible interatomic distances. We proceed to construct the ‘nearly exact’ ansatz

for the solution of the QDO model, with the goal of going beyond its limitations and

tackling a wider range of interactions. By going beyond the model’s original purpose

and understanding its behavior also at bond length around 0.5 Å, we propose a general-

ized approach to explore its further extension, including the possibility of qualitatively
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describing charge transfer effects, and paving the way towards a new generation of uni-

versal quantum Force-Fields [100], which is crucial for the generalization of the El-QDO

embedding method to model a variety of different environments.

Finally, in the last application presented in this Thesis, we employ Density Func-

tional Theory (DFT) together with the many-body dispersion (MBD) method, to study

the thermochemistry of the diphenylmethyltelluronium cation interacting with the

triphenylphosphine oxide in the ethylene dichloride solution, in order to interpret the

experimental measurements of enthalpies obtained with Isotherm Titration Calorime-

try (ITC). In particular, we analyze the role of the solvent and dispersion interactions

in the description of the thermochemical quantities, namely enthalpies and Gibbs free

energies, by comparing the results obtained with the MBD method to other pairwise

dispersion methods, and accurate DMC and CC results. Through such comparison,

we are able to reveal important correlation effects between the molecular conformers

and between the conformers and the environment, again motivating the need for a

correlated yet computationally feasible embedding method such as the El-QDO one,

to describe molecular systems in large explicit molecular solvents.

The Thesis is structured as follows: in Chap. 2 we give a general introduction to

embedding approaches and describe the El-QDO Hamiltonian, focusing on the details

of the QDO model; in Chap. 3 we introduce the various computational methods used

in this Thesis, with particular attention to the QMC methods, their generalizations

and the construction of the El-QDO trial wavefunction; in Chap. 4 we discuss the

main results of the El-QDO model, and in Chap. 5 we discuss the possible directions

to further generalize the model; and finally, in Chap. 6 we discuss the computational

results regarding the study of the diphenylmethyltelluronium cation interacting with

the triphenylphosphine oxide in the ethylene dichloride solution.
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Chapter 2

Electrons and Quantum Drude

Oscillators

Parts of Secs. 2.5, 2.6 and 2.7 in this Chapter have been published in this or a similar

form in:

M. Ditte, M. Barborini, L. M. Sandonas, A. Tkatchenko. “Molecules in Environments:

Toward Systematic Quantum Embedding of Electrons and Drude Oscillators” Phys.

Rev. Lett. 131, 228001 (2023)

and will be published in:

M. Ditte, M. Barborini, A. Tkatchenko. “Electrons embedded in charged oscillators:

A quantum embedding approach for molecular systems” In preparation.

and in:

M. Ditte, M. Barborini, A. Tkatchenko. “Quantum Drude Oscillators Coupled with

Coulomb Potential as an Efficient Model for Bonded and Non-Covalent Interactions in

Atomic Dimers” In preparation.

and have been produced in collaboration with the above authors.
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In this Chapter we discuss the main aspects of the electronic structure theory, with a

focus on the separation of spatial and energetic scales for intermolecular interactions

used for the construction of embedding methods. We introduce the quantum Drude

oscillator (QDO) model for long-range interactions and the novel El-QDO embedding

framework, in which the electronic system is embedded in a bath of QDOs. We describe

the Hamiltonians of all the systems, the parameters of the model and technicalities like

the damping of the Coulomb potential needed to avoid unphysical behaviors.

The Schrödinger equation, the Born-Oppenheimer approximation and the electronic

Hamiltonian are defined in Sec. 2.1; in Sec. 2.2 we show the separation of scales for

intermolecular interactions; in Sec. 2.3 we discuss the concept of the embedding meth-

ods; in Sec. 2.4 we introduce the QDO model for long-range interactions; in Sec. 2.5

we couple the QDO model with the electronic system, in order to develop the El-QDO

embedding framework, in which the QDOs play the role of the environment; and fi-

nally in Secs. 2.6 and 2.7 we discuss the damping functions used to cure some possible

divergences of the models, and the ways to introduce the short-range repulsion into

the models, which is missing due to the missing exchange interactions.

2.1 Schrödinger equation and the electronic Hamil-

tonian

The time evolution of a non-relativistic quantum molecular system, containing Nn

nuclei defined by charges and masses {Zi,Mi}Nni=1, and Ne electrons, is given by the

time-dependent Schrödinger equation (TDSE)[155]

i
∂

∂t
Ψ(r̄e, R̄

n
, t) = ĤmolΨ(r̄e, R̄

n
, t), (2.1)

where the wavefunction Ψ contains the complete information about the system’s state

(equivalent to positions and momenta in classical mechanics). From here on and onward

we use the Hartree atomic units (~ = e = me = ke = 1) and define the 3Ne dimensional

vector of the positions of the electrons and the 3Nn dimensional vector of the positions

of the nuclei as r̄e and R̄
n

respectively. Ĥmol is the Hamiltonian of the molecular
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system, composed of 2 terms

Ĥmol = T̂ + V̂ , (2.2)

where the first one corresponds to the operator of the kinetic energy of the nuclei and

the electrons

T̂ = T̂n + T̂e = −
Nn∑
a=1

1

2Ma

∇2
Rn
a
−

Ne∑
i=1

1

2
∇2

rei
, (2.3)

and the second one to the Coulomb potential energy between all pairs of charged

particles (nuclei-electrons, electrons-electrons and nuclei-nuclei)

V̂ = V̂ne + V̂ee + V̂nn = −
Nn∑
a=1

Ne∑
i=1

Za
|rei −Rn

a |
+

Ne∑
i<j=1

1∣∣rei − rej
∣∣ +

Ne∑
a<b=1

ZaZb
|Rn

a −Rn
b |
. (2.4)

An initial state Ψ(r̄e, R̄
n
, t0) can be thus evolved in time using the differential equa-

tion 2.1 with open boundary conditions (representing isolated molecular structures),

and an expectation value of an observable, corresponding to an operator Ô, can be

computed as the integral

O(t) =

∫ ∫
dr̄edR̄

n
Ψ∗(r̄e, R̄

n
, t)ÔΨ(r̄e, R̄

n
, t) = 〈Ψ(t)|Ô|Ψ(t)〉 , (2.5)

where we introduced the so-called bra-ket notation and assumed the normalization

condition
∫ ∫

dr̄edR̄
n
Ψ∗(r̄e, R̄

n
, t)Ψ(r̄e, R̄

n
, t) = 〈Ψ(t)|Ψ(t)〉 = 1.

The time integration of the TDSE is done by the separation of variables, which

leads to

Ψ(r̄e, R̄
n
, t) =

∑
j

Aje
−iEmol

j tΨj(r̄
e, R̄

n
), (2.6)

where the coefficients Aj depend on the initial condition and Emol
j together with

Ψj(r̄
e, R̄

n
) are the set of eigenvalues and corresponding eigenfunctions of the time-

independent Schrödinger equation (TISE)

ĤmolΨj(r̄
e, R̄

n
) = Emol

j Ψj(r̄
e, R̄

n
). (2.7)

Thus the complicated differential equation 2.1 is reduced to finding the eigenfunctions,

corresponding to the stationary states of the TISE that form an orthonormal basis

(〈Ψi|Ψj〉 = δij), with eigenvalues, that correspond to the energy levels of the contin-

uous differential operator Ĥmol. Despite this simplification, the problem 2.7 remains
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analytically unsolvable and can only be tackled numerically in an approximate way.

For this reason, additional simplifications are necessary, out of which the most common

is the Born-Oppenheimer approximation [19].

The basic idea behind the Born-Oppenheimer approximation is to separate the

nuclear and electronic degrees of freedom, inspired by the fact that the mass of a proton

or a neutron is ≈2000 larger than the mass of an electron. For this reason, the motion

of the nuclei is much slower than the motion of electrons and consequently, the latter

can be considered as being adiabatic with respect to the first one. Adiabaticity in this

context indicates that the electrons are instantaneously relaxed after each change of the

positions of the nuclei. Without loss of generality, we can treat the nuclear coordinates

R̄
n

as fixed parameters and write the time-independent Schrödinger equation for the

electrons as

Ĥeψj(r̄
e; R̄

n
) = Ee

j (R̄
n
)ψj(r̄

e; R̄
n
), (2.8)

where the energies Ee
j (R̄

n
) now depend on the fixed position of the nuclei and the

electronic Hamiltonian, which depends explicitly only on the electronic coordinates,

only includes the terms

Ĥe = T̂e + V̂ee + V̂ne. (2.9)

The eigenfunctions from Eq. 2.8 can be chosen to form an orthonormal basis

(
〈
ψi(R̄

n
)
∣∣ψj(R̄n

)
〉

= δij) for all positions of the nuclei R̄
n

and thus the total wavefunc-

tion can be written as a linear combination

Ψj(r̄
e, R̄

n
) =

∑
k

Cjk(R̄
n
)ψk(r̄

e; R̄
n
), (2.10)

where the expansion coefficients Cjk(R̄
n
) are the wavefunctions of the j th roto-vibrational

state of the nuclei with electrons in the electronic state k. This linear expansion can

be substituted for Ψj(r̄
e, R̄

n
) in the total TISE 2.7[

T̂n + V̂nn + Ĥe
]∑

k

Cjk(R̄
n
)ψk(r̄

e; R̄
n
) = Emol

j

∑
k

Cjk(R̄
n
)ψk(r̄

e; R̄
n
). (2.11)

The nuclear wavefunction Cjk(R̄
n
) can be now obtained by multiplying Eq. 2.11 by

ψl(r̄
e; R̄

n
) from the left and integrating over the electronic coordinates. After some

simple algebra, using the orthonormality condition, one obtains∑
k

〈ψl|T̂n|ψk〉Cjk(R̄
n
) +

[
El(R̄

n
) + V̂nn − Emol

j

]
Cjl(R̄

n
) = 0 ∀l, (2.12)
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which coupled with Eq. 2.8 is equivalent to the original TISE of the total molecular

Hamiltonian Ĥmol. In order to introduce the Born-Oppenheimer approximation we

have to have a closer look at the first term in Eq. 2.12, which contains the Laplacian

applied to the product of the two functions

T̂nCjk(R̄
n
)ψk(r̄

e; R̄
n
) = −

Nn∑
a=1

1

2Ma

{ Cjk(R̄
n
)∇2

Rn
a
ψk(r̄

e; R̄
n
)+

+ 2
[
∇Rn

a
Cjk(R̄

n
)
]
·
[
∇Rn

a
ψk(r̄

e; R̄
n
)
]

+
[
∇2

Rn
a
Cjk(R̄

n
)
]
ψk(r̄

e; R̄
n
) } . (2.13)

In the Born-Oppenheimer approximation, the first two terms are assumed to be neg-

ligible since the electronic wavefunction varies slowly with respect to the nuclear co-

ordinates R̄
n

and the Schrödinger equations for the electronic and nuclear degrees of

freedom remain coupled only via the electronic energy levels Ee
k(R̄

n
) so that

Ĥeψk(r̄
e; R̄

n
) = Ee

k(R̄
n
)ψk(r̄

e; R̄
n
) (2.14)

and [
T̂n + V̂nn + Ee

k(R̄
n
)
]
Cjk(R̄

n
) = Emol

jk Cjk(R̄
n
). (2.15)

Another simplification comes from the observation, that the electronic energy levels

are often well separated. For example in the case of the hydrogen atom, the difference

between the electronic energy of the lowest electronic state E0, ie the ground state, and

the energy of the first excited state E1 is 10.2 eV, which is equivalent to 118366 K. This

energy difference is thus far from thermal fluctuations at normal conditions and the

system can be considered to be always in the electronic ground state. An important

exception to these conditions, for which the Born-Oppenheimer approximation is not

valid, are phenomena related to optics, where a small subset of the excited states is

also accessed during the dynamics. Yet, when the Born-Oppenheimer approximation is

valid, it is also often possible to neglect the quantum nuclear effects, so that the nuclei

R̄
n

can be considered as point charges and evolved according to classical Newtonian

dynamics, where the internuclear potential is defined by the function V̂nn(R̄
n
)+Ee

0(R̄
n
),

which takes the name of potential energy surface (PES).

For the scope of this Thesis, which does not investigate the system’s dynamics,

we need only the time-independent Schrödinger equation for the electronic degrees of
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freedom, where the positions of the nuclei R̄
n

are considered to be fixed parameters

ĤeΨi

(
r̄e; R̄

n)
= Ei

(
R̄
n)

Ψi

(
r̄e; R̄

n)
, (2.16)

with the redefined electronic Hamiltonian

Ĥe = T̂e + V̂ne + V̂ee + V̂nn =

= −
Ne∑
i=1

1

2
∇2

rei
−

Ne∑
i=1

Nn∑
a=1

Za
|rei −Rn

a |
+

Ne∑
i<j=1

1∣∣rei − rej
∣∣ +

Nn∑
a<b=1

ZaZb
|Rn

a −Rn
b |
, (2.17)

where we included also the Coulomb potential energy between the pairs of nuclei V̂nn

(just a constant for given positions R̄
n
), so that the energies Ei

(
R̄
n)

can be directly

considered the PES of the system.

Figure 2.1: An example of the potential energy

surface dependent on one coordinate (e.g. dis-

tance between two atoms in the case of a dimer

composed of two atoms).

Our focus, in almost all the cases, ex-

cept one specific application to excited

states, is to find the electronic ground

state energy E0

(
R̄
n)

for a given fixed po-

sitions of the nuclei R̄
n
. An example of

the PES in a one-dimensional case, e.g.

for a molecule composed of two atoms,

where the coordinate is the distance be-

tween them, is shown in Fig. 2.1. It has

normally a short-range repulsive region,

a minimum corresponding to the optimal

geometry at 0 K and a tail converging to

the dissociation limit, as the separation

of the nuclei approaches infinity. We are not interested in dynamics, and thus we do

not solve the Newton equation for the nuclei. In this Thesis, we use the PES only to

obtain the optimal structures of molecules and study their binding energies and disso-

ciation curves, where the ground state binding energy of a complex composed of the

subsystems X and Y is defined as

∆E0 = EXY
0 − EX

0 − EY
0 , (2.18)

with EXY
0 being the energy of the complex and EX

0 and EY
0 being the energies of the

isolated subsystems.
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As discussed above, finding the electronic ground state energy of a molecule is a

still highly nontrivial task and sophisticated numerical methods are needed. This will

be further discussed in the Thesis. One of the main difficulties, responsible for the

combinatorial complexity of the problem, is the condition for the wavefunction to be

antisymmetric under the exchange of two fermions. This condition coming from Pauli

exclusion principles imposes, that when two electrons of the same spin are exchanged

in the wavefunction, then its value has to change the sign

Ψ(r1, ..., ra, ..., rb, ...rNe) = −Ψ(r1, ..., rb, ..., ra, ...rNe) for σa = σb, (2.19)

while when the exchange is done for two electrons of different spin the sign must be

preserved

Ψ(r1, ..., ra, ..., rb, ...rNe) = Ψ(r1, ..., rb, ..., ra, ...rNe) for σa 6= σb, (2.20)

where σ denotes the eigenvalue of the Ŝz operator of the electrons that can take values

1/2 or -1/2 (or up and down), and we assume that the spin degrees of freedom are

integrated out.

2.2 Separation of scales

The main focus of quantum chemists shifted during the last decade from the description

of intramolecular interactions within individual molecules towards more challenging

intermolecular interactions between molecules. The intermolecular interactions are in

general challenging for two reasons: the total size of the system is larger and the

accuracy needed to correctly describe phenomena that happen at the intermolecular

scales is almost always higher.

An example of the difference between intra and intermolecular interactions is shown

in Fig. 2.2 for the water dimer in its equilibrium geometry. Here we can distin-

guish between intramolecular O-H covalent bonds characterized by shared electrons

between the atoms, and intermolecular H - - O non-covalent bond (more precisely

so-called hydrogen bond in this case) between the two molecules, which does not in-

volve shared electrons. The energy needed to break the O-H covalent bond of the
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water molecule (EH2O −EOH −EH) is around 22 times higher than the energy needed

to break the water dimer into two separated water molecules (E(H2O)2 − 2EH2O).

Figure 2.2: The difference between the in-

tramolecular and intermolecular interactions on

an example of the water dimer.

It means that if the goal is to calculate

the two binding energies with an error up

to 5%, one needs a 22 times more accu-

rate method for the H - - O bond when

compared to the O-H one. The length

of the covalent O-H bonds (ROH) within

the water molecules is around three times

shorter than the H - - O non-covalent

bond between the two molecules (here

measured by the ROO distance). We thus

observe a clear separation of both, the en-

ergetic and the spatial scale.

This separation of scales allows us to understand the behavior of the PES in limiting

situations, when the distances between subsystems are large, and thus the interactions

can be studied using the perturbation theory. The following is a derivation of the

leading order intermolecular interactions and it can be found in more detailed form

for example in Ref. 173. If we assume two interacting, but well-separated molecules

A and B, the total Hamiltonian can be written as H = HA + HB + H′ = H0 + H′,
where HA is the Hamiltonian for molecule A, HB is the Hamiltonian for molecule B,

and all the cross Coulomb interactions between the pairs of charged particles from A

and B are in Hamiltonian H′, and it is assumed to be a small perturbation of the

Hamiltonian H0 of two non-interacting molecules A and B. In this situation, we can

formally write the Schrödinger equation for the two subsystems as HA |m〉 = WA
m |m〉

andHB |n〉 = WB
n |n〉, where we used the bra-ket notation with |m〉 being the mth state

of the system A, and |n〉 being the nth state of the system B. The wavefunction of the

total system AB, in the case of no interactions between A and B, and with the distance

being sufficiently large so that the exchange interactions coming from the antisymmetry

of the total wavefunction are negligible, can be partitioned as ΨA
mΨB

n = |mn〉, giving

the corresponding Schrödinger equation

H0 |mn〉 = (HA +HB) |mn〉 = (WA
m +WB

n ) |mn〉 = W 0
mn |mn〉 , (2.21)

where W 0
mn is the unperturbed energy with system A being in the state m and system
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B being in the state n. Finally, if we assume non-degenerate ground states of the two

subsystems (when the total spin of the system is zero), we can approximate the ground

state energy of the total system W00 using the second-order perturbation theory as:

W00 = W 0
00 +W

(1)
00 +W

(2)
00 =

= W 0
00 + 〈00|H′|00〉 −

∑
m+n6=0

〈00|H′|mn〉 〈mn|H′|00〉
W 0
mn −W 0

00

. (2.22)

The first term in Eq. 2.22 is just the sum of the ground state energies of the two

non-interacting systems A and B, and thus it does not depend on their distance.

The term W
(1)
00 = 〈00|H′|00〉, coming from the first-order perturbation, is the elec-

trostatic interaction between the two subsystems, and it can be written as

Ues = 〈00|H′|00〉 = TqAqB + Tα
(
qA
〈
µ̂Bα
〉

0
− qB

〈
µ̂Aα
〉

0

)
+

+ Tαβ

(
1

3
qA
〈

Θ̂B
αβ

〉
0
−
〈
µ̂Aα
〉

0

〈
µ̂Bα
〉

0
+

1

3
qB
〈

Θ̂A
αβ

〉
0

)
+ . . . , (2.23)

where we used the Einstein summation convention (e.g. xαyα =
∑3

i=1 xiyi) and the

multipolar expansion of the cross Coulomb interactions between the charged particles

from A and B, where the potential at point RB due to the molecule A can be expanded

as

V A(RB) = TqA − Tαµ̂Aα +
1

3
TαβΘ̂A

αβ − · · ·+
(−1)n

(2n− 1)!!
T

(n)
αβ...νξ

A(n)
αβ...ν + . . . , (2.24)

with the interaction tensor being

T
(n)
αβ...ν = ∇α∇β . . .∇ν

1

R
, (2.25)

and the operators qA, µ̂Aα , Θ̂A
αβ, etc. correspond to the zeroth-order moment (total

charge of the molecule) qA =
∑

a qa, the first-order moment (dipole moment) µ̂Aα =∑
a qarα, the second-order moment (quadrupole moment) 2

3
Θ̂A
αβ =

∑
a qarαrβ and so

on. The electrostatic term has thus a very simple, classical interpretation: it is the

interaction between the multipole moments of the isolated molecules. The condition

for Ues being nonzero is that at least one of the multipole moments of both systems, A

and B (not necessarily the moment of the same order) is nonzero. For example in the
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case of two molecules that both have only nonzero dipole moment, the electrostatic

contribution to the interaction energy is equal to the dipole coupling

Uµµ =
R2µA · µB − 3(µA ·R)(µB ·R)

R5
. (2.26)

The second-order contribution in Eq. 2.22 can be split into three terms as W
(2)
00 =

UA
ind + UB

ind + Udisp, where

UA
ind = −

∑
m6=0

〈00|H′|m0〉 〈m0|H′|00〉
WA
m −WA

0

, (2.27)

UB
ind = −

∑
n6=0

〈00|H′|0n〉 〈0n|H′|00〉
WB
n −WB

0

, (2.28)

and

Udisp = −
∑

m6=0,n 6=0

〈00|H′|mn〉 〈mn|H′|00〉
WA
m +WB

n −WA
0 −WB

0

, (2.29)

where the first two contributions are called induction (or polarization) and the third

one is called dispersion.

The induction contribution UB
ind (and similar for UA

ind) can be written in a more

understandable form as

UB
ind = −1

2
FA
α α

B
αα′FA

α′ −
1

3
FA
α A

B
α,α′β′FA

α′β′ −
1

6
FA
αβC

B
αβ,α′β′FA

α′β′ − . . . , (2.30)

where we introduced a notation for the electric field F (and its gradients) generated by

the charge distribution of the molecule A and multipole polarizabilities αBαα′ , ABα,α′β′ ,

CB
αβ,α′β′ , etc. of the molecule B. For example, the dipole-dipole polarizability tensor of

molecule B, which is a measure of the dipole moment of the molecule B induced by the

constant electric field of the molecule A can be calculated as

αBαα′ =
∑
n6=0

〈0|µ̂Bα |n〉B 〈n|µ̂Bα′ |0〉B + 〈0|µ̂Bα′|n〉B 〈n|µ̂Bα |0〉B
WB
n −WB

0

. (2.31)

The condition for a nonzero induction contribution to the total interaction energy is

thus at least one nonzero multipole moment of at least one of the isolated molecules.

It is possible to obtain also non-linear polarizability effects and hyperpolarizabilities,
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when higher-order perturbation theory is used. The induction effects can be, up to

some extent, mimicked via classical polarizable multipoles.

The last contribution Udisp is the dispersion term, which does not have any classical

interpretation. If we consider two electrically neutral molecules and only the dipole-

dipole coupling from the expansion of the Coulomb potential, the dispersion reduces

to

U
(6)
disp = −TαβTγδ

∑
m 6=0,n 6=0

〈0|µ̂Aα |m〉 〈0|µ̂Bβ |n〉 〈m|µ̂Aγ |0〉 〈n|µ̂Bδ |0〉
WA
m0 +Wn0B

(2.32)

labeled as U
(6)
disp, since it can be shown using the Casimir-Polder integral that

U
(6)
disp = − 1

R6

3

π

∫ ∞
0

αA(iω)αB(iω)dω = −C6

R6
, (2.33)

ie it scales at the inverse of the 6th power of the intermolecular distance. The integral

involves the dynamic polarizabilities αA(ω), which as a function of the real frequency ω

measure the response of the molecule to the presence of a sinusoidally time-dependent

external electric field. The dynamic polarizabilities in the imaginary frequencies αA(iω)

have no clear physical interpretation and are just a result of a mathematical trick in

order to obtain the expression 2.33. It can be shown that when higher terms from the

expansion of the Coulomb potential are included, one obtains

Udisp = −
∑

n=6,8,10,...

Cn
Rn

, (2.34)

with for example C8 = CAB
µ,Θ +CAB

Θ,µ, where for instance CAB
µ,Θ = 15

2π

∫∞
0
αA(iω)AB(iω)dω.

The dispersion interactions can be understood as interactions between spontaneously

induced multipole moments of the interacting molecules due to their quantum nature.

The effects are non-additive and one can obtain also additional terms from higher-

order perturbation theory, including the many-body dispersion with the leading order

three-body term called Axilrod-Teller-Muto (ATM) [173].

The combination of dispersion interactions between ’instantaneously induced dipoles’,

induction interactions between permanent and induced dipoles and the electrostatic

interactions between permanent dipoles is referred to as van der Waals (vdW) interac-

tions.
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Another important limit is when the two subsystems get closer to each other. The

key role in this situation is played by the exchange interactions, coming from the

antisymmetry of the total wavefunction and by the repulsion of the positively charged

nuclei. One can show, that the contribution containing the exchange and the repulsion

can be up to some extent approximated as the exponential function [173]

Uer = Ke−b(R−R0), (2.35)

where R is the intermolecular distance and K,b and R0 are parameters depending on

the specific system [199].

2.2.1 Force-Fields

The two limits described above are widely exploited to construct parametrized mul-

tidimensional functions used to approximate the potential energy surface E0

(
R̄
n)

of

large molecular compounds, without the necessity of explicitly tackling the Schrödinger

equation. These approximate functions, ie Force-Fields (FFs), have physically inspired

functional forms, and their parameters are fitted using a set of quantum mechanical

calculations, often on smaller subsystems of the total system of interest [199]. Usu-

ally, the available FFs distinguish between covalently bonded and nonbonded pairs

of nuclei, where each of them is treated differently due to the separation of scales.

The easiest approximation used for the bonded pairs is a quadratic functional form

Ubonded(Rn
i ,R

n
j ) = Aij(Rij − Bij)

2, where the parameters are fitted for the specific

pairs of atoms. The nonbonded part, used also in many of the existing embedding

methods discussed in Sec. 2.3, is often written as a sum of electrostatics, polarization

and dispersion

Unonbonded = Uelstat + Upol + Udisp, (2.36)

where Uelstat is the Coulomb potential between parametrized fractional charges of indi-

vidual atoms, originating in the electrostatics coming from the first-order perturbation

theory; Upol, corresponding to the polarization coming from the second-order pertur-

bation theory, can be obtained for example by using classical polarizable dipoles and

FFs with non-zero polarization term are referred to as polarizable FFs; and finally

the dispersion Udisp, which is almost always approximated using the pairwise ∝ − 1
R6

dependency discussed before in this section. The short-range repulsion between the
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nonbonded pairs is often included in the Lennard-Jones functional form of the Udisp

term, as will be shown in Sec. 2.3.

Another application of the known scaling laws of the long-range intermolecular

interactions are dispersion methods for low-cost computational methods of Quantum

Chemistry, in which the dispersion contributions are completely missing or are included

just partially [176]. Some of these methods, used for calculations in the Thesis, are

discussed in Sec. 3.4.

2.3 Molecules in an environment and embedding

methods

Figure 2.3: The benzene dimer in an environment

composed of 50 water molecules.

One important category of systems of in-

terest in Quantum Chemistry, considered

also in this Thesis, are molecules in an en-

vironment, most often in a water solvent.

These are especially important for the

study of biological complexes [125], for

drug development [33], and also for direct

comparison of the computational meth-

ods to experiments, where the measure-

ments are often not accessible in the vac-

uum [60]. An example of such a system is

shown in Fig. 2.3, which contains the ben-

zene dimer in an environment composed

of 50 water molecules. The effects of the

environment can often influence the prop-

erties (e.g. structure, binding/excitation energies) of the solvated molecules and this

is, due to the typical distances between the two subsystems (ie the solute and the

solvent), a consequence of the intermolecular interactions: electrostatics, polarization

and dispersion.
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This separation of scales between the molecules of interest and the environment is

exploited in the so-called embedding methods [90], where the total system is split into

the main fragment and the environment, each of them treated at a different level of

theory. The embedding methods are usually divided into two groups: QM:MM (quan-

tum mechanics in molecular mechanics), where the main fragment is described at the

fully quantum level and the environment is approximated using classical Force-Fields

(briefly described in Sec. 2.2); and QM:QM (quantum mechanics in quantum mechan-

ics), where both subsystems are treated at the quantum level, but the environment is

usually treated using a cheaper numerical method. The aim of the embedding methods

is to reduce the computational cost, retaining the ability to model how the environment

modifies the properties of the main fragment.

In the QM:MM methods, the degrees of freedom of the potential energy surface

corresponding to the interactions between the nuclei of the environment are completely

described via the ‘bonded’ and ‘nonbonded’ terms of a Force-Field [92, 93]. On the other

hand, the interactions between the main electronic fragment and the FF environment

are described only via the ‘nonbonded’ terms Uelstat + Upol + Udisp. The first two are

included directly in the electronic Hamiltonian of the main fragment and thus can

polarize the electronic structure. In the case of polarizable FFs [63, 61] that include

a polarization term, for example, via classical polarizable dipoles, the polarization

of the environment in the presence of the main electronic fragment is obtained in a

self-consistent way. The dispersion contribution between the main fragment and the

environment is almost always approximated using a pairwise function with the long-

range ∝ − 1
R6 scaling law, dependent only on the distances between the nuclei of the

two subsystems. The explicit many-body dispersion effects are thus not included in

the QM:MM embedding because the electronic structure is not affected by the external

Udisp function [38]. The interactions within the main fragment are governed by the full

electronic Hamiltonian, the solution of which in theory gives the exact contribution to

the PES for the nuclear degrees of freedom of the QM region.

To give the reader an example of the QM:MM embedding, we show a method based

on the unpolarizable TIP3P model of the water molecule with fractional charges qO

= -0.834 and qH = 0.417 [92]. These fractional charges are included in the QM:MM

Hamiltonian ĤQM:MM, which is composed of the standard electronic Hamiltonian Ĥe
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for the main fragment from Eq. 2.17 and of extra Coulomb potentials between all the

cross charged particles from the two subsystems

ĤQM:MM = Ĥe +
Ne∑
i=1

NH∑
j=1

qH∣∣rei −RH
j

∣∣ +
Ne∑
i=1

NO∑
j=1

qO∣∣rei −ROx
j

∣∣+
+

Nn∑
i=1

NH∑
j=1

ZiqH∣∣Rn
i −RH

j

∣∣ +
Nn∑
i=1

NO∑
j=1

ZiqO∣∣Rn
i −ROx

j

∣∣ , (2.37)

where RH
j and ROx

j are fixed positions of the hydrogens and oxygens of the water

molecules in the environment and NH with NO are respectively the number of hydrogen

and oxygen atoms in the environment. The dispersion and the short-range repulsion

contributions are included via the pairwise Lennard-Jones potential of the form

Edisp (Rij) =
Aij
R12
ij

− Cij
R6
ij

, (2.38)

where Rij are the distances between the cross pairs of nuclei from the two subsystems,

and the parameters are obtained via combination rules Aij =
√
AiAj and Cij =

√
CiCj

for distinct atoms, being Ai = 4εiσ
12
i and Ci = 4εiσ

6
i , where ε and σ are from the more

famous form of the Eq 2.38

ELJ (R) = 4ε

[( σ
R

)12

−
( σ
R

)6
]
. (2.39)

The parametrization of Eq. 2.38 used in this work is taken from Ref. 93 (Tab A1.1 in

Appendix A1) and was obtained to describe the dispersion interactions between the

water molecules and solvated benzene, studied in this Thesis.

The point charges of the TIP3P model of water cause a polarization of the electronic

system, but do not allow the environment to be polarized and the model includes only

the external pairwise dispersion between the electronic system and the environment

and within the environment. Although the first problem can be partially avoided using

polarizable FFs in the QM:MM [61], the second problem persists. We will use the

QM:MM method described above (later labeled as El-FF for consistency reasons) in

order to show the importance of the many-body dispersion and mutual polarization

effects in our novel El-QDO method.

In the second class of the embedding methods, the QM:QM category, in which all

fragments are treated quantum mechanically, the main goal is to solve the Schrödinger
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equation for the environment using a cheap computational method, to obtain an ap-

proximated charge density of the environment used in the QM Hamiltonian of the main

fragment, so that the electrons and nuclei of the main fragment can interact with the

charge density of the environment via the Coulomb potential. This approach describes

with higher accuracy the polarization of the electronic structure of the main fragment if

compared to the QM:MM approaches. The mutual polarization of the main fragment

and the environment can be achieved by a self-consistent loop, where in the second

step the charge density of the main fragment is used for the QM Hamiltonian of the

environment. These iterative steps can be repeated until the equilibrium is reached.

The dispersion interactions are often included via the classical pairwise terms coming

from the FFs, already mentioned in the QM:MM part. Exceptions are more sophis-

ticated and thus more expensive QM:QM methods, where the dispersion contribution

between the two fragments is calculated in a perturbative way [183].

In order to overcome the disadvantages of the existing embedding methods coming

from the various approximations of polarization and dispersion, we develop a new em-

bedding approach, where the environment is represented via a quantum model for the

long-range interactions without using perturbative approximations. The advantage of

our novel approach when compared to the standard QM:MM and QM:QM methods are

the presence of explicit electrostatics, mutual polarization and many-body dispersion,

which are included in a non self-consistent and non-perturbative way; straightforward

parametrization, which comes from the response properties of isolated molecules; and

computational cost comparable to calculations in the vacuum. The method is based

on the quantum Drude oscillator (QDO) model, which is introduced in the following

section.

2.4 Quantum Drude Oscillators

The quantum Drude oscillator (QDO) is a model for long-range interactions, con-

structed from an approximation of the fluctuation-dissipation theorem [109], which

defines the correlation energy of a system in terms of the electron density response

function. In this model, the response properties of the valence electrons of a real

electronic atom/molecule are mapped onto a single quantum particle, mimicking the
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quantum fluctuations of the real charge density (but not the total charge density it-

self). The interactions between the fluctuating charge densities give rise to the effects

behind intermolecular interactions, namely polarization and dispersion [88].

Each QDO consists of two particles that correspond to a classical center of charge

+q and to the drudon, a distinguishable quantum particle of charge −q and mass µ.

The center and the drudon interact via a quadratic potential

vi
(
rdi
)

=
1

2
µiω

2
i

∣∣rdi −RO
i

∣∣2 , (2.40)

where RO
i is the fixed position of the center of the QDO, rdi is the position of the

quantum drudon and ωi determines the slope of the quadratic well. A system of Nd

QDOs is thus fully defined by a set of parameters {RO
i , qi, µi, ωi}

Nd
i=1, and if needed, in

order to include the electrostatic effects via the static dipole moment of isolated polar

molecules (e.g. water molecule) into the QDO model, additional Np point charges,

defined by positions, charges and indices of the parental QDO {Rp
i , Qi, pi}Npi=1, have to

be introduced.

The Hamiltonian of a system of Nd interacting QDOs and Np point charges has the

form

Ĥd =

Nd∑
i=1

ĥdi
(
rdi
)

+

Nd∑
i<j=1

qiqj∣∣RO
i −RO

j

∣∣ +

Nd∑
i<j=1

qiqj∣∣rdi − rdj
∣∣+

+

Nd∑
i=1

Np∑
j=1
pj 6=i

qiQj∣∣RO
i −Rp

j

∣∣ +

Np∑
i<j=1
pi 6=pj

QiQj∣∣Rp
i −Rp

j

∣∣ , (2.41)

with one-body operator

ĥdi
(
rdi
)

= − 1

2µi
∇2

rdi
+

1

2
µiω

2
i

∣∣rdi −RO
i

∣∣2 − Nd∑
j 6=i

qiqj∣∣rdi −RO
j

∣∣ − Np∑
j=1
pj 6=i

qiQj∣∣rdi −Rp
j

∣∣ . (2.42)

Each drudon interacts via the Coulomb potential with all the other charged particles

in the system, except for its center, where it feels the quadratic attraction instead, and

except for the point charges belonging to its parental QDO, where the interaction is

omitted (thus we need to define the indices of the parental QDO mentioned above).
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A schematic of the Hamiltonian 2.41 for two QDOs and one point charge is shown in

Fig. 2.4.

The Hamiltonian of a single QDO without the presence of additional point charges is

one of the very few examples, for which the exact solution is known. The wavefunctions

in spherical coordinates r, θ, φ labeled by quantum numbers k,l,m can be written as

ψklm(r, θ, φ) = Nklr
le−νr

2

L
(l+ l

2)
k

(
2νr2

)
Ylm (θ, φ) , (2.43)

where Nkl =

√√
2ν3

π
2k+2l+3k!νl

(2k+2l+1)!!
is a normalization factor, ν = µω

2
, L

(l+ l
2)

k are generalized

Figure 2.4: A schematic of the QDO model de-

scribed by the Hamiltonian in Eq. 2.41 in the

case of two interacting QDOs, where QDO 2 has

one additional point charge.

Laguerre polynomials and Ylm are spheri-

cal harmonic functions. The correspond-

ing energy for the state with quantum

numbers k,l,m is

Ek,l,m = ω

(
2k + l +

3

2

)
. (2.44)

In the case of the ground state, this sim-

plifies to a Gaussian function

ψ0(r) =

(√
µω

π

) 3
4

e−
√
µωr2

, (2.45)

with the ground state energy E0 = 3
2
ω.

The solution of a system of two or more

interacting QDOs with the Coulomb po-

tential is analytically unsolvable and thus numerical methods are needed.

2.4.1 Response properties of the QDO model

It can be shown from the second-order perturbation theory, as done in Ref. 88, that

the model possesses multipole polarizabilities measuring the response of the QDO to

the presence of an external electric field, which can be expressed in the SI units as

αl =

(
q2

µω2

)[
(2l − 1)!!

l

](
~

2µω

)l−1

, (2.46)
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Figure 2.5: (a) The polarizability invariant γpol for alkali-metal and noble gas atoms and small

molecules; and (b) the dispersion invariant γdisp for alkali-metal, noble gas and small molecule

dimers. The figures are taken from Ref. 88.

with α1 being the dipole polarizability, α2 being the quadrupole polarizability, α3

being the octupole polarizability, etc. In general, for nonsymmetric molecules, the po-

larizability has to be treated as a tensor, but it is always diagonal in the case of the

spherically symmetric QDO model. The model possesses also multipole hyperpolar-

izabilities, out of which the first nonzero one is dipole-dipole-quadrupole, again due

to the spherical symmetry of the model. Interestingly, the classical Drude model [40]

contains the same dipole polarizability α1, which corresponds to Eq. 2.46, with αl = 0

for l > 1. As can be seen from Eq. 2.46, the polarizabilities of the QDO model are not

independent and can be all expressed via α1 as a consequence of the simplicity of the

wavefunctions from Eq. 2.43. After a very basic algebra, one can obtain an invariant

for the first three coefficients [88]

γpol =
2
√

5α2

3
√
α1α3

= 1, (2.47)

which is independent of the parameters q, µ, ω and thus it holds for every QDO. Sur-

prisingly, the invariant in Eq. 2.47 holds also for simple real electronic systems, as

shown in Fig. 2.5a. This implies that when the parameterization of the QDO model is

done using the leading order polarization coefficients, the higher order coefficients are

reasonably approximated, without the necessity of increasing the number of parameters

of the model.
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From the second-order perturbation theory, it can be also shown that the model can

describe dispersion interactions [88]. For simplicity here we discuss only the two-body

interactions arising from the second-order perturbation

Edisp = −
∑

n=6,8,10,...

CAB
n

Rn
AB

, (2.48)

but it is possible to obtain also many-body terms of all orders from higher-order per-

turbation theory. The dispersion coefficients Ci, previously introduced in Sec. 2.2 for

electronic systems, can be expressed analytically as functions of the parameteriza-

tion [88]

CAB
6 =

3

2
αA1 α

B
1

~ωAωB
(ωA + ωB)

, (2.49)

CAB
8 =

15

2

[
αA1 α

B
2

~ωAωB
(ωA + 2ωB)

+ αA2 α
B
1

~ωAωB
(2ωA + ωB)

]
, (2.50)

CAB
10 =

[
21αA1 α

B
3

~ωAωB
(ωA + 3ωB)

+ 21αA3 α
B
1

~ωAωB
(3ωA + ωB)

+ 70αA2 α
B
2

~ωAωB
(2ωA + 2ωB)

]
, (2.51)

again with invariants due to the simplicity of the model, for example [88]

γdisp =
7

2
√

10

C8√
C6C10

(2.52)

in the case of A=B with CAA
i = Ci. This invariant also holds quite well for simple real

systems as shown in Fig. 2.5b. A similar invariant quantity can be obtained also for

the case A 6= B and the three-body Axilrod-Teller-Muto coefficients, again with good

agreement for simple real atoms/molecules [88].

The QDO parameters considered in this work, reported in Appendix A1 in Tab. A1.2,

are taken from Refs. 88, 31. They were obtained by reproducing the leading or-

der polarizabilities (αi) and dispersion coefficients (Ci). This parametrization is not

unique and we have chosen a specific one with the relations ω = 1
~

4C6

3α2
1
, µ = ~

ω
5C6

C8
and

q =
√
µω2α1 [88].

It is important to underline here that drudons are considered to be distinguishable

spin-less particles, and thus the repulsive energy between QDOs that comes mainly

from the exchange energy is missing in the model. This problem is further discussed

in Sec. 2.7.
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2.4.2 Applications of the QDO model

Figure 2.6: The dissociation curve of the argon

dimer. The full line is a reference empirical po-

tential energy surface and the crosses are ob-

tained using the QDO model via diffusion Monte

Carlo calculations with an external potential for

the short-range repulsion, that is missing in the

model. The figure is taken from Ref. 88.

The QDO model has been successfully

applied to noble gas systems and water

clusters using full Configuration Interac-

tion, diffusion Monte Carlo and path in-

tegral Monte Carlo computation meth-

ods [88, 87, 86, 166, 31, 89, 152]. One

of these applications is shown in Fig. 2.6

taken from Ref. 88, where the authors re-

produce the binding curve of the argon

dimer using the QDO model, containing

only two quantum particles instead of the

36 electrons in the fully electronic case.

The model was recently used also in

the derivation of a quantum scaling law

between the size of the system repre-

sented via the van der Waals radius and

the polarizability of the system, with α ∝
R7

vdW [47] and for the construction of uni-

versal pairwise interatomic van der Waals potentials [100].

2.4.3 QDO model in the dipole approximation limit

The Hamiltonian from Eq. 2.41 can be approximated using the dipole potential instead

of the Coulomb potential when the distances between the QDOs are large enough. In

the specific case of two interacting QDOs with equal parametrization, this approximate

dipole Hamiltonian has the form

Ĥdip =
2∑
i=1

[
− 1

2µ
∇2

rdi
+

1

2
µω2

∣∣rdi −RO
i

∣∣2]+ V dip
(
rd1, r

d
2

)
, (2.53)

28



with the two-body dipole coupling

V dip
(
rd1, r

d
2

)
=

q2

R5

[
R2 (d1 · d2)− 3 (d1 ·R) (d2 ·R)

]
, (2.54)

where di = rdi −RO
i , R = RO

1 −RO
2 and R = |R|. This quadratic Hamiltonian can be

diagonalized analytically and the resulting interaction energy Edip (R) as a function of

the distance between the QDOs is

Edip (R) = E+ (R) + E− (R)− E0, (2.55)

where

E± (R) =
ω

2

(
2

√
1± q2

µω2R3
+

√
1∓ 2q2

µω2R3

)
, (2.56)

and E0 = 2× 3
2
ω is the energy of two non-interacting QDOs. The dipole Hamiltonian

from Eq. 2.53 can be easily generalized for Nd non-homogeneous interacting QDOs,

again leading to a quadratic Hamiltonian, which can be diagonalized numerically. The

specific case of two homogeneous QDOs in Eq. 2.53 is sufficient for the scope of this

work.

The ground state wavefunction of the of Hamiltonian 2.53 has the form

Ψdip
(
rd1, r

d
2

)
= Nexp

[
r̄>dOAr̄dO

]
, (2.57)

where N is a normalization factor, r̄dO = r̄d− R̄
O

is a 6-dimensional vector containing

distances between each drudon and its center, and A is a matrix containing coupling

coefficients which depend on the parametrization of the QDOs and which can be ob-

tained via diagonalization.

The dipole approximation of the QDO Hamiltonian has an important role in the

so-called many-body dispersion method [179, 9], which is used to reintroduce dispersion

in computational methods lacking the correct description of the intermolecular inter-

actions such as Density Functional Theory. This method is discussed in more detail in

Sec. 3.4.3.
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2.5 El-QDO embedding

Figure 2.7: A schematic of the El-QDO model

described by the Hamiltonian in Eq. 2.58 in the

case of an electronic system interacting with two

interacting QDOs, where QDO 2 has one addi-

tional point charge. Only selected interactions

between the QDOs and the electronic system are

shown.

This section focuses on the use of the

QDO model introduced in Sec. 2.4 as an

embedding bath for electronic systems in

a novel embedding framework named El-

QDO. As mentioned in the introduction

and in Sec. 2.3, the goal is to exploit the

range separations of molecules in a sol-

vent, where we can clearly distinguish be-

tween the interactions within the main

fragment, interaction within the solvent

and interactions between the solvent and

the main fragment (Fig. 2.3). Here for

the first time we use the QDO model to

represent the molecules in the environ-

ment. We construct a single many-body

Hamiltonian for the two coupled subsys-

tems, and later in Secs. 3.5 and 3.6.3

we propose a solution of the mathemati-

cally well-defined problem using quantum

Monte Carlo methods.

The motivation for the El-QDO em-

bedding are the response properties of the QDO model. As shown in Sec. 2.4, the

model can be parametrized to correctly describe the leading order responses, namely

the polarizabilities and dispersion coefficients of real matter. This in fact means, that

when a QDO interacts with an electronic system instead of another QDO, the polariza-

tion and dispersion interactions should be captured correctly, exactly as in the case of

two or more interacting QDOs. One could in principle show the presence of polariza-

tion and dispersion between the two subsystems using the second-order perturbation

theory, but this is not within the scope of this work. Instead, we show the presence of

these interactions by analyzing the numerical results in Chap. 4.
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Up to our knowledge, the QDO model had not been used for an embedding method

in the existing literature prior to the publications related to this Thesis. The only

example of a single electron coupled with QDOs can be found in Refs. 167, 197, where

the authors studied a dipole-bound anion via one-electron model potentials. Yet, the

model, levels of approximations, and applications are very different from the scope of

this Thesis.

The environment of QDOs and point charges that represent a classical Force-Field

reproducing the static dipole moment of polar molecules can be thus, as discussed

above, used as a bath for the sub-system of electrons, able to reproduce the quantum

effects responsible for the long-range interaction in real matter. An electronic system

containing Nn nuclei defined by positions and charges {Rn
i , Zi}Nni=1, and Ne electrons can

be embedded into a bath of Nd QDOs with parameters {RO
i , qi, µi, ωi}

Nd
i=1 and Np point

charges with parameters {Rp
i , Qi, pi}Npi=1, leading to the total El-QDO Hamiltonian of

the form

ĤEl-QDO = Ĥe + Ĥd + V̂ d−e
int , (2.58)

where the first term Ĥe represents the standard electronic Hamiltonian within the

Born-Oppenheimer approximation from Eq. 2.17, Ĥd is the Hamiltonian of interacting

QDOs and point charges from Eq. 2.41 and the last term

V̂ d−e
int =

Ne∑
i=1

Nd∑
j=1

(
qj∣∣rei − rdj

∣∣ − qj∣∣rei −RO
j

∣∣
)

+

+
Nn∑
i=1

Nd∑
j=1

(
Ziqj∣∣Rn
i −RO

j

∣∣ − Ziqj∣∣Rn
i − rdj

∣∣
)
−

−
Ne∑
i=1

Np∑
j=1

Qj∣∣rei −Rp
j

∣∣ +
Nn∑
i=1

Np∑
j=1

ZiQj∣∣Rn
i −Rp

j

∣∣ (2.59)

represents the Coulomb interactions between the two subsystems, atoms/molecules and

the QDOs with the point charges. A scheme of the interactions in the Hamiltonian

in Eq. 2.58 is shown in Fig. 2.7, and an application of the El-QDO to the benzene

dimer in an environment composed of 50 water molecules replaced by QDOs is shown

in Fig. 2.8.

The Hamiltonian in Eq. 2.58 allows both, the main fragment and the environment,

to polarize themselves: ie the electrons polarize in the presence of the environment

31



Figure 2.8: An example of the mapping of the T-shaped benzene dimer in an environment com-

posed of 50 water molecules onto the T-shaped benzene dimer embedded in an environment com-

posed of 50 QDOs.

represented by the QDOs and also the QDOs polarize in the presence of the electronic

system. The same holds also for the many-body dispersion effects, which are present

within both subsystems and also between them. By solving the full Hamiltonian,

these many-body correlation effects are included beyond traditional self-consistent ap-

proaches, like the ones applied in the existing polarizable FFs.

Since the QDO model is introduced to describe the long-range interactions, it can

not efficiently model the short-range repulsive region arising from the exchange between

electrons and from the nuclear repulsion. For this reason, the short-range repulsion

between the two subsystems and also between the QDOs is missing in the El-QDO

embedding. The problem is discussed in more detail in Sec. 2.7.

2.6 Damping of the Coulomb potential

In practice, the use of the bare Coulomb potential for the interactions between the elec-

trons in the QDOs’ environment and between interacting QDOs displays an unphysical
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overpolarization in the short-range region. This is an effect well known from QM:MM

methods [17], often referred to as the polarization catastrophe. The reason is that

the missing repulsion between the drudon-drudon, electron-drudon and electron-point

charge pairs leads to an unphysical drift of the quantum particles towards the classical

particles of the opposite charge, namely the centers of the QDOs or the classical point

charges.

Another problem is the necessity of satisfying the cusp conditions [97] coming from

the 1/r divergences of the Coulomb potential, providing the exact properties of the

wavefunction when an electron approaches a drudon, a center of QDO or a point

charge or when a drudon approaches other drudons, centers of QDOs and point charges.

Missing cusps in the wavefunctions manifest in an error of the corresponding energies

in the case of the wavefunction-based numerical methods. For the diffusion Monte

Carlo method, used in this Thesis, the missing cusps manifest only in the decrease of

the computational efficiency via the increase of the statistical noise.

To minimize these issues, damping functions are introduced to regularize the in-

teractions, changing the shape of the Coulomb potential in the short-range region and

removing the 1/r divergence. In this work, we test four functional forms of the damping

functions from the state-of-the-art literature, previously used for the QM:MM meth-

ods. Our goal is to show the robustness of the El-QDO methods with respect to the

choice of the damping for distances characteristic of non-covalent interactions.

The four functional forms are namely the error function (erf) [31]

Verf (rij) =
qiqj
rij

erf

(
rij√
2σij

)
, (2.60)

the Gaussian damping (exp2) [61]

Vexp2 (rij) =
qiqj
rij

[
1− e

−
(
rij
σij

)2]
, (2.61)

the exponential with the 4th power (exp4) [88]

Vexp4 (rij) =
qiqj
rij

[
1− e

−
(
rij
σij

)4]
, (2.62)
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Figure 2.9: Damped Coulomb potentials from Eqs. 2.60,2.61,2.62 and 2.63 compared to the bare

Coulomb potential for values of σ = 0.1 and σ = 0.5 (indicated via the dashed vertical lines).

and the s-wave expansion (s-wave) [17, 30]

Vs-wave (rij) =
qiqj
rij

[
1− e−

2rij
σij − rij

σij
e
−

2rij
σij

]
, (2.63)

where σij is specified for all pairs of particles using the combination rule σij =
√
σ2
i + σ2

j .

All four damping functions are plotted in Fig. 2.9 for fixed values of σ = 0.1 and σ = 0.5.

One problem of these damping functions comes from asymmetric interaction effects,

that introduce additional artificial polarization. The standard damping functions in

QM:MM methods or for systems of interacting QDOs can be considered as charge

regularization as a function of the distance between the particles. We will use Verf as

an example, but all the following considerations apply to all the damping functions

defined above. Eq. 2.60 can be written as

Verf (rij) =
qiqj
rij

erf

(
rij√
2σij

)
=
qi (rij) qj (rij)

rij
, (2.64)

where qi (rij) and qj (rij) are position dependent charges (see Fig. 2.10a). This may

lead to an artificial polarization because the particles see other parts of the system as

artificially charged.

In order to test the effect of this additional artificial polarization we construct a

uniform version of the damping (referred to as uniform damping). Instead of Verf from

the Eq. 2.60, we introduce a damping distance rdamp

Verf (rij, rdamp) =
qiqj
rij

erf

(
rdamp√

2σij

)
, (2.65)
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Figure 2.10: a) The artificial polarization problem due to the standard damping functions caused by

the position-dependent charges (shown by different colors of the interactions); and b) a schematic

of the uniform damping, where the three straight lines represent the damping distances rdamp used

for the uniform damping functions (e.g. in Eq. 2.65) for all the pairs of particles within the ellipse

of the same color.

which is taken as a center-center distance in the case of a pair of QDOs and center of

mass of electronic system - QDO center for El-QDO pairs, with σi defined for the entire

electronic system/QDO. To make it clearer we show a schematic representation of the

uniform damping for an electronic system interacting with two QDOs in Fig. 2.10b.

All eight possibilities of the damping functions defined above (4 functional forms,

each for normal and uniform version) are tested in Sec 4.4.4 on an example of the argon

dimer, in order to show the robustness of the potential energy surface in the region

relevant for the non-covalent interactions with respect to the choice of the damping.

For all the other results in Chap. 4 we used the normal error function damping from

Eq. 2.60 and all the results in Chap. 5 are obtained with the bare Coulomb potential.

2.7 Short-range repulsion

The problem of the inability of the QDO model to describe the short-range repulsion

of real systems is usually solved using two different approaches. The first option is to

add the Hartree-Fock (HF) interaction energy on top of the QDO one, which partially
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works for noble gases [152] because HF misses all the energy contributions apart for

repulsion. The second option is to fit the missing part of the potential energy surface

using ab initio reference data. This approach is common also for the QM:MM methods,

where the repulsive part is taken directly from fitted force-fields [30].

In this work, we use a fit of the repulsion using exponential functions of the form

Vrep (Rij) =
N∑
k=1

ake
−bkRij (2.66)

for each center-center and nucleus-center pair. The functional form of Eq. 2.66 is

inspired by the dependency of the exchange energy on the overlap of the densities, which

decays exponentially as a function of the separation and which was briefly discussed in

Sec. 2.2. The parameters in Eq. 2.66 are then balanced with the parameters σ used for

the damping functions in order to reproduce a set of reference results. In this Thesis, we

used the short-range repulsion only to demonstrate the capability of the QDO model

and the El-QDO method to reproduce the full binding curves of the noble gas and

water dimers. The distances between the main fragment and the environment in all

the other applications in Chap. 4 were chosen so that the fast decaying repulsion can

be neglected and the study of the short-range behavior of the QDO model in Chap. 5

was done without the external repulsion.
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Chapter 3

Computational methods

Parts of Secs. 3.5 and 3.6 in this Chapter have been published in this or a similar form

in:

M. Ditte, M. Barborini, L. M. Sandonas, A. Tkatchenko. “Molecules in Environments:

Toward Systematic Quantum Embedding of Electrons and Drude Oscillators” Phys.

Rev. Lett. 131, 228001 (2023)

and will be published in:

M. Ditte, M. Barborini, A. Tkatchenko. “Electrons embedded in charged oscillators:

A quantum embedding approach for molecular systems” In preparation.

and in:

M. Ditte, M. Barborini, A. Tkatchenko. “Quantum Drude Oscillators Coupled with

Coulomb Potential as an Efficient Model for Bonded and Non-Covalent Interactions in

Atomic Dimers” In preparation.

and have been produced in collaboration with the above authors.
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Since, as discussed in the previous Chapter, the Schrödinger’s equation is not analyti-

cally solvable for many-body systems, many numerical techniques have been developed

in order to obtain an approximate description of the ground or excited states.

Within the Quantum Chemistry methods we can fundamentally distinguish between

three approaches: 1. wavefunction-based methods that approximate the solution of

the eigenvalue problem through a Slater determinant or a combination of them (e.g.

Hartree-Fock [44], Configuration Interaction [37], Coupled Cluster [120]); 2. density-

based methods that approximate the electronic Hamiltonian or parts of it, leading to

a model that can be numerically solved (e.g. Density Functional Theory [91], Density

Functional tight-binding [172]); and 3. perturbative approaches that reintroduce the

electron correlation through perturbation energy contributions (e.g. Møller-Plesset

perturbation theory [36]).

Within the wavefunction methods, we can also find the quantum Monte Carlo

(QMC) techniques, which are stochastic methods used to integrate the energy func-

tional and other physical observables over an optimized trial wavefunction. Apart from

the computational efficiency of QMC, which comes from the intrinsic parallelization

of their algorithms, one of the main advantages resides in the fact that with these

methods it is possible to calculate integrals over explicitly correlated wavefunctions,

thus guaranteeing more flexibility to tackle also complex Hamiltonians like the one

comprised of electrons and drudons defined in Chap. 2.

This Chapter is thus dedicated to the description of the numerical methods, and in

particular to the QMC methods, employed in our works. After the description of the

variational principle in quantum mechanics (Sec. 3.1) and of the simplest numerical

method, ie the Hartree-Fock method, used to approximately compute the ground state

of the electronic Schrödinger equation (Sec. 3.2), in Sec. 3.3 we briefly discuss the basic

concepts of Density Functional Theory (DFT), and the various dispersion methods

(Sec. 3.4) that are used in this Thesis to describe dispersion interactions within the

DFT framework. Finally, the last sections of this Chapter (Secs. 3.5 and 3.6) discuss

the QMC methods, the generalization of the algorithms introduced to integrate the El-

QDO Hamiltonian, and the form of the variational ansatz developed to approximate

the El-QDO ground state.
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3.1 Variational Principle

The basic principle behind all the numerical methods used to solve the time-independent

Schrödinger equation is the variational principle, which states that given an approxi-

mate expression of the ground state eigenfunction ΨT (r̄;α) of a Hamiltonian operator

Ĥ, depending on the vector α of variational parameters, we can define the energy

functional

E [ΨT (r̄;α)] =
〈ΨT (α)|Ĥ|ΨT (α)〉
〈ΨT (α)|ΨT (α)〉

=

∫
V

Ψ∗T (r̄;α)ĤΨT (r̄;α)dr̄∫
V
|ΨT (r̄;α)|2dr̄

≥ E0, (3.1)

which is an upper bound of the exact ground state’s energy E0. Naturally, the equality

holds only when ΨT (r̄;α) = Ψ0(r̄), being Ψ0(r̄) the wavefunction corresponding to the

exact ground state.

In general however ΨT (r̄;α) is only an approximation of the true electronic ground

state, and the best estimation of the ground state energy can be achieved through the

optimization of the parameters α by minimizing Eq. 3.1.

3.2 Hartree-Fock theory

The first and simplest numerical algorithm derived from the variational principle de-

scribed above was proposed by Hartree[67], Fock[51] and Slater[165], and is based on

the mean-field approximation, for which each particle in the Hamiltonian is considered

as an independent particle that exists in the effective potential generated by all the

other particles.

In this representation, the fully correlated wavefunction of a system of fermionic

particles, such as the electrons, that should depend on all the relative distances between

the particles, is approximated by the antisymmetric product of single-particle molecular
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orbitals, ie the Slater determinant (SD)[51, 165]

ΨSD (x̄) =
1√
Ne!

∣∣∣∣∣∣∣∣∣
ψ1 (x1) ψ1 (x2) . . . ψ1 (xNe)

ψ2 (x1) ψ2 (x2) . . . ψ2 (xNe)

. . . . . . . . . . . .

ψNe (x1) ψNe (x2) . . . ψNe (xNe)

∣∣∣∣∣∣∣∣∣ , (3.2)

where the functions ψk (x) are build as the product of a spatial function and an eigen-

vector of the spin operator Ŝz, ie. ψk (x) = ψk (r)
∣∣1

2
,±1

2

〉
. The wavefunctions built

through the Slater determinant are in fact eigenstates of both the Ŝ
2

and Ŝz spin

operators.

When describing isolated atomic systems, the choice for the molecular orbitals

ψk (ri) is that of a set of ‘atomic orbitals’ φk(ri) = R(ri)Yl,lz(θi, φi) similar to eigen-

functions of the hydrogen atom. The angular part Yl,lz(θi, φi) is represented by spherical

or cubic Harmonics, while the spatial part R(ri) is usually written as polynomial func-

tions multiplied by a Gaussian or a Slater-type orbital. The list of the atomic orbitals

used to describe a molecular or atomic system is referred to as the atomic basis set of

Q functions centered on the various atoms.

To describe the eigenstates of molecular systems, the single electron molecular or-

bitals are written as a linear combination of Q atomic orbitals that belong to all the

atoms:

ψk (ri) =
Nn∑
a=1

Qa∑
ν=1

caνφ
a
ν(ri,a) (3.3)

where Nn is the number of atoms in the system and the atomic wavefunctions φaν(ri,a)

are centered on the ath atom so that φaν(ri,a) = φν(|ri −Ra|).

Thus, within this framework, the Hartree-Fock (HF) theory is a variational method

based on the minimization of the energy functional in Eq. 3.1 with respect to the SD

in Eq. 3.2

E[ΨSD] =
〈

ΨSD|Ĥ1|ΨSD

〉
+
〈

ΨSD|Ĥ2|ΨSD

〉
(3.4)

where

Ĥ1 = −1

2

Ne∑
i=1

∇2
ri
−

Nn∑
a=1

Ne∑
i=1

Za
|ri −Ra|

(3.5)
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is the sum of Ne single-electron Hamiltonians

ĥi = −1

2
∇2

ri
−

Nn∑
a=1

Za
|ri −Ra|

and the two-particle interacting potential

Ĥ2 =
Ne∑

i<j=1

1

|ri − rj|
. (3.6)

Since the first term can be separable into single-particle operators

〈
ΨSD|Ĥ1|ΨSD

〉
=

Ne∑
i=1

〈
ΨSD|ĥi|ΨSD

〉
, (3.7)

for the orthogonality of the electronic states ψk (r), we can reduce it to

〈ΨSD|Ĥ1|ΨSD〉 =
Ne∑
k=1

〈ψk (xi) |ĥi|ψk (xi〉 =
∑
k

Ik, (3.8)

where the sum over k indicates the sum over all the eigenstates which are occupied by

the Ne electrons.

The average over the second term

〈ΨSD|Ĥ2|ΨSD〉 =
Ne∑

i<j=1

〈ΨSD|
1

|ri − rj|
|ΨSD〉, (3.9)

in which, for each electronic pair i,j, the only terms that survive in the expansion are

those that contain the electronic coordinate ri and rj, which can be also rewritten as

Ne∑
i<j=1

〈ΨSD|
1

|ri − rj|
|ΨSD〉 =

=
1

2

∑
k,l

[
〈ψk (xi)ψl (xj) |

1

|ri − rj|
|ψk (xi)ψl (xj)〉 −

− 〈ψk (xi)ψl (xj) |
1

|ri − rj|
|ψl (xi)ψk (xj)〉

]
, (3.10)
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which is the sum of two contributions, that are respectively called the direct term

Jk,l = 〈ψk (xi)ψl (xj) |
1

|ri − rj|
|ψk (xi)ψl (xj)〉, (3.11)

that defines the mean value of the Coulomb interaction between the ith and j th elec-

trons respectively, in the quantum states k and l, and the exchange term

Kk,l = 〈ψk (xi)ψl (xj) |
1

|ri − rj|
|ψl (xi)ψk (xj)〉, (3.12)

that takes into account the energy of the interaction between the two states ψk (xi)ψl (xj)

and ψl (xi)ψk (xj) obtained by exchanging the coordinates of the ith and the j th elec-

trons.

At this point, the final expression of the energy functional can be written as the

sum of these three contributions

E[ΨSD] =
∑
k

Ik +
1

2

∑
k,l

[Jk,l −Kk,l]. (3.13)

To optimize the set of molecular orbitals ψk (ri) that appear in the Slater determinant,

we now have to minimize this energy functional, by imposing the condition

δE −
∑
k,l

εk,lδ 〈ψk|ψl〉 = 0 (3.14)

that takes into account the orthogonality of the molecular orbitals |ψk〉 through a

Lagrangian multiplier εk,l. By expanding the variation δE in this last equation we

obtain Ne coupled Hartree-Fock equations

εkψk(r) =

[
−1

2
∇2

r −
M∑
a=1

Za
|r−Ra|

]
ψk(r)+

+
∑
l

[∫
dr′
|ψl(r′)|2

|r− r′|
ψk(r)− δσkσl

∫
dr′

ψ∗l (r
′)ψk(r

′)

|r− r′|
ψl(r)

]
∀k, (3.15)

each associated to a single-particle state |ψk〉, that must be solved iteratively. For each

of these coupled equations, the first term represents the electronic kinetic contribution;

the second term, or Hartree term, describes the mean field contribution which depends

on the interaction of the particular electron with all the other electrons; and finally
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the last term, ie the Fock term or exchange term, introduces the non-local interaction

between two electrons having identical spins, i.e. δσkσl .

As anticipated at the beginning of this section, the HF equations have the limi-

tation of approximating the full correlated wavefunction through the antisymmetric

product of single-particle functions, treating them as independent non-interacting par-

ticles ‘dressed’ by the mean-field interaction with the other particles. For this reason

the energy E[ΨSD] of the HF ground state will always be higher than that of the true

eigenvalue

E0 < E[ΨSD]. (3.16)

The difference in energy between the exact ground state energy and the HF estimation

Ecorr = E[ΨSD]− E0 (3.17)

is thus equal to the missing ‘correlation energy’ Ecorr of the electrons. The only correla-

tion between the particles, that is included in the HF method, is the one that originates

in imposing the antisymmetrization of the wavefunction, for which two fermions with

the same spin can not occupy the same spatial state, which is also at the origin of the

exchange contribution. For this reason, the HF method is usually used as the ‘uncorre-

lated’ reference through which it is possible to estimate the correlation energy recovered

by the other more accurate numerical approaches such as CI [37] or CC [120].

3.3 Density Functional Theory

As discussed in the previous section, the HF method does not describe the explicit cor-

relation between the electrons, and for this reason, many post-HF numerical methods

have been developed with the aim of capturing the missing correlation effects, such as

perturbation theory or multi-determinant expansions.

One alternative and computationally less demanding approach is that of Density

Functional Theory (DFT), based on the idea of reducing the degrees of freedom of the

Schrödinger equation, defining the variational principle on the electronic density and

not on the electronic wavefunction.
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In fact, being Ψ0(r̄) the ground state eigenfunction of the electronic Schrödinger

Eq. 2.8, we define the electronic density as the integral

ρ(r) =
Ne∑
i=1

∫
V

δ(r− ri) |Ψ0(r1, r2, r3, . . . , rNe)|
2 dr1dr2dr3 . . . drNe , (3.18)

that, while the wavefunction depends on 3Ne degrees of freedom, is a local quantity

that only depends on the 3 coordinates of the position in space.

The two main theorems on which DFT is based were proven in 1964 by P. Hohenberg

and W. Kohn[78] and state that:

Theo. 1 The external potential, that defines the motion of a single electron in the field of

nuclei vne =
∫

Ψ0(r̄)V̂ne(r̄)Ψ0(r̄)dr̄ is a unique functional of the electron density

ρ(r), ie Vne[ρ] =
∫
ρ(r)vne(r)dr.

Theo. 2 Given the external potential Vne[ρ], there exists a functional F [ρ] so that the

ground state energy E0 and the electronic density ρ0(r) can be variationally

obtained by minimizing the equation

E0[ρ] = F [ρ] + Vne[ρ] (3.19)

with the condition that
∫
ρ(r)dr = Ne.

Naturally at the minimum value of E0[ρ = ρ0] the functional F [ρ0] is equal to the

expectation value of T [ρ] + Vee[ρ] over the ground state, but since the form of F [ρ0] is

unknown the theorems are not applicable for direct calculations.

The spreading of the DFT method was made possible by the formulation introduced

by W. Kohn and L. J. Sham (KS) [106], which enabled direct calculations of the energies

and other observables of the electronic systems. In the Kohn-Sham (KS) approach, as

in the HF theory, we first define a set of independent single-electron orbitals (Eq. 3.3)

that represent the motion of non-interacting electrons in the external potential vne(r)

given by the atomic nuclei. The electronic density is then represented as the sum of

the square modulus of these single-particle molecular orbitals, called KS orbitals,

ρ(r) =
Ne∑
k=1

|ψk(r)|2, (3.20)
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and can in principle give an exact representation of the electronic density of the system.

As for the HF method, the KS orbitals must not be considered as the orbitals of the

exact wavefunction because they represent non-interacting electrons. Their meaning is

only related to Eq. 3.20 and only the density can be considered as a physical observable

of the interacting system. Having defined the density through the non-interacting

single-particle orbitals, we can define the kinetic energy as

Ts[ρ] = −1

2

Ne∑
k=1

∫
ψ∗k(r)∇2

rψk(r)dr, (3.21)

which describes the motion of free electrons. In the KS formulation, the total energy

defined in Eq. 3.19 is now rewritten as

E[ρ] = Ts[ρ] + Vne[ρ] + J [ρ] + Exc[ρ], (3.22)

where J [ρ] = 1
2

∫ ρ(r)ρ(r′)
|r−r′| drdr

′ is the expectation value of the V̂ee potential between the

electrons occupying the single-particle states, similar to the HF contribution in Eq. 3.11.

Moreover, the exchange-correlation functional Exc[ρ] that appears in Eq. 3.22 is defined

as the sum of different contributions,

Exc[ρ] = T [ρ]− Ts[ρ]−K[ρ], (3.23)

the first part of which is the difference between the unknown kinetic energy of the

correlated electrons and that of the ones occupying the single-particle orbitals T [ρ] −
Ts[ρ], while the K[ρ] functional, defined as J [ρ] − Vee[ρ], includes all the exchange-

correlation contributions to the electronic Coulomb interaction.

The minimization of the energy with respect to Eq. 3.20 leads to the equation[
−1

2
∇2

r −
Nn∑
a=1

Za
|r−Ra|

+

∫
ρ(r′)

|r− r′|
dr′+ +

δExc[ρ]

δρ

]
ψKSk (r) = εKSk ψKSk (r), (3.24)

similar to the HF ones, that optimize the KS orbitals in a self-consistent way. The

question that remains unsolved in these KS equations, is that of the definition of the

exchange-correlation functional Exc[ρ] for which only approximated forms have been

proposed[49]. In this Thesis, in particular, we use two of the most common and well-

established exchange-correlation functionals, namely PBE [143] and PBE0 [4], the first

of which is based on the Generalized Gradient Approximation (GGA), while the second

belongs to the class of the Hybrid functionals that include also a percentage of the ‘exact

exchange’ energy coming from HF.
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3.4 Dispersion methods

Despite the wide applicability and versatility of DFT, as discussed in the previous

section only approximate forms of the exchange-correlation Exc functionals are present.

Usually, one limitation of these functionals is their inability to correctly reproduce

electronic correlation arising from dispersion interactions, leading to an over- or under-

binding problem.

For this reason, various methods have been introduced to improve the interaction

energies or the Exc functionals, using knowledge coming from perturbation theories

(Sec. 2.2) or ab initio calculations. In the next sections, we will briefly recall three

of these approaches, that have been applied in this Thesis, namely the D4 London-

dispersion model [25], the Tkatchenko-Scheffler (TS) method [180] and the many-body

dispersion (MBD) method [179, 9, 75]. While the first approach is parametrized in-

dependently for different exchange-correlation functionals and its dispersion energy

depends on the atom-in-molecule polarizabilities only via the number of surrounding

atoms, in the TS and MBD methods, the polarizabilities of the atom-in-molecule de-

pend on the electronic density obtained from the DFT calculations.

3.4.1 D4 London-dispersion model

The dispersion energy in the D4 London-dispersion model[25] is written as

ED4
disp = E

(6,8)
disp + E

(9),ATM
disp , (3.25)

where the first term contains pairwise contributions and the second term is the Axilrod-

Teller-Muto (ATM) three-body term.

The pairwise contribution is written as the sum of the ∝ − 1
R6 and ∝ − 1

R8 terms

E
(6,8)
disp = −

∑
AB

∑
n=6,8

sn
CAB

(n)

R
(n)
AB

f
(n)
damp (RAB) , (3.26)

where RAB is the distance between atoms A and B, CAB
(n) is the corresponding dispersion

coefficient, fdamp is the Becke-Johnson damping function and sn is a scaling factor.
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Within this approach, the dispersion coefficients are obtained by integrating over

the frequency-dependent polarizabilities, so that for C6 we have

CAB
6 =

3

π

∫ ∞
0

dωαA(iω)αB(iω), (3.27)

where αi are atom-in-molecule dipole polarizabilities obtained by reweighing of the

reference polarizabilities of free atoms by weights that depend on the coordination

number, and take into account the local environment of the atom.

The three-body terms are written as

E
(9),ATM
disp =

∑
ABC

EABCf
(9)
damp

(
R̄ABC

)
, (3.28)

where fdamp is a damping function depending on the relative positions of the three

atoms R̄ABC and EABC is the ATM term

EABC =
CABC

9 (3 cos Θa cos Θb cos Θc + 1)

(RABRBCRCA)3 , (3.29)

with Rij being the distance between atoms i and j, Θi are the angles of the triangle

formed by the atoms A, B and C, and CABC
9 is the corresponding dispersion coefficient,

which is approximated as CABC
9 ≈

√
CAB

6 CBC
6 CCA

6 .

3.4.2 Tkatchenko-Scheffler method

The dispersion energy in the Tkatchenko-Scheffler (TS) [180] method contains only the

pairwise ∝ − 1
R6 term which is written as

ED4
disp = −1

2

∑
A,B

fdamp

(
RAB, R

0
A, R

0
B

)
C6ABR

−6
AB, (3.30)

where again RAB is the distance between atoms A and B, fdamp is a damping function

avoiding divergences in the short-range region and C6AB is the corresponding dispersion

coefficient, which is calculated as

C6AB =
2C6AAC6BB[

α0
B

α0
A
C6AA +

α0
A

α0
B
C6BB

] , (3.31)
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where α0
i and C6ii are free-atom reference values of the static polarizability and of

the homo-nuclear dispersion coefficients. The values of the dispersion coefficient of

the atom-in-molecule are obtained via the rescaling of the free values by an effective

volume of the atoms, which is obtained via the Hirshfeld partitioning of the electron

density obtained from the DFT calculations:

Ceff
6AA =

(
V eff
A

V free
A

)2

C free
6AA. (3.32)

The only free parameter in the TS method is in the Fermi-type damping function fdamp,

and it has the role of determining the onset of the dispersion interactions. Also for TS,

as for the D4 method, the choice of the parameters is tuned separately for each class

of the exchange-correlation functionals.

3.4.3 Many-Body Dispersion method

In the basic many-body dispersion (MBD) method introduced in Ref. 179, the dis-

persion contribution is calculated as an interaction energy of a set of dipole-coupled

quantum oscillators defined through the Hamiltonian

ĤMBD = −1

2

N∑
p=1

∇2
χp

+
1

2

N∑
p=1

ω2
pχ

2
p +

N∑
p>q

ωpωq
√
αpαqχpTpqχq, (3.33)

where χq are proportional to the displacement of the oscillator p from its equilibrium,

Tpq is the dipole-dipole tensor (including also a damping function), ωp is a characteristic

excitation frequency and the polarizabilities αp are obtained via the self-consistent

screening (SCS) equation

αSCS
p (iω) = αTS

p (iω) + αTS
p (iω)

N∑
q 6=p

Tpqα
SCS
q (iω) , (3.34)

with αTS
p being the polarizabilities coming from the TS method.

The dispersion energy is then obtained via the equation

EMBD
disp =

1

2

3N∑
p=1

√
λp −

3

2

N∑
p=1

ωSCS
p , (3.35)
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where λp are the eigenvalues of the Hamiltonian ĤMBD. The polarizabilities obtained

through the SCS equation include the long-range electrostatic screening, coming from

the dynamic electric field created by the other atoms. By mapping the problem onto

a set of dipole-coupled oscillators, the EMBD
disp can be shown to describe the explicit

many-body dispersion of all orders, beyond the two or two/three-body terms present

in TS or D4 methods.

In this Thesis we use two implementations of MBD, which improve on the original

method, which are the MBD@rsSCS [9] and the MBD-NL [75] versions. With respect

to the original method, MBD@rsSCS includes an effective range-separation of the cou-

pling between the atomic response functions in order to increase its accuracy in the

description of non-metallic materials with highly anisotropic electronic responses. The

MBD-NL, on the other hand, extends non-local vdW functionals for polarization and

interatomic methods for many-body interactions, extending the applicability of the

MBD method to ionic and metallic compounds, and hybrid metal-organic interfaces.

3.5 Quantum Monte Carlo methods

Quantum Monte Carlo (QMC) methods are a family of stochastic techniques for in-

tegrating the many-body time-independent Schrödinger equation over a chosen trial

wavefunction [52, 95, 14].

In this Thesis, we use two of the most common methods, namely variational Monte

Calo (VMC) and diffusion Monte Carlo (DMC) [52, 95, 14], implemented in QMeCha

α.0.3.0 [12], a QMC package published privately on Github and generalized to in-

tegrate the Hamiltonian of the El-QDO embedding approach which includes electrons

and drudons.

In the following subsections, we first introduce the concept of stochastic integration,

followed by the basic concepts regarding the generalized VMC and DMC algorithms.

Moreover, we discuss the wavefunction optimization algorithms employed in the VMC

framework to optimize the variational parameters of our electron-drudon ansatz.
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3.5.1 Stochastic integration and the Metropolis-Hastings al-

gorithm

Let us suppose we need to evaluate the integral of a function g, which depends on a

vector of N independent variables r̄ = (r1, . . . , rN)

I =

∫
Ω

g(r̄)dr̄, (3.36)

where Ω is the integration domain. The simplest approach to perform this integration

stochastically is to generate N uniformly random vectors {r̄i}Ni=1 within the integration

domain Ω, reducing the integral

I ≈ 〈g〉 =
1

N

N∑
i=1

g (r̄i) (3.37)

to the expectation value of the function g over the finite sample N of the continuous

domain Ω. From the central limit theorem, we can associate with this expectation

value an error in the estimation of the integral, ie σI = σg/
√
N , that depends on the

variance of the function g

σ2
g =

∫
Ω

(g(r̄)− 〈g〉)2 dr̄, (3.38)

and on the size of the samplingN , not explicitly on the dimensionality N of the function

g.

The efficiency of this basic approach can be improved through the so-called impor-

tance sampling, which instead of uniformly sampling the space, introduces an auxiliary

positive function that is used to force the sample the domain regions that contribute

the most to the total value of the integral. Let us write the function g(r̄) as a product

g(r̄) = f(r̄)π(r̄), with the condition that π(r̄) > 0,∀r̄ ∈ Ω and that
∫

Ω
π(r̄)dr̄ = 1, so

that π can be interpreted as a probability density. The integral of the function g can

thus be rewritten as

I =

∫
Ω

f(r̄)π(r̄)dr̄ (3.39)

and evaluated as the sum over the values of the function f

I ≈ 〈f〉π =
1

N

N∑
i=1

f (r̄i) , (3.40)
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where the samples {r̄i}Ni=1 are generated according to the probability density π. Again,

the associated statistical error will now be defined as σf/
√
N , where

σ2
f =

∫
Ω

(f(r̄)− 〈f〉π)2 π(r̄)dr̄ (3.41)

will be the variance of the function f over the samplings according to π, which for the

finite sample can be written as the finite sum

σf√
N
≈

√
1

N (N − 1)

[
〈f(r̄)2〉π − 〈f(r̄)〉2π

]
. (3.42)

The optimal choice of the factorization g(r̄) = f(r̄)π(r̄) is the one minimizing the

statistical error in Eq. 3.42, and thus minimizing the variance of the function f , and

ideally f(r̄) = const.

The generation of random variables from an arbitrary high dimensional probability

density π is a highly nontrivial task, which usually corresponds to the knowledge of

the distribution’s integral, ie its normalization. One way of overcoming this difficulty

comes from the Metropolis-Hastings algorithm [126, 68], which allows us to generate

variables from the probability distribution π(r̄)/
∫
π(r̄′)dr̄′ through a random walk.

Starting from a random position r̄, a trial move is proposed r̄′ ← r̄ with a transition

probability T (r̄′, r̄). This transition probability is usually assumed to be a multi-

dimensional Gaussian centered at r̄ with a variance given by the constant ∆t

r̄′ = r̄ + η
√

∆t, (3.43)

where η is a N -dimensional vector extracted from a Gaussian distribution with unitary

variance and centered at the origin. This random walk corresponds to the Markov

process since the new step depends only on the current position and is independent of

the history of the walk. The acceptance probability associated with the proposed trial

move is given by the ratio

A(r̄′, r̄) = min

(
1,

T(r̄, r̄′)π(r̄′)

T(r̄′, r̄)π(r̄)

)
, (3.44)

for which if A(r̄′, r̄) = 1 the move is always accepted, while for A(r̄′, r̄) < 1, the move

is accepted with the probability A(r̄′, r̄). In practice, this is achieved through the com-

parison to a randomly generated number µ from the uniform distribution [0, 1], so that
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the move is accepted when A(r̄′, r̄) > µ, and rejected otherwise. If the move is accepted

the new position r̄′ becomes the new starting point for the next proposed trial move,

while if the move is rejected, the old position r̄ remains the starting point for a new

trial move. It can be proven that after an initial thermalization, the generated config-

urations {r̄i}Ni=1 are distributed according to the probability density π(r̄)/
∫
π(r̄′)dr̄′.

In order to make the sampling more efficient via better exploration of the config-

uration space, it is possible in these integration algorithms to take advantage of the

ergodicity property, generatingM independent initial configurations, ie ‘walkers’, each

consisting of its position vector r̄. By evolving the set of walkers independently, accu-

mulating for each a number N of consecutive steps after thermalization, the value of

the integral can be calculated as the average over ‘time’ (N ) and ‘space’ (M) simul-

taneously

I ≈ 〈f〉π(r̄)/
∫
π(r̄′)dr̄′ =

1

MN

M∑
i=1

N∑
j=1

f (r̄ij) , (3.45)

exploiting the perfect parallelization that makes the integration particularly efficient

on modern high-performance computing (HPC) facilities.

Here we must add that, by definition, the N consecutive steps of the random

walk are not fully independent since they depend on the previous position and are

thus affected by the autocorrelation error. This error is inversely proportional to the

increase of the step amplitude ∆t. Yet, the increase of ∆t is also inversely proportional

to the increase of the rejected moves during the dynamics. On the other hand, small

∆t decreases the number of rejected moves but increases the autocorrelation error. In

order to minimize the autocorrelation of the variables, with an acceptable acceptance

ratio, the rule-of-the-thumb consists of tuning ∆t so that the acceptance probability

of the moves remains approximately around 50%. The remaining autocorrelation error

can then be removed by reweighing the variance σ2
f by the estimation of autocorrelation

time, or through reblocking methods. In all our calculations, we apply the second more

straightforward approach that is more efficient in the estimations of the generalized

forces necessary for the optimization protocols described below.
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3.5.2 Variational Monte Carlo

The variational Monte Carlo (VMC) method is based on the stochastic integration of

the energy functional of a given Hamiltonian Ĥ over the chosen many-body variational

ansatz ΨT (r̄)

E [ΨT ] =

∫
Ψ∗T (r̄)ĤΨT (r̄)dr̄∫
|ΨT (r̄)|2 dr̄

, (3.46)

which is achieved by separating the integrand into the product of two functions

E [ΨT ] =

∫
Eloc(r̄)Π(r̄)dr̄, (3.47)

that are respectively the probability density Π(r̄) = |ΨT (r̄)|2∫
|ΨT (r̄)|2dr̄ of finding the system

in the configuration r̄ and the local energy Eloc(r̄) = ĤΨT (r̄)
ΨT (r̄)

that is the energy of the

system in that particular configuration. The integration in Eq. 3.47 is obtained through

a random walk (or an arbitrary number of parallel random walks) evolved according

to the Metropolis-Hastings algorithm [126, 68] described in Sec. 3.5.1. By computing

the local quantities, such as the energy Eloc(r̄), for each configuration, one can get a

statistical estimation of the total energy through the mean value of the corresponding

local quantities accumulated over the entire evolution

E [ΨT ] ≈ 〈Eloc〉N ±

√〈
E2

loc

〉
N − 〈Eloc〉2N
N

, (3.48)

with an error that decreases as 1/
√
N , and is proportional to the square root of the

variance
〈
E2

loc

〉
N − 〈Eloc〉2N .

The extension of the VMC algorithm to integrate a mixed system of drudons and

electrons is rather straightforward. In our approach, the two sets of particles, the

positions of which are stored in each walker, are diffused particle-by-particle in a

random order starting from the electrons, according to the Metropolis-Hastings al-

gorithm [126, 68]. Each particle’s trial move is proposed according to

r′i = ri +
√

∆iη, (3.49)

where η is a 3-dimensional vector of Gaussian distributed random numbers with zero

mean and unitary variance, and ∆i is an amplitude that depends on the type of particle
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and is defined as:

∆i =

{
δe/me for i ∈ [1, Ne]

δd/µi for i ∈ [Ne + 1, Ne +Nd]
. (3.50)

The parameters δe and δd are two amplitudes used respectively for the electrons and for

the drudons, and me and µi are respectively the mass of the electrons (which is equal to

1) and the mass of the ith drudon. δe and δd are optimized during the thermalization

of the VMC run by converging the acceptance probability of the moves to the value of

50%, which is the rule of thumb discussed in the previous section. This procedure is

repeated until N consecutive configurations are sampled.

3.5.3 Wavefunction optimization methods

Within the VMC framework, it is possible to optimize the trial wavefunction through

energy or variance minimization [187, 99, 66, 184, 42, 170, 186, 182, 168], exploiting the

variational principle discussed at the beginning of this Chapter, or the zero-variance

principle that holds for VMC, in which the variance of the local energy is null when

the trial wavefunction corresponds to an eigenstate of the Hamiltonian, ie. Eloc(r̄) =
ĤΨi(r̄)
Ψi(r̄)

= EiΨi(r̄)
Ψi(r̄)

= Ei.

In this work, the set of parameters is optimized through the Stochastic Reconfig-

uration procedure described in Refs. 169, 170 with the use of the correlated sampling

(CS) technique[50] in order to better estimate the energy variation in between param-

eter updates and to automatically tune the prefactor ∆ of the parameters’ variation

amplitude. The wavefunction’s sampling is automatically recomputed after a fixed

number of CS steps or if the overlap between two consecutive wavefunctions becomes

lower than a chosen threshold.

In the Stochastic Reconfiguration algorithm, the vector of variational parameters

α is updated after each step of the optimization as

α′ = α+ ∆S−1fα, (3.51)

where ∆ is an empirical parameter that scales the change of the parameters, fα is a
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vector of generalized forces

fαk = −2
{
〈ElocOαk〉Π − 〈Eloc〉Π 〈Oαk〉Π

}
, (3.52)

being Oαk = ∂
∂αk

ln[ΨT (α)] the derivative of the logarithm of the wavefunction with re-

spect to the parameter αk, and S is the covariance matrix between the Oαk components

Skl = 〈OαkOαl〉Π − 〈Oαk〉Π 〈Oαl〉Π . (3.53)

In practice, the variation of the parameters δα is calculated using the set of linear

equations

Sδα = fα (3.54)

via a parallel version of the conjugate gradient method, for which S is never explicitly

computed and is preconditioned.

3.5.4 Diffusion Monte Carlo

As previously discussed in the VMC method, the quality of the description of the

ground state and its energy strictly depends on the parametrization of the trial wave-

function ΨT (r̄; ᾱ) [52, 95, 14]. In order to obtain a more accurate estimation of the

physical observable, overcoming the limitations of the trial wavefunction, also improv-

ing the description of the dynamical correlation between the particles in the system, it

is possible to use projection schemes such as the diffusion Monte Carlo (DMC) method.

The DMC method is based on the transformation of the time-dependent Schrödinger

equation [154]

i
∂

∂t
ϕ(r̄, t) = Ĥϕ(r̄, t) (3.55)

into a diffusion equation in the imaginary time (t = −iτ)

∂ϕ(r̄, τ)

∂τ
=

N∑
i=1

1

2µi
∇2
iϕ(r̄, τ)− (V (r̄)− ER)ϕ(r̄, τ), (3.56)

where N is the total number of particles and ER is a constant energy shift whose role

will be made clear below. The solutions of this imaginary time equation can be written
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as a linear combination

ϕ(r̄, τ) =
∞∑
k=0

ake
−(Ek−ER)τΨk(r̄) (3.57)

of the stationary states Ψk(r̄) of the time-independent Schrödinger equation, each mul-

tiplied by an exponential function that decays as τ → ∞ according to the energy

differences Ek − ER. Here, the role of the constant energy shift ER becomes evi-

dent [107, 147]. If ER ≈ E0, where E0 is the ground state’s energy, by letting the

solution evolve for a reasonable amount of time, the only component that will survive

in the expansion 3.57 will be the one corresponding to Ψ0(r̄). As a matter of fact, all

the excited states with Ek > ER will decay faster in time, while all the states with

Ek ≤ ER will gain more and more weight. In general, we must add that whatever the

choice of ER, the weight of the ground state with respect to the others will always grow

exponentially in the imaginary time τ , so that for τ → ∞ the algorithm will extract

the ground state component Ψ0(r̄) from a general initial wavefunction ϕ(r̄, τ0), given

that the latter one is not orthogonal to the former.

For fermionic systems, or a mixed system of fermions and distinguishable particles

such as that in the El-QDO method, the general wavefunction ϕ(r̄, τ0) changes the sign

and can not be sample directly as a distribution function. In order to solve this sign

problem, it is thus necessary to introduce the fixed-node (FN) approximation [147, 107,

132], for which the propagated state ϕ(r̄, τ) is replaced by the mixed distribution

f(r̄, τ) = ϕ(r̄, τ)ΨT (r̄), (3.58)

and the nodes (the region in which the function changes the sign) are fixed by ΨT

during the entire propagation. The time evolution of f(r̄, τ) is obtained from Eq. 3.56

by multiplying both sides by ΨT (r̄) from the right, leading to the equation

∂

∂τ
f(r̄, τ) =

N∑
i=1

1

mi

[
1

2
∇2
i f(r̄, τ)−∇i (f(r̄, τ)v̄(r̄))

]
− (Eloc(r̄)− ER) f(r̄, τ), (3.59)

that now includes two quantities that only depend on the trial wavefunction, that are

respectively the local energy Eloc(r̄), previously defined for the VMC algorithm, and

the drift velocity

v̄(r̄) =
∇ΨT (r̄)

ΨT (r̄)
. (3.60)
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In order to define the stochastic integration of the diffusion process described above,

we consider the time propagation in the integral form, which is written through the

Green’s function G(r̄′, τ ; r̄, τ0) associated to the given Hamiltonian

f(r̄′, τ) =

∫
V

G(r̄′, τ ; r̄, τ0)f(r̄, τ0)dr̄. (3.61)

Since the exact Green’s function G(r̄′, τ ; r̄, τ0) of the time propagation of the drift-

diffusion process defined in Eq. 3.59 is unknown, it is necessary to approximate the

problem by separating the action of the kinetic and potential energy operators in

Eq. 3.59 which do not commute. A way of dealing with this problem is to discretize

the time evolution between τ0 and τ into M steps of length δτ applying for each

infinitesimal evolution the Trotter-Suzuki decomposition [54] for which the Green’s

function is approximated as

e−δτ(T̂+V̂−ER) = e−(V̂−ER) δτ
2 e−T̂δτe−(V̂−ER) δτ

2 +O(δτ 3). (3.62)

Thus, the approximated Green’s function in the infinitesimal time interval will now be

written as the product

G(r̄′, r̄; δτ) ≈ P (r̄′, r̄; δτ)W (r̄′, r̄; δτ)

of a separated diffusion function process1

P (r̄′, r̄; δτ) =
N∏
i=1

( µi
2πδτ

)3/2

e
− µi

2δτ

[
r′i−ri−

δτ
mi

vi(r̄)
]2

(3.63)

times a reweighting or growth/decay function

W (r̄′, r̄; δτ) = e−
δτ
2

(S(r̄′)+S(r̄)), (3.64)

where S(r̄) = Eloc(r̄)− ER, so that the full propagation in time will correspond to M
consecutive applications of the two processes

f(r̄′, τ) =

∫
V

[
M∏
m=1

dr̄(m−1)δ(r̄′ − r̄(M)) ×

× P (r̄(m), r̄(m−1); δτ)W (r̄(m), r̄(m−1); δτ)
]
f(r̄(0), τ0). (3.65)

1The diffusion function in Eq. 3.63 is defined as the product of single-particle consecutive dif-

fusion processes. We must point out that the drift velocity of the ith particle depends on all the

particles’ positions, thus every time one particle is moved, all the components of the drift velocity

have to be updated.
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Through the Trotter-Suzuki decomposition, we introduce a time-step error that van-

ishes as the discretization step is extrapolated to the limit of continuum δτ → 0.

In practice, the FN-DMC algorithm implemented to integrate both electronic and

drudonic degrees of freedom is based on the established method by Umrigar et al.

described in Ref. 185. In the following paragraphs, we will concentrate on describing

the most important details and generalizations of our approach. Let us assume we

have N walkers each representing an electronic and drudonic configuration taken from

a VMC random walk (thus distributed according to |ΨT (r̄)|2 = f(r̄, τ0) with initial

weights W0 = 1). During the drift/diffusion process, we update the particles’ positions

with a particle-by-particle scheme such that from time step m to m+1 we will have

r
(m+1)
i = r

(m)
i +

δτ

µi
ṽi(r̄

(m)) +

√
δτ

µi
η, (3.66)

where η is a 3-dimensional vector of random variables extracted from a Gaussian dis-

tribution with zero mean value and unitary variance, and ṽi(r̄
(m)) is the drift velocity

rescaled according to the procedure introduced by Umrigar et al. [185] to avoid diver-

gences near the nodal surface. The single-particle move is accepted with probability

A(r̄(m+1), r̄(m); δτ) = min

[
1,
|ΨT (r̄(m+1))|2P (r̄(m), r̄(m+1); δτ)

|ΨT (r̄(m))|2P (r̄(m+1), r̄(m); δτ)

]
, (3.67)

and always rejected when a particle crosses a node (ΨT (r̄(m+1))

ΨT (r̄(m))
< 0). Once the trial

move is proposed for all the particles the weight of each walker is updated through the

term [185]

W (r̄(m+1), r̄(m); δτ) =

{
e−

δτeff
2 (S(r̄(m)+S(r̄(m+1))), accepted move

e−δτeffS(r̄(m)), rejected move
, (3.68)

where we introduce an effective time step[185] defined as the average over the single

particle moves in a single time step

δτeff = δτ

∑N
i=1Ai(r̄(m+1), r̄(m); δτ)

(
r̄

(m+1)
i − r̄

(m)
i

)2

∑N
i=1

(
r̄

(m+1)
i − r̄

(m)
i

)2 . (3.69)

To avoid numerical instabilities near the nodal surface of the trial wavefunction for

finite time steps δτ , we use the cutoff Ecut = α
√
N/δτ introduced by Zen et al. in
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Ref. 209, where α is a tunable parameter, here set to 0.2. The local energy that appears

in the branching factors S̄(r̄) = Ēloc(r̄)− ER is thus redefined as

Ēloc(r̄) = EMA + sign [Eloc(r̄)− EMA]×min{Ecut, |Eloc(r̄)− EMA|}, (3.70)

where EMA is the mixed average estimation of the total energy during the DMC run.

After the weights have been updated we execute the branching procedure through

the stochastic reconfiguration [24] only if the total weight fluctuation is larger than 5%

of the target weight, or if there is one walker with a weight lower than 0.50 or larger

than 1.50. If neither of the conditions are verified the code postpones the branching.

Clearly, to control the total weights the reference energy is updated after each DMC

step through the formula[185]

E
(m+1)
R = E

(m)
MA − C

δτ

δτMA

log
Wm

W0

, (3.71)

where C is a constant (usually set to 1) and δτMA is the mixed average estimation of

the effective time step defined in Eq. 3.69.

Finally, in this work, to treat the atoms of the electronic systems we use pseu-

dopotentials in order to reduce the computational cost of the calculations. Within the

FN-DMC algorithm, the integration of the non-local part is usually treated through the

Locality approximation [133] or T-move [27]. Here, to reduce the possible dependency

of the results on the Jastrow factor, we apply the Determinant Locality approximation

(DLA) [208] for which the non-local operator is evaluated using only the Slater de-

terminant part of the many-body wavefunction. The interaction between the drudons

and the pseudopotentials is reduced to the Coulomb potential, using only the effective

charge of the nuclei.

3.6 Wavefunctions for many-electron and many-drudon

systems

The El-QDO Hamiltonian described in Eq. 2.58 depends explicitly on the 3Ne electronic

r̄e and 3Nd drudonic r̄d coordinates, while the coordinates of the nuclei R̄
n

and of the
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QDOs’ centers R̄
O

are assumed to be fixed parameters within the Born-Oppenheimer

approximation.

In order to approximately describe the ground state of such a system with the QMC

methods, taking the full advantage of their ability to integrate explicitly correlated

wavefunctions that include the particles’ distances, we construct a variational ansatz

as a product of three independent terms

ΨEl-QDO(r̄e, r̄d; R̄
n
, R̄

O
) = Ψe(r̄

e; R̄
n
)Ψd(r̄

d; R̄
O

)Je−d(r̄
e, r̄d; R̄

n
, R̄

O
), (3.72)

which correspond to the electronic wavefunction Ψe(r̄
e; R̄

n
), the pure QDO wave-

function Ψd(r̄
d; R̄

O
) and a positive-defined function Je−d(r̄

e, r̄d; R̄
n
, R̄

O
) which has the

purpose of describing the correlation effects between the electrons and drudons. For

the calculations of the pure electronic or pure QDO systems only the corresponding

Ψe(r̄
e; R̄

n
) or Ψd(r̄

d; R̄
O

) terms are used.

In the next subsections, we will discuss in more detail the various functional forms

of these three terms employed in our calculations.

3.6.1 Electronic wavefunction

The electronic part Ψe of the total wavefunction, which depends only on the electronic

coordinates, and on the nuclear positions that are parameters of the system, is the

most commonly used Slater-Jastrow wavefunction, written as the product

Ψe(r̄
e; R̄

n
) = det

[
S↑
]

det
[
S↓
]
Je(r̄

e; R̄
n
) (3.73)

of the Slater determinants of the S↑ and S↓ matrices of the molecular orbitals occupied

respectively by the spin up and spin down electrons, and the electronic Jastrow factor

Je(r̄
e; R̄

n
) [41].

The molecular orbitals that define the elements of the Slater matrix S(r̄e) are writ-

ten as linear combinations

ϕk(r
e) =

QS∑
q=1

ckqφq(r
e) (3.74)
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of QS contracted Gaussian-type orbitals φq(r) centered on the various nuclei of the

electronic system. The initial values of the linear coefficients of the molecular orbital

expansions are in our case obtained from initial DFT calculations.

The positive-definite electronic Jastrow factor[41] used in this work is inspired by

the one introduced by Casula et al. in Ref. 26, as a sum of two terms

Je(r̄
e; R̄

n
) = eJ2(r̄e)+J3/4(r̄e;R̄

n
), (3.75)

which can be classified as a pure homogeneous two-body term J2(r̄e) and a three/four-

body inhomogeneous term J3/4(r̄e; R̄
n
) that is used to describe the fermionic pair

correlations in the field of the nuclei.

The homogeneous two-body Jastrow factor is written as the sum of functions de-

pending only on the distances between electron pairs (with dropped superscript ’e’ for

rij)

J2(r̄e) =
Ne∑

j>i=1

fee(rij), (3.76)

where the pair correlation functions are written as

fee(rij) =

{
− 1

4bp(1+bprij)
+
∑N

n=1 g
p
ne
−ζpnr2

ij undis.

− 1
2ba(1+barij)

+
∑N

n=1 g
a
ne
−ζanr2

ij dis.
(3.77)

respectively for distinguishable (antiparallel spin) electrons and indistinguishable ones

(parallel spin). The variational parameters bp and ba are related to the cusp functions

and are optimized independently[80]. The additional linear combination of Gaussian-

type orbitals works as a re-modulating factor which depends on the set of coefficients

gpn and gan and exponents ζpn and ζan that are optimized.

The non-homogeneous three/four-body term is written as the linear combination

of products of two atomic orbitals

J3/4(r̄e; R̄
n
) =

Ne∑
j>i=1

QJ∑
q,p=1

γqpχq(r
e
i )χp(r

e
j), (3.78)

where χq(r
e) are non-normalized atomic orbitals and the parameters γqp describe the

correlation of two electrons in the field of the nuclei. The terms in the sum of Eq. 3.78
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with the orbitals χq and χp both centered at the same nucleus represent the three-

body interactions and the terms with the orbitals χq and χp centered at distinct nuclei

represent the four-body interactions. Since the Jastrow factor must be symmetric with

respect to the exchange of all the electrons, the γqp parameters satisfy the condition

γqp = γpq.

The electronic Jastrow factor introduces dynamical correlations into the wavefunc-

tion at the level of VMC. Due to its bosonic nature, it does not affect the nodal surface

of the total wavefunction and does not affect the final DMC energy. Yet, its intro-

duction and optimization are useful since they reduce the variance of the observable

accumulated during the sampling process, thus increasing the efficiency of the compu-

tations.

The free variational parameters of the electronic part of the wavefunction are the

expansion coefficients in the molecular orbitals, the contraction coefficients and the

exponents in the Gaussian atomic orbitals, the cusp-related parameters, expansion

coefficients and exponents in fee (Eq. 3.77), and the expansion coefficients with the

exponents of the orbitals in J3/4 (Eq. 3.78). These can be all optimized at the VMC

level, using the optimization algorithms described in Sec. 3.5.3.

We would like to point out that the electronic wavefunction used in this Thesis is not

the only possible choice. It is in fact possible to use also other alternative ansätze such

as multi-determinant expansions, Geminal or Pfaffian wavefunctions among others [195,

102, 28], and the electronic Jastrow can have almost an arbitrary functional form,

with many examples available in the literature [195, 102]. In recent years also Neural

Network techniques [74] have been developed to represent highly accurate ansätze for

molecular systems, yet the application of such computationally expensive approaches

is beyond the scope of this Thesis.

Another important note is that the electronic Jastrow factor in Eq. 3.75 does

not contain the one-body cusp functions due to the divergence of the electron-nuclei

Coulomb potential, since all the QMC calculations executed in this Thesis substitute

the nuclei and core electrons of the atoms with effective core potentials [198, 16, 10, 15].
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3.6.2 Drudonic wavefunction

The QDO part Ψd(r̄
d; R̄

O
) of the wavefunction depends only on the drudonic coordi-

nates and parametrically on the QDO centers.

In previous works that approached the solution of the QDO model with the full

Coulomb potential, the authors focused essentially on the correct description of the

large distance regimes that characterize dispersion interactions [152, 88, 31]. At those

distances, the solution of the QDO model can be written as a perturbation of the

solutions of non-interacting QDOs, represented by isotropic Gaussian orbitals which

are deformed by additional couplings. For this reason, in the CI approach of M.

Sadhukhan and F. R. Manby [152] the authors constructed the variational space of the

homogeneous QDO dimer as a linear combination of a set of single QDO excitations of

the two localized oscillators, highlighting the convergence difficulties in the short-range

limit, which will be shown in Chap. 5. On the other hand, in the QMC approach

from G. J. Martyna and co-workers[87, 88] the authors used a trial wavefunction built

from the product of the solution of non-interacting harmonic oscillators adding a fixed

three-body correlation function constructed analytically to reproduce the long-range

interactions between the QDOs that are responsible for the reciprocal polarization.

The first ansatz, referred to as Dip. in Chap. 5 and used in the calculations of

the El-QDO approach in Chap. 4, is inspired by the exact solution of the QDO model

within the dipole approximation and is written as the exponential function

Ψd(r̄
d; R̄

O
) = exp

[
r̄>dOAr̄dO

]
(3.79)

of the vector-matrix-vector product between the vector r̄dO = r̄d− R̄
O

of the 3Nd com-

ponents of the distances between each drudon and its center, and the square symmetric

matrix A containing 3Nd (3Nd + 1) /2 independent parameters. While the diagonal el-

ements of the parameters’ matrix A contain the Gaussian solutions of the isolated

QDOs, and upon relaxation they describe the on-site polarization of the oscillators,

the off-diagonal elements represent the coupling of the various oscillators along the

3-dimensions. This wavefunction converges to the exact solution of the QDO model

in the limit of large spatial separations between the QDOs, where the dipole potential

becomes a better and better approximation of the Coulomb potential. Interestingly,
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Figure 3.1: Schematic representations of the one-body potentials v1(r1) and v2(r2) of each drudon

particle for a system of two interacting QDOs. φ1(r) and φ2(r) are the Gaussian functions on the

center of each QDO, that represent the exact solution in the limit of dissociation. ϕ1(r) and ϕ2(r)

are the 1s exponential Slater orbitals that describe the states of the drudons when drifting towards

the attractive Coulomb potential on the opposite center.

when used for the QDOs interacting via the full Coulomb potential, it possesses mul-

tipolar contributions, beyond the dipole potential case. As it will be shown later in

Chap. 4, it can serve as a very reasonable and simple first approximation of the QDO

wavefunction in the region characteristic for dispersion interactions.

Despite the fact that for distances characteristic of the dispersion interactions this

ansatz is a good approximation, it fails to converge to the proper state for the QDO

model for all values of the QDOs’ distances since it does not take into account the form

of the single-particle potential energies in Fig. 3.1. In order to construct a more general

and accurate solution to the Hamiltonian defined in Eq. 2.41, here we want to address

all the main aspects and properties that the solution should incorporate, following a

similar approach to the one used for many-electron systems in the basis of molecular

orbitals [70, 164, 20].

First, let us define the distances between a drudon and the various QDO centers

dij = |rdi − RO
j |, the distances between the drudonic particles and their center of

oscillation di = |rdi −RO
i | and the distances between two drudons rij = |rdi − rdj | that

will be used in the following sections. If we consider the ith drudon, since the quantum

particle interacts with its center through the harmonic potential, it is clear that the

solution in this region should be similar to a Gaussian primitive function of the type

φi
(
rdi
)
∝ exp(−µiωid

2
i

2
). Yet, the same drudon will interact with all the other N − 1
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QDO centers via the Coulomb potential, meaning that the wavefunction must satisfy

the cusps’ conditions [97]:

1

〈Ψd〉
∂ 〈Ψd〉
∂dij

∣∣∣∣
dij=0

= qiqjµj ∀ j 6= i, (3.80)

where 〈Ψd〉 represents the angular average of the wavefunction. Thus, around the j th

centers the single-particle orbital of the ith drudon will have the form of an exponential

function proportional to ϕj(r
d
i ) ∝ exp(−qiqjµjdij).

Considering these characteristics, the approximate single-particle orbitals should be

written as a linear combination of Gaussian and Slater-type functions (see Fig. 3.1)

Φi(rdi ) ≈ αiie
(−µiωi

2
d2
i ) +

N∑
j 6=i

αije
(−qiqjµjdij), (3.81)

where αij is a matrix of parameters, with indices i, j ∈ [1, N ]. These orbitals can be

generalized following the same approach used to define electronic molecular orbitals,

and thus in this work, they are written as a linear combination

Φi(rdi ) =

Q∑
q=1

αiqφq(r
d
i ), (3.82)

where φq(r
d
i ) are Q atomic-like orbitals that constitute the basis set of the system

of QDOs that are written as a linear combination of Gaussian-type orbitals (GTO),

centered at the positions of the various QDOs R̄
O

, whose linear and exponential param-

eters are fully optimized. In particular, in all our calculations each QDO is represented

through a (3s1s)/[1s1s] contracted basis set, where the uncontracted 1s orbital is used

to describe the Gaussian solution around the quadratic potential and the contracted

(3s)/[1s] orbital is used to describe the Slater solution centered on the Coulomb at-

tractive potential.

The use of GTOs in place of exponential functions clearly introduces an error in the

description of the one-body cusp in Eq. 3.80 that can be eliminated through a drudonic

Jastrow factor, which is normally used in quantum Monte Carlo trial wavefunctions,

of the form

J1(r̄d) = exp

(
N∑
i 6=j

qiqjµjf1b(dij;γ)

)
, (3.83)
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where f1b(dij;γ) is a parametric function that only depends on the distance between

two particles (in this case the ith drudon and the jth QDO center) that for dij → 0

has the property of going linearly to zero, ie f(dij) ≈ dij, and decays to zero as the

distance increases f(dij)→ 0 as dij →∞.

Another property of the wavefunction will be the explicit correlation between the

pairs of drudons, which is introduced through the two-body Coulomb potential
qiqj
rij

in

the Hamiltonian from Eq. 2.41. A first correlation function between drudonic pairs

can be introduced considering that in the limit of two overlapping drudons the exact

wavefunction has a two-body cusp of the form:

1

〈Ψd〉
∂ 〈Ψd〉
∂rij

∣∣∣∣
rij=0

= qiqj
µiµj
µi + µj

∀ j 6= i. (3.84)

This requisite can be satisfied again through a drudonic Jastrow factor of the type

J2(r̄d) = exp

(
N∑
i>j

qiqj
µiµj
µi + µj

f2b(rij;η)

)
, (3.85)

where f2b(rij;η) is a parametric function with similar properties to the one defined in

Eq. 3.83 to reproduce the one-body cups condition.

The total drudonic Jastrow factor can be thus written as Jd(r̄
d) = J1(r̄d)J2(r̄d).

From these considerations, by combining Eqs. 3.82, 3.83 and 3.85 we can write a first

approximation to the explicitly correlated wavefunction as

Ψd(r̄
d; R̄

O
) =

[
N∏
i=1

Φi(rdi )

]
Jd(r̄

d), (3.86)

that will be referred to as Mol.+J in Chap. 5, where the one-body cusp function is

written as

f1b(dij;γ) = −e
−γ0dij

γ0

+
M∑
m=1

γme
−γM+md

2
ij , (3.87)

and the two-body has a form inspired by the Padé’s approximation[141]

f2b(rij;η) = − 1

η0(1 + η0rij)
+

M∑
m=1

ηme
−ηM+mr

2
ij . (3.88)
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In Eqs. 3.87 and 3.88, the two vectors of 2M+1 parameters γ and η are both optimized.

In our calculations, we assume M = 5. Notice, that by construction, the functions f1b

and f2b do not only satisfy the cusp conditions but also re-modulate the total wave-

function. This will be important in Chap. 5, in which we compare the performances of

the various ansätze.

The third trial wavefunction for the QDOs considered in this Thesis is the dipole

function from Eq. 3.79 enhanced with the drudonic Jastrow factors defined above:

Ψd(r̄
d; R̄

O
) = exp

[
r̄>dOAr̄dO

]
Jd(r̄

d), (3.89)

that will be referred to as Dip.+J.

An important consideration that should be made here is that due to the distin-

guishable nature of drudons, the DMC results do not depend on the different ansätze

since the algorithm always converges to the correct ground state. This will be dis-

cussed in more detail in Chap. 4, confirming that already the simplest dipole ansatz

from Eq. 3.79 is a very reasonable first approximation of the QDO wavefunction.

3.6.3 Electron-drudon coupling

The last part of the El-QDO wavefunction is the coupling Je−d(r̄
e, r̄d; R̄

n
, R̄

O
) between

two types of quantum particles in the El-QDO system, in the external field of the

nuclei and of the QDOs’ centers. This part of the wavefunction is inspired by the

dipole ansatz defined in Eq. 3.79 for QDOs, considering that the Coulomb potential is

well approximated by the dipole potential for distances characteristic of the dispersion

interactions. Thus the approximated electron-drudon coupling has the form

Je−d(r̄
e, r̄d; R̄

n
, R̄

O
) = exp

[
µ>Br̄dO

]
, (3.90)

where r̄dO is the vector of the distances between each drudon and its corresponding

center, defined in the previous section, and µ is the 3-dimensional vector of the dipole

moment of the electronic part of the system (explicitly depending on the positions of

the electrons r̄e)

µ =
Nn∑
j=1

ZjR
n
j −

Ne∑
i=1

rei , (3.91)
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and B is a matrix containing 3× 3Nd variational parameters.

The bias introduced in DMC calculations from the use of this approximated ansatz

is more difficult to estimate. In theory, the drudonic part should explicitly affect the

nodal structure of the electronic part, which is not possible through the functional form

defined in Eq. 3.90. In practice, it is well known that non-covalent interactions in the

case of standard electronic calculations do not greatly depend on the nodal surface in

between the bond [43], and from the accuracy of the results presented in the Chap. 4

we can conclude that the ansatz in Eq. 3.90 is a reasonable first approximation for the

El-QDO coupling in the total wavefunction.

An improvement of the ansatz is of course possible, for example by introducing a

Jastrow term similar to that proposed for the QDO wavefunctions in Eqs. 3.86 and 3.89,

which would satisfy the cusp conditions between the electrons, drudons, and centers

of the QDOs. Yet, this would most likely give just a very small improvement on the

VMC energy estimations for distances that are characteristic of dispersion interactions,

while the contributions to the DMC calculations would be only in the efficiency of the

sampling.
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Chapter 4

El-QDO applications

Parts of this Chapter have been published in this or a similar form in:

M. Ditte, M. Barborini, L. M. Sandonas, A. Tkatchenko. “Molecules in Environments:

Toward Systematic Quantum Embedding of Electrons and Drude Oscillators” Phys.

Rev. Lett. 131, 228001 (2023)

and will be published in:

M. Ditte, M. Barborini, A. Tkatchenko. “Electrons embedded in charged oscillators:

A quantum embedding approach for molecular systems” In preparation.

and have been produced in collaboration with the above authors.

In this Chapter, we present the first applications of the El-QDO method introduced

in Sec. 2.5. First, we discuss the case of the noble gas dimers (Sec. 4.1), which are

systems dominated by dispersion interactions, and of the water dimers (Sec. 4.2), in

order to show the capability of the method to describe hydrogen bonds. The calcula-

tions of these dimers, which serve as proof of concept, are followed by the study of the

solvation energies of benzene, the benzene dimer and ortho-benzyne in a water envi-

ronment containing up to 50 explicit water molecules (Sec. 4.3). Moreover, we present
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calculations of the singlet-triplet gap of ortho-benzyne in a water environment. All the

results are compared to state-of-the-art ab initio methods.

4.1 Noble gas dimers

The long-range interaction energies of noble gas dimers are dominated by disper-

sion. For this reason, the QDO model constructed from the dispersion coefficients

and polarizabilities, together with an external short-range repulsion to account for

Figure 4.1: The three variants of the noble gas

dimers studied in this work.

the exchange effects present by the an-

tisymmetrization conditions of the elec-

trons in the regular atoms has been suc-

cessfully applied to these systems [88,

87, 204, 152]. Here we study the dis-

sociation curves of Ne2, Ar2, Kr2 and

Xe2, each with three different Hamilto-

nians, as illustrated in Fig. 4.1: a) El-

El, where both atoms are described at

the fully electronic level using Hamilto-

nian from the Eq. 2.17 with 16 valence

electrons, which is solved using the ref-

erence Coupled Cluster method [55, 142,

196, 71]; b) QDO-QDO, where two atoms

are replaced by two QDOs, described by

the Hamiltonians with the Coulomb and

dipole potential in the Eqs. 2.41 and 2.53

with two drudons; and finally c) El-QDO, where one of the atoms is described at the

electronic level and the second one is replaced by a QDO, described by the Hamiltonian

in Eq. 2.58 with 8 valence electrons and 1 drudon.

First, we study the dissociation curves without the external short-range repulsion,

in order to show the interaction energies without introducing additional fitting param-

eters. The results are shown in Fig. 4.2 and are compared to results obtained from

the symmetry-adapted perturbation theory (SAPT) decomposition [161], namely the

72



Figure 4.2: The interaction energies of Ne2, Ar2, Kr2 and Xe2 using the QDO-QDO and El-QDO

models from Fig. 4.1 at the VMC and DMC level of theory without the external short-range re-

pulsion. The results are compared to the pure dispersion (Dsp) and the sum of all the terms not

including exchange (F-Ex) from the El-El SAPT decomposition [161] and to the exact solution of

two QDOs interacting via the dipole potential (QDO-QDO dip). The SAPT decomposition for Xe2

is not available. The dashed vertical lines represent the equilibrium distance of the atoms.

pure dispersion contribution (Dsp) and the total energy minus all the terms includ-

ing exchange (F-Ex) accounting also for electrostatics and polarization effects, and to

the exact solution of the QDO-QDO model interacting via the dipole potential from

Eq. 2.55 (QDO-QDO dip). Here we note that the SAPT decomposition is not unique

and depends on the choice of the wavefunctions of the non-interacting monomers. At

the VMC level, both the QDO-QDO and El-QDO models give energies that are similar

to the QDO model interacting via the dipole potential. This underestimation of the

interactions at the VMC level is due to the approximate wavefunction in Eq. 3.79. Yet,

at the DMC level, the QDO-QDO model reproduces the pure dispersion curves almost

exactly for all the cases. Our El-QDO model at the DMC level leads to lower interac-

tion energies in all the cases, closer to the F-Ex curve due to the additional interactions

present. The accuracy of the The DMC results clearly depend on the fact, that being

QDOs distinguishable particles, their trial wavefunction does not have nodes and the
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Figure 4.3: Binding curves of Ne2, Ar2, Kr2 and Xe2 obtained from the DMC data of the QDO-

QDO and El-QDO models shown in Fig. 4.2 to which we have added the short-range repulsion

potentials shown in Fig. 4.4 and whose parameters are reported in Tab. A1.3. The results are

compared to the ab initio CCSD(T) calculations from Refs. 55, 142, 196 and 71 respectively. The

dashed vertical lines represent the equilibrium distance of the atoms.

energy converges more accurately to the ground state. Furthermore, also electrons are

distinguishable from QDOs. Both these conditions justify the choice of the ansätze in

Eqs. 3.79 and 3.90. Interestingly, the small differences between the exact solution of

the QDO-QDO model interacting via the dipole potential and the VMC for QDO-QDO

using the full Coulomb potential at the equilibrium distances are due to the presence

of multipolar contributions, beyond the dipole potential case, which are introduced

through the optimized ansatz in VMC. The most important result from Fig. 4.2 is the

agreement between QDO-QDO DMC, El-QDO DMC and the SAPT decomposition in

the long-range region.

On top of these DMC results, as previously done in the literature for QDO dimers [88],

we added an external short-range repulsion to the QDO-QDO and El-QDO models.

This was done by fitting the difference between the reference CCSD(T) and the DMC

results from Fig. 4.2 with an exponential function defined in Eq. 2.66 with N=2, with

4 parameters (see Tab. A1.3). Clearly, the binding curves shown in Fig. 4.3 perfectly
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Figure 4.4: Plots of the external short-range repulsion for the noble gas dimers using Eq. 2.66 with

N=2 and with parameters from Tab. A1.3, obtained by fitting the differences between the ab ini-

tio CCSD(T) data and the DMC dissociation curves for the QDO-QDO and El-QDO models. The

repulsions from the QDO-QDO and El-QDO calculations are compared to the El-El SAPT decom-

position [161], namely to the pure exchange contribution (Ex pure) and to all the terms containing

exchange (Ex all). The SAPT decomposition for Xe2 is not available. The dashed vertical lines rep-

resent the equilibrium distance of the atoms.

match the reference CCSD(T) results for all four dimers.

The pure short-range repulsive parts are plotted in Fig. 4.4, where we compare our

fitted repulsions for the QDO-QDO and the El-QDO models at the DMC level, with the

pure exchange curves from SAPT (Ex pure) and with the sum of all the mixed terms,

which include exchange (Ex all). The goal here is not to reproduce the SAPT curves,

which are not uniquely defined anyway, but to obtain a qualitative agreement with the

fast exponential decay, that confirms the fact, that already at distances approximately

0.5 Å longer than the equilibrium ones, these exchange contributions can be neglected.
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4.2 Water dimers

Next, we apply the El-QDO model to the water dimer in its two energetically lowest

geometries, labeled as C1 and C2 respectively, in order to confirm its ability to capture

the hydrogen bond.

Figure 4.5: A schematic of the QDO-based model

of the water molecule from Ref. 31. The ∠HOH

angles and ROH distances are taken from real

molecular structures.

In order to reproduce the dipole mo-

ment of an isolated water molecule, we

used the QDO-based model of water [31],

built on the classical TIP4P force field

model [92], consisting of 2 point charges

H (qH = 0.605), 1 point charge M (qM =

−1.21) and a QDO placed at point M .

A ghost atom O serves to define an an-

gle ∠HOM = 1
2
∠HOH and the distance

ROM=0.2667 Å. The ∠HOH angles and

ROH distances were taken from atom-

istic geometry relaxation, which is differ-

ent from the previous applications, where

the angle ∠HOH and the distance ROH

had been fixed. A schematic of the QDO

model of water is shown in Fig. 4.5.

Similarly to the noble gas dimers, we

compare the dissociation curves of standard electronic calculations to the ones ob-

tained with the QDO-QDO and El-QDO models, as shown in Fig. 4.6: 1.) El-El in

Figs. a) and e), where both atoms are described at the fully electronic level using

the Hamiltonian in Eq. 2.17 with 16 valence electrons, which is solved using the ref-

erence Coupled Cluster method [127]; 2.) QDO-QDO in Figs. b) and f), where both

monomers are replaced by QDOs, described by the Hamiltonian in Eq. 2.41 with two

drudons; 3.) El-QDO in Figs. c) and g), where the acceptor is kept at the fully elec-

tronic level and the donor is replaced by a QDO (Eq. 2.58) with 8 valence electrons

and 1 drudon; and 4.) El-QDO in Figs. d) and h), where the donor is described

at the fully electronic level and the acceptor is replaced by a QDO, with 8 valence
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electrons and 1 drudon. Here we recall that the acceptor molecule is the monomer

donating the electrons of the electronegative oxygen atom toward the donor monomer.

The reason for discussing both cases, in which the QDO plays the role of the donor and

in which the QDO plays the role of the acceptor, comes from the necessity to verify

how the model behaves while describing an anisotropic environment. In QM:MM

methods [17], it is usually assumed, that the QM part has to model the acceptor

molecule, enabling the charge transfer towards the donor. The opposite case becomes

complicated to model within the QM:MM methods, because it does not enable the

charge transfer. Here we study the ability of the El-QDO method to partially polarize

the QDO monomer playing the role of the acceptor toward the electronic donor.

Figure 4.6: The variants of the water dimers

studied in this work. The geometries are taken

from Ref. 127

.

First, in Fig. 4.7, we again present

the bare dissociation obtained with the

QDO-QDO and El-QDO models. Con-

figuration C1 is compared to pure disper-

sion (Dsp) and to the sum of all terms

minus the exchange contributions (F-Ex)

from SAPT decomposition [6]. Differ-

ently from the case of the noble gas

dimers, here the results from the QDO-

QDO and El-QDO models differ from the

pure dispersion contribution due to the

inclusion of the point charges that re-

produce the electrostatic interactions be-

tween the permanent dipoles of the water

monomers. We again observe that the El-

QDO model at the DMC level is closer to

the F-Ex curve when compared to the QDO-QDO model. In particular, the El-QDOD

curve matches the F-Ex curve better than the El-QDOA one due to the ability of

the electrons to delocalize toward the QDO region, increasing the polarization and in-

creasing the binding energy. Furthermore, the discrepancy between the El-QDOA and

El-QDOB results increases in the case of the C2 conformer, in which the charge trans-

fer from the acceptor’s oxygen and the donor’s hydrogens is enhanced. Both models

underestimate the strength of the interactions at the VMC level, exactly as is expected
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Figure 4.7: The interaction energies of the water dimer in its two geometries (C1 and C2) using

the QDO-QDO and El-QDO models from Fig. 4.6 at the VMC and DMC level of theory without

the external short-range repulsion. The subscripts in QDOD and QDOA denote the QDO playing

the role of the donor and acceptor respectively. The results for the energetically lowest geometry

C1 are compared to the pure dispersion (Dsp) and the sum of all terms not including exchange (F-

Ex) from the El-El SAPT decomposition [6]. The dashed vertical lines represent the equilibrium

distance of the monomers.

due to the limited form of the variational ansatz.

As for the noble gas dimers, in Fig. 4.8 we construct the repulsion potential (Tab. A1.3)

that, when added on top of the bare results of Fig. 4.7, reproduces the PES of ab initio

electronic calculations. For the QDO-QDO model, here we use the repulsion poten-

tial from Ref. 31, which as shown in Fig. 4.8 does not perfectly match the reference

CCSD(T) curves due to the fact that it is an average repulsion that does not fully

consider the anisotropy of the interactions. For this reason, we have chosen to fit the

repulsion independently for each of the two configurations for the El-QDO model. It

is important here to recall, that all four potential energy curves coincide for inter-

molecular distances larger than 3.8 Å that will be exploited in the following sections.

The external short-range repulsion for the two geometries of water dimer, with

parameters reported in Tab. A1.3, are plotted in Fig. 4.9.1 The repulsions for the

QDO-QDO and El-QDO models, fitted using Eq. 2.66 with N=2, are again compared

to two curves from SAPT decomposition [6], namely the pure exchange (Ex pure) and

1Due to the discrepancies of the QDO-QDO model in Fig. 4.8 we decided to refit the repulsion

for the C1 and C2 geometries separately. The new refits are labeled as refit (R) and are compared

to the universal one (U) proposed in Ref. 31.
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Figure 4.8: The binding curves of the water dimer in its two geometries (C1 and C2) obtained

from the DMC data of the QDO-QDO and El-QDO models shown in Fig. 4.6 to which we have

added the short-range repulsion potentials shown in Fig. 4.9 and whose parameters are reported in

Tab. A1.3 (the QDO-QDO repulsion is labeled as U). The subscripts in QDOD and QDOA denote

the QDO playing the role of the donor and acceptor respectively. The results are compared to the

ab initio CCSD(T) calculations [127]. The dashed vertical lines represent the equilibrium distance

of the monomers.

to sum of all terms including exchange (Ex all). Again, the goal here is not to reproduce

the SAPT curves, but to show a qualitative agreement. From these results, it is clear,

that at the distances of about 4 Å the repulsion contribution can be ignored.

Figure 4.9: Plots of the external short-range repulsion for the water dimers in its two geometries

(C1 and C2) using the Eq. 2.66 with N=2 and with parameters from Tab. A1.3, obtained by fitting

the differences between the reference CCSD(T) and the DMC dissociation curves for the QDO-QDO

and El-QDO models. The subscripts in QDOD and QDOA denote the QDO playing the role of

the donor and acceptor respectively. Labels U (uniform) and R (refit) denote the universal repul-

sion from Ref. 31 and our geometry-dependent refit respectively. The repulsions of the C1 geome-

try from the QDO-QDO and El-QDO models are compared to the El-El SAPT decompositon [6],

namely to the pure exchange contribution (Ex pure) and to all terms containing exchange (Ex all).

The dashed vertical lines represent the equilibrium distance of the monomers.
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4.3 Molecules in a water environment

Figure 4.10: Benzene embedded in 3 different

water cages: a) cage 1 (Rmin = 3.54 Å); b) cage 2

(Rmin = 3.54 Å); and c) cage 3 (Rmin = 3.57 Å).

After studying the atomic and molec-

ular dimers, here we apply the El-

QDO approach to a more complex

anisotropic environment studying small

molecules in explicit water environ-

ments of various sizes. We com-

pare the El-QDO method to the state-

of-the-art Density Functional Theory

(DFT) calculations using PBE0 [4] func-

tional with additional dispersion interac-

tions, namely with pairwise Tkatchenko-

Scheffler (PBE0+TS) [180] approach and

with many-body dispersion (PBE0+MBD) [179, 9] method. Furthermore, we compare

our calculations also to the standard QM:MM approach described in Sec. 2.3, that cou-

ples DMC with a traditional FF [92, 93], and for the smallest systems, for which the

calculations are computationally feasible, also with the pure electronic DMC method.

4.3.1 Benzene in 4 water molecules

The first studied system is benzene embedded in three different small cages (cage 1-3)

composed of four water molecules, shown in Fig. 4.10. The cages are artificially gener-

ated geometries, with the oxygens of the water molecules randomly placed on a sphere

of radius 6 Å around the center of benzene and with random directions of the HOH

Table 4.1: The solvation energies (in kcal/mol) of benzene in the three different cages composed of 4

water molecules from Fig. 4.10.

PBE0 PBE0+TS PBE0+MBD DMC DMC El-FF DMC El-QDO

cage 1 -1.38 -2.03 -1.97 -1.97(6) -1.83(5) -1.94(4)

cage 2 -1.37 -1.96 -1.91 -1.91(7) -1.77(6) -1.83(5)

cage 3 -1.53 -2.06 -2.01 -2.02(8) -2.05(5) -1.86(5)
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Table 4.2: The decomposition of the El-FF

solvation energies (in kcal/mol) for benzene

embedded in the three various cages com-

posed of 4 water molecules from Fig. 4.10.

El-TIP3P Dsp. El-FF

cage1 -1.20(5) -0.63 -1.83(5)

cage2 -1.19(6) -0.58 -1.77(6)

cage3 -1.53(5) -0.52 -2.05(5)

plane with fixed ROH=0.958 Å and ^HOH=104.4◦.

The final chosen cages were the ones with

the largest solvation energies at PBE0+MBD

level of theory. The reason for using these

artificial water cages is to completely avoid

the short-range repulsion problem discussed

in the previous sections, so that the binding

energy given by the model will correspond to

that of the ab initio predictions, with the min-

imal distance between the benzene molecule

and the water molecules being more than 3.5 Å, so that the additional repulsion po-

tentials can be neglected. The solvation energies of these three systems, defined as the

energy difference Emol-in-env − Emol − Eenv, are shown in Tab. 4.1. All the methods,

except for the bare PBE0, agree up to the sub-chemical accuracy. The small difference

between the pairwise PBE0+TS and many-body PBE0+MBD/DMC indicates a small

importance of the many-body effects for this small simple system. The El-FF method

for these small systems is comparable with the El-QDO one, but it will not be the

case as the size of the system increases. The decomposition of the DMC El-FF into

the electrons/nuclei - point charges contribution [92] (El-TIP3P) and the pairwise dis-

persion contribution [93] (Disp.) in Tab. 4.2 shows on average 31% of the interaction

energy coming from the pairwise contribution. Most importantly, DMC El-QDO gives

correct solvation energies.

4.3.2 Ortho-benzyne in 4 and 30 water molecules

Table 4.3: The solvation energies (in kcal/mol) of ortho-benzyne in the singlet and adiabatic triplet

states in the cages composed of 4 and 30 water molecules from Fig. 4.11.

PBE0 PBE0+TS PBE0+MBD DMC DMC El-FF DMC El-QDO

S (4W) -1.01 -1.50 -1.43 -1.5(1) -1.30(5) -1.39(5)

T (4W) -0.77 -1.24 -1.18 -1.0(1) -1.11(5) -1.12(5)

S (30W) -2.82 -6.78 -6.11 - -5.44(5) -6.20(7)

T (30W) -2.37 -6.41 -5.71 - -4.99(5) -5.73(7)
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Figure 4.11: Ortho-benzyne in the singlet state

geometry embedded in two cages composed of

a) 4 water molecules (4W, Rmin=3.61 Å) and

b) 30 water molecules (30W, Rmin=2.99 Å).

The geometries of ortho-benzyne are taken from

Ref. 160.

The second studied system is ortho-

benzyne in the singlet (S) and the adi-

abatic triplet (T) states in two cages,

one composed of 4 water molecules (4W)

and the second composed of 30 water

molecules (30W), both shown in Fig. 4.11.

The cages were generated in the same

way as in the previous example of ben-

zene, except here the criterion for the fi-

nal cages was the maximal change of the

singlet-triplet (ST) gap in the cage com-

pared to the ST gap in the vacuum at the

PBE0+MBD level of theory. We report

the solvation energies of these four sys-

tems in Tab. 4.3. Similar to benzene in the small water cages, the solvation energies

of ortho-benzyne in both states for the 4W cage agree for all the methods, except

the bare PBE0, up to the sub-chemical accuracy. This is not the case for the larger

cage composed of 30 water molecules, where we see a 0.7 kcal/mol difference between

PBE0+TS and PBE0+MBD, indicating the importance of the many-body effects. Un-

fortunately, fully electronic DMC calculations are not feasible due to the size of the

systems, but DMC El-QDO gives solvation energies in the match with the PBE0+MBD

results, while DMC El-FF underestimates the interactions between ortho-benzene and

the environment by 0.75 kcal/mol. The decomposition of the DMC El-FF into the elec-

trons/nuclei - point charges contribution [92] (El-TIP3P) and the pairwise dispersion

contribution [93] (Disp.) in Tab. 4.5 shows that the discrepancy between the El-QDO

and the El-FF results comes from the fact, that the dispersion contributions are greatly

Table 4.4: The singlet-triplet (ST) excitation energies (in kcal/mol) of ortho-benzyne in the vacuum

(V) and the two cages composed of 4 and 30 water molecules from Fig. 4.11. All the DMC results

are corrected to the ECP error of 2.85 kcal/mol from Tab. A1.4.

PBE0 PBE0+TS PBE0+MBD DMC DMC El-FF DMC El-QDO

ST (V) 28.23 28.23 28.26 37.23(5) - -

ST (4W) 28.46 28.48 28.51 37.7(1) 37.43(5) 37.50(5)

ST (30W) 28.68 28.61 28.66 - 37.68(5) 37.70(8)
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increasing between the 4W (35%) and 30W (66%) cages and probably the pairwise ap-

proximation in the El-FF method underestimates the correlations between the molecule

and the environment with respect to the many-body interactions in El-QDO.

Table 4.5: The decomposition of the El-FF

solvation energies (in kcal/mol) for ortho-

benzyne in the singlet and adiabatic triplet

states in the cages composed of 4 and 30

water molecules from Fig. 4.11.

El-TIP3P Dsp. El-FF

S (4W) -0.87(5) -0.43 -1.30(5)

T (4W) -0.69(5) -0.42 -1.11(5)

S (30W) -2.04(5) -3.40 -5.44(5)

T (30W) -1.56(5) -3.43 -4.99(5)

The main reason for studying ortho-

benzene is its ST gap, which is known to be

challenging at the DFT level due to the charge

delocalization error [160]. The ST gap, called

also the singlet-triplet excitation energy in the

text, is calculated as ∆EST = ET −ES, where

ES is the energy of the ground state with to-

tal spin equal to 0 and ET is the energy of the

lowest triplet state with the total spin equal

to 1 (corresponding to a single flipped elec-

tron). Tab. 4.4 contains the adiabatic ST gaps

of ortho-benzyne in the vacuum (V) and in the

two previously discussed water cages, where all the DMC calculations using effective

core potential are corrected to the ECP error of 2.85 kcal/mol coming from all-electrons

vs ECP calculations at UPBE0 level of theory reported in Appendix A1 in Tab. A1.4.

We see the PBE0 calculations in the vacuum being 9 kcal/mol far from the experi-

mental value of 37.5(3) kcal/mol [202], independently of the used dispersion method.

However, DMC, which does not suffer from the delocalization error, is able to recover

the experimental value. For the smallest cage composed of 4 water molecules, DMC

El-QDO agrees with DMC within the sub-chemical accuracy. Interestingly DMC El-FF

agrees with DMC El-QDO for both water cages. The reason is a negligible change in

the dispersion between the singlet and triplet states observed for all the methods, lead-

Table 4.6: The solvation energies (in kcal/mol) of the benzene dimer and its two monomers in the

cage composed of 50 water molecules from Fig. 4.12.

PBE0 PBE0+TS PBE0+MBD DMC El-FF DMC El-QDO

Dimer -4.9 -10.9 -10.0 -8.9(1) -10.3(2)

Monomer1 -1.5 -4.1 -3.8 -3.48(6) -4.0(1)

Monomer2 -3.4 -6.6 -6.1 -5.18(6) -6.4(1)
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ing to the cancellation of the pairwise contribution in the El-FF embedding (Tab. 4.7),

which is the source of the error in the previously shown solvation energies.

4.3.3 Benzene dimer in 50 water molecules

Figure 4.12: a) The T-shaped benzene dimer

(Rmin=3.4 Å); b) its monomer 1; and c) monomer

2 in a cage composed of 50 water molecules [163].

The last studied system is the T-shaped

benzene dimer and its monomers in a

cage composed of 50 water molecules

(Fig. 4.12), which is an example of a

computationally unfeasible system for the

pure electronic DMC and thus a method

like the El-QDO embedding is necessary.

The water cage, originally obtained from

molecular dynamics, has been expanded

from the dimer’s center by 1.5 Å in or-

der to increase the minimal distance be-

tween the benzene dimer and the cage to 3.4 Å. The solvation energies, reported in

Tab. 4.6, show discrepancies between PBE0+TS and PBE0+MBD, again indicating

the importance of the many-body effects. The DMC El-QDO method agrees with the

PBE0+MBD one up to the sub-chemical accuracy, while DMC El-FF underestimates

the interaction energies by up to 1 kcal/mol. The reason for the failure of the DMC

El-FF can be seen from the decomposition of the DMC El-FF energy into the elec-

trons/nuclei - point charges contribution [92] (El-TIP3P) and the pairwise dispersion

contribution [93] (Disp.) in Tab. 4.8, where the dispersion contribution corresponds

to 50-70% of the total solvation energy, and again can be expected to underestimate

the correlation effects, when compared to the many-body treatment in the El-QDO

method.
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4.4 Computational details

Table 4.7: The decomposition of the El-FF exci-

tation energies (in kcal/mol) of ortho-benzyne in

the cages composed of 4 and 30 water molecules

from Fig. 4.11. The energies are without the

2.85 kcal/mol ECP correction from Tab. A1.4.

El-TIP3P Dsp. El-FF

ST (4W) 34.57(5) 0.01 34.58(5)

ST (30W) 34.86(5) -0.03 34.83(5)

All the reference PBE0+TS and PBE0+MBD

calculations in this Chapter have been

done in FHI-aims package [2], using the

all-electron tight basis set, consisting of

numerical orbitals [69]. For all the QMC

calculations we have used ccECP effec-

tive core potentials [198, 16, 10, 15] with

the corresponding (aug)-cc-pVDZ Gaus-

sian basis sets for the noble gas and water

dimers and cc-pVTZ for all the calcula-

tions of benzene/benzene dimer/ortho-benzyne in water cages and in the vacuum. All

the molecular orbitals for the QMC wavefunctions were taken from DFT calculations

using PBE0 functional [4] in GAMESS (2016 R1) [13] and Orca 5.0 [136] softwares. The

dynamical Jastrow factor is constructed from 3s2p1d uncontracted Gaussians (GTOs)

for all the heavy atoms and from 2s1p GTOs for the hydrogen atoms. When not

mentioned explicitly, dt = 0.005 a.u. has been used for the DMC calculations, with

standard error function damping from Eq. 2.60, using σ = 0.1 for all species except

for the center of QDO of the water model, where σ = 1.2 [31] and the Slater determi-

nant of the electronic part was fixed during the optimization at VMC level of theory.

For all the QMC calculations of QDO and El-QDO models the dipole ansatz of the

wavefunction without the Jastrow factor from Eq. 3.79 has been used.

In the rest of this section, we discuss the convergence and computational efficiency

of the El-QDO method for some of the systems from Sec. 4.3.

4.4.1 Computational efficiency

In Tab 4.9 we show the relative runtimes of the DMC calculations in the water environ-

ment compared to the vacuum. The test calculations have been done on 56 CPUs using

12 walkers per CPU and 20 bins with 100 steps per block. The time per block is an
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Table 4.8: The decomposition of the El-FF solva-

tion energies (in kcal/mol) for the benzene dimer

and its monomers in the cage composed of 50

water molecules from Fig. 4.12.

El-TIP3P Dsp. El-FF

Dimer -3.8(1) -5.11 -8.9(1)

Monomer1 -1.04(6) -2.45 -3.48(6)

Monomer2 -2.52(6) -2.66 -5.18(6)

average over all 20 blocks and the rel-

ative runtime is calculated as the ratio

of time per block times the ratio of the

square of the root mean square deviation

σ. In the case of ortho-benzyne (S), it

is 11.99 times more expensive to perform

fully electronic calculations in the envi-

ronment of 4 water molecules when com-

pared to the vacuum. In the case of the

El-QDO method, this is only 1.02 and

1.25 times more expensive for 4 and 30 QDOs respectively. For the biggest cage com-

posed of 50 QDOs, we see a slowdown by a factor of 1.47 and 1.27 for benzene monomer

and benzene dimer respectively when compared to calculations in the vacuum.

Table 4.9: The relative runtime of the El-QDO embedding at the DMC and VMC level of theory

with respect to the vacuum and the fully electronic cage.

DMC VMC

time σ runtime time σ runtime

per block [Ha] relative per block [Ha] relative

[s] to vacuum [s] to vacuum

ortho-benzyne (S) from Fig. 4.11

El (V) 6.36 0.80 1.00 1.26 0.80 1.00

El (4W) 25.10 1.40 11.99 4.63 1.42 11.47

El-QDO (4W) 6.45 0.80 1.02 1.29 0.82 1.05

El-QDO (30W) 6.78 0.87 1.25 1.45 0.88 1.36

benzene (monomer1) from Fig. 4.12

El (V) 7.15 0.80 1.00 - - -

El-QDO (50W) 8.34 0.89 1.47 - - -

benzene dimer from Fig. 4.12

El (V) 30.95 1.31 1.00 - - -

El-QDO (50W) 32.90 1.57 1.27 - - -

86



Tab. 4.9 contains also a similar comparison for the VMC calculations for ortho-

benzyne (S). The test calculations have been done on 56 CPUs using 1 walker per CPU

Table 4.10: The number of parameters and

the total runtime of the El-QDO optimiza-

tion of ortho-benzyne (S) from Fig. 4.11.

# of runtime

parameters [s]

El (V) 376 56.00

El (4W) 692 198.21

El-QDO (4W) 490 58.04

El-QDO (30W) 4741 72.65

and 20 bins with 100 steps per block. The

time per block is an average over all 20 blocks

and the relative runtime is calculated as the

ratio of time per block times the square of

the ratio of the root mean square deviation σ.

The fully electronic calculations in the envi-

ronment of 4 water molecules are 11.47 times

more expensive than calculations in the vac-

uum. On the other hand in the case of the El-

QDO method, it is only 1.05 and 1.36 times

more expensive to perform the calculations in

4 and 30 QDOs compared to the vacuum.

Table 4.11: The mean square deviations

σ of the wavefunctions of ortho-benzyne

(S) from Fig. 4.11 in the vacuum and after

optimizing various parts of the wavefunction

embedded in 30 QDOs for the fixed and

optimized nodes of the Slater determinant.

Optimization σ [Ha] σ [Ha]

block fixed nodes optimized nodes

vacuum 0.80 0.74

in unopt. QDOs 0.91 0.91

QDO 0.86 0.80

El 0.86 0.81

El-QDO 0.86 0.81

all 0.85 0.81

Runtimes of the optimization of the wave-

functions with the corresponding number of

variational parameters for ortho-benzyne (S)

are shown in Tab. 4.10. The test calculations

have been done on 56 CPUs using 1 walker

per CPU, 200 bins with 2 steps per block

and 10 optimization steps without the corre-

lated sampling. Here we report only the abso-

lute values for 10 optimization steps including

the sampling. Almost all the differences come

from the sampling, indicating the robustness

of the optimization algorithm, which is able to

optimize 4741 parameters of ortho-benzyne in

30 QDOs almost as fast as 376 parameters of

ortho-benzyne in the vacuum.

There are three reasons for the high computational efficiency of the El-QDO method:

1) the reduced number of quantum degrees of freedom; 2) the faster evaluation of the

drudonic wavefunction compared to the more complicated electronic wavefunction; and
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3) the lower statistical noise in the sampling.

4.4.2 Optimization of the wavefunctions

Figure 4.13: Total energy of ortho-benzyne (S) in the cage composed

of 30 QDOs from Fig. 4.11 as a function of the optimization step for

the fixed and optimized nodal surface (NS). The ’QDO’, ’El’, ’El-

QDO’ and ’all’ blocks are explained in the text of Sec. 4.4.

In Tab. 4.11 we compare

the mean square devia-

tions σ of the wavefunc-

tions optimized at vari-

ous levels of the ortho-

benzyne molecule in its

singlet state shown in

Fig. 4.11. The value of

σ is a measure of the

quality of the ansatz,

with the exact solution

having σ=0. First, we

optimize the electronic

part of wavefunction in

the vacuum, without

the presence of the QDOs (vacuum). In the next step, we add the QDOs, set the

drudonic wavefunction to non-interacting QDOs (a diagonal form of the matrix A in

Eq. 3.79), set the El-QDO coupling (matrix B in Eq. 3.79) to zero, and we do not

perform an optimization (in unopt. QDOs). This is followed by optimization of the

drudonic part of the wavefunction (QDO), optimization of the electronic part (El),

optimization of the El-QDO coupling part (El-QDO), and by optimizing all the pa-

rameters together (all). All these steps are done with both, fixed and optimized nodal

structure of the wavefunction (molecular orbitals in the Slater determinant). The in-

crease of σ from vacuum to unoptimized QDOs is only 12% for the fixed node case,

with a further decrease to 6% increase at the end of the optimization. The biggest gain

is coming from the optimization of the QDO part, while the rest is contributing at a

lower order of magnitude, meaning that the contributions of the correlations recovered

by this term are essential for the convergence of the system’s energy. The total ener-

gies of the same system during the optimization are shown in Fig. 4.13. We see the
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Figure 4.14: The first three bars: the total DMC energies of ortho-benzyne (S) in the vacuum;

ortho-benzyne (S) in 30 QDOs; and the empty cage composed of 30 QDOs as a function of the time

step δτ . The bottom right bar: the DMC solvation energy of ortho-benzyne (S) embedded in 30

QDOs as a function of the time step δτ , with a quadratic extrapolation.

same trend as reported in Tab. 4.11, for which the biggest energy improvement comes

from the QDO part, followed by the El-QDO coupling. The optimization of the nodal

surface leads to a reduction of σ by 5%. The optimization curves with and without

the optimization of the nodal structure in Fig. 4.13 are identical up to a constant shift,

implying that the presence of the environment has only a small effect on the nodal

surface of the molecule in the solvent. This may not be the case with a wavefunction

with more explicit interactions between the nodes and the QDOs, but in general, we

expect this effect to be negligible at these distances. For completeness, we calculated

the DMC energy of ortho-benzyne (S) in 30 QDOs with the optimized nodal surface.

The solvation energy with the optimized nodes is equal to -6.04(6) kcal/mol, which

is very close to the value obtained with the fixed nodes (-6.20(7) kcal/mol) and it is

within the error bars from the PBE0+MBD reference value (-6.11 kcal/mol).
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4.4.3 Time step δτ convergence

In order to verify the convergence of the results with respect to the time step δτ for

the DMC calculation we report a convergence analysis for the ortho-benzyne molecule

in its singlet state embedded in 30 QDOs. The total energies and the solvation energy

as a function of δτ are shown in Fig. 4.14. Here we fixed the scale for the y-axis for

the total energies in order to not overamplify the convergence of the QDO cage. We

performed a quadratic extrapolation for the solvation energy, which for the limit δτ → 0

leads to the value -6.08(3) kcal/mol. This value is very close to the solvation energy

for δτ=0.05 (-6.20(7) kcal/mol) and it is within the error bars from the PBE0+MBD

value (-6.11 kcal/mol).

4.4.4 Effects of the damping functions

Finally, in this section, we study the effects of the damping functions mentioned in

Sec. 2.6 on the example of Ar2. The normal damping for the QDO-QDO model in

Fig. 4.15 shows the independence of the results on the choice of the functional form of

the damping for parameter σ ≤0.5. The uniform damping for QDO-QDO is even more

stable, with all the damping functions matching with σ as large as 2.5 (and thus the

plot is not shown). For the normal damping of the El-QDO model, shown in Fig. 4.16,

the behavior is very similar, with the curves being independent of the choice of the

damping function up to σ =1.0, except for the shortest distance between the atoms

considered in this work, where σ >0.5 gives results closer to the F-Ex curve. The

uniform version of the damping for El-QDO is plotted in Fig. 4.17. The dissociation

curves are again stable with respect to the choice of the damping function for σ up

to 3.5, except for the shortest separation of the atoms. For the larger values of σ the

dissociation curves go closer to the pure dispersion from SAPT, which is an opposite

trend when compared to the normal damping for El-QDO from Fig. 4.16. Here we

conclude that the results are robust with respect to the choice of the damping used to

avoid the divergences of the Coulomb potential and the unphysical overpolarization.
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Figure 4.15: Interaction energies of Ar2 using the QDO-QDO model at the DMC level of theory

using the normal damping functions from Eqs. 2.60, 2.61, 2.62 and 2.63 for various values of the

parameter σ. The results are compared to the pure dispersion (Dsp) and the sum of all terms not

including exchange (F-Ex) from the El-El SAPT decomposition [161] and to the QDO-QDO model

interacting via the bare Coulomb potential without the damping (bare). The dashed vertical lines

represent the equilibrium distance of the atoms.

4.5 Conclusions

In this Chapter, we have presented applications of the novel El-QDO embedding

method, where QDOs represent the environment and its dynamic response. We have

used the full Hamiltonian of electrons and QDOs coupled via the Coulomb potential

whose ground state is approximated by means of the product between the electronic

Slater-Jastrow wavefunction, the dipole wavefunction of QDOs and the electron-QDO

Jastrow factor. This variational ansatz has been optimized by means of the variational

Monte Carlo methods and an accurate estimation of the energy has been obtained

through diffusion Monte Carlo. The implemented methods were used to compute the

binding energies of four noble gas dimers, Ne2, Ar2, Kr2 and Xe2, prototypes for pure

dispersion interactions and two configurations of the water dimer as prototypes for the

hydrogen bonds, finding excellent agreement with ab initio reference data. After these
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Figure 4.16: Interaction energies of Ar2 using the El-QDO model at the DMC level of theory using

the normal damping functions from Eqs. 2.60, 2.61, 2.62 and 2.63 for various values of the parame-

ter σ. The results are compared to the pure dispersion (Dsp) and the sum of all terms not including

exchange (F-Ex) from the El-El SAPT decomposition [161] and to the El-QDO model interacting

via the bare Coulomb potential without the damping (bare). The dashed vertical lines represent the

equilibrium distance of the atoms.

proofs of concept, we presented applications to molecules embedded in a water envi-

ronment, namely solvation energies of benzene, the benzene dimer, ortho-benzyne and

the singlet-triplet gaps of ortho-benzyne in explicit water environments of various sizes.

For all these systems we obtained accurate results in the description of the interactions

between the electrons and QDOs, demonstrating how the latter can be used to create

a polarizable environment dynamically correlated to the electronic subsystem.

Moreover, this approach has the advantage of introducing an embedding technique

for QMC methods, and especially DMC, in which both the environment (QDOs) and

the subsystem of interest (the electrons) are treated at the same level of theory able

to capture the relevant physical properties of the total system. This overcomes the

intrinsic difficulties that appear for example when one tries to embed other Quantum

Chemistry methods or Density Functional Theory with a stochastic approach such as

QMC [193].
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Figure 4.17: Interaction energies of Ar2 using the El-QDO model at the DMC level of theory using

the uniform damping functions from Eqs. 2.60, 2.61, 2.62 and 2.63 for various values of the parame-

ter σ. The results are compared to the pure dispersion (Dsp) and the sum of all terms not including

exchange (F-Ex) from the El-El SAPT decomposition [161] and to the El-QDO model interacting

via the bare Coulomb potential without the damping (bare). The dashed vertical lines represent the

equilibrium distance of the atoms.

We presented the results of the El-QDO method calculated using the QMC al-

gorithms, but these can be implemented in other QCH methods, such as Coupled

Cluster or Configuration Interaction frameworks, which are also able to capture the

non-covalent interactions.

Clearly, some challenges, such as the description of the short-range repulsive region

of the interactions, still remain and will be the inspiration for future investigations.

After overcoming these challenges, the El-QDO method might be an alternative to the

standard QM:MM methods, with lower levels of empiricism and explicit polarization

and dispersion effects for post-Hartree-Fock methods.

Thus, to conclude, the results presented in this Chapter open the way to a gen-

eral embedding approach of electrons in a bath of QDOs that can be parametrized

to reproduce, together with auxiliary point charges, the behavior of molecular sys-
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tems in a realistic environment. This will allow us to study for example the collective

effects of long-range non-covalent interactions of large environments on the polariza-

tion, structural properties and electronic excitations of subsystems in an accurate and

computationally feasible way.
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Chapter 5

Binding mechanism of the QDO

model

Parts of this Chapter will be published in this or a similar form in:

M. Ditte, M. Barborini, A. Tkatchenko. “Quantum Drude Oscillators Coupled with

Coulomb Potential as an Efficient Model for Bonded and Non-Covalent Interactions in

Atomic Dimers” In preparation.

and have been produced in collaboration with the above authors.

In this Chapter we investigate the behavior of the QDO model described in Sec. 2.4 in

the short-range region. The understanding of the model, when the distances between

QDOs are shorter than the typical distances of dispersion interactions, is crucial for the

further generalization of the model, with the goal of describing a larger set of chemical

bonds.

Without loss of generality, we study the general homogeneous QDO dimer (both

QDOs have the same parametrization). First, we compare the performance of all the

ansätze defined in Sec. 3.6.2. Next, we study the effect of the three parameters of the

model (ω,µ,q) on the potential energy surface at all distances. In the last, part we

96



define observables, which help us to underline the differences between the QDO dimer

and the H2 molecule.

5.1 The homogeneous QDO dimer

Before analyzing the variation of the QDO model’s properties in terms of their fre-

quency ω, the mass µ, and the charge q varied independently with respect to the

reference case µ = q = ω = 1, we must study the convergence of the variational wave-

functions described in Sec. 3.6.2, namely Dip., Dip.+J. and Mol.+J, constructing the

PESs at VMC and DMC levels for the homogeneous QDO dimer (µ = q = ω = 1).

Figure 5.1: The binding energy Eb of the QDO

homogeneous dimer with ω = µ = q = 1. The

black dotted line represents the solution of the

Hamiltonian in the limit of dipole approxima-

tion (Eq. 2.53). The CI results are taken from

Ref. 152.

From the results displayed in Fig. 5.1

we can see how the Dip. wavefunction is

unable to properly reproduce the binding

energy profile in the short range since it

can not describe the tunneling effects (see

Fig. 3.1) of the drudon from its center to-

wards the attractive Coulomb potential

on the opposite QDO. The introduction

of the Jastrow factor in the Dip.+J wave-

function greatly improves the variational

results since it is able to take into account

both the correlation of the drudon around

the attractive Coulomb potential and the

two-body correlation of the two drudons

that become important as the two QDOs

come together. In fact, at the VMC level, the latter wavefunction recovers more than

0.10 Ha in the binding energy with respect to the former. Finally, a small improvement,

of about 2 mHa at the equilibrium distance, with respect to the Dip.+J wavefunction

can be obtained with Mol.+J, due to the fact that the single-particle orbitals also ac-

count for the tunneling effects of the drudons in the short range. Moreover, the VMC

PES obtained with the Mol.+J trial wavefunction is nearly identical to the converged
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b.a. c.

Figure 5.2: The DMC binding energies Eb of the homogeneous QDO dimer obtained with the

Mol.+J wavefunction (Eq. 3.86): a. µ = q = 1 and variable ω ∈ [0.25,1.50]; b. ω = q = 1 and

variable µ ∈ [0.25,1.50]; c. ω = µ = 1 and variable q ∈ [0.25,1.50].

DMC energy obtained with the same wavefunction, with a difference of about 2.3 mHa

at the equilibrium distance. As discussed in Sec. 3.5.4, since the system is built from

distinguishable particles DMC will always converge to the exact solution no matter the

trial wavefunction employed. In Fig. 5.1 we also compare our results with the full CI

PES, previously reported in Ref. 152 for the same system. As previously anticipated,

it is clear that due to how the configurational space was constructed, the authors were

unable to properly converge their calculations towards the exact solution obtained with

DMC, reporting a maximum discrepancy with our results of more than 0.05 Ha.

Considering these initial results, from now on, we will always employ the Mol.+J

trial wavefunction as the guiding function for the DMC calculations used to study the

behavior of the QDO model in the limit of full convergence.

5.2 Comparison between the homogeneous QDO

dimer and the H2 molecule

In order to better understand the behavior of the QDO model in describing atomic and

molecular interactions, let us compare the homogeneous QDO dimer with ω = µ =

q = 1 to the analogous Coulomb coupled two-electron system, ie. the H2 molecule,

considering also how the independent variation of each parameter affects the binding
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b.a. c.

Figure 5.3: One-body DMC observables obtained with the Mol.+J wavefunction, as a function of

the relative distance R between the QDO centers (or the nuclei) for the QDO dimer (compared to

the H2 molecule). The upper panels correspond to the single-particle potential 〈vi(ri)〉 (Eq. 2.42),

while the lower panels correspond to the single-particle distances P (R) = −〈z1〉+〈z2〉
R (the dimers are

positioned along the z axis and the origin of the coordinate system is in the center of the bond). As

for the previous figures, a. µ = q = 1 and variable ω ∈ [0.25,1.50]; b. ω = q = 1 and variable µ ∈
[0.25,1.50]; c. ω = µ = 1 and variable q ∈ [0.25,1.50].

energies and other properties.

In both systems, the drudons (for µ = q = 1) and the electrons are distinguishable

particles of unitary charge and mass, and the QDO centers act as fixed nuclei of unitary

charge. The only difference between the QDO dimer and the H2 molecule is in the

single-particle potential defined for the QDOs in Eq. 2.42 (Fig. 3.1). While the single-

particle potential of the electrons is always identical and defined as v(ri) =
∑Nn

n=1
qiZn
|ri−Rn|

(where Nn is the number of atomic nuclei in the system, Zn is the nuclear charge and

Rn is the nuclear position), for the QDOs this potential is always different and differs

only in the quadratic interaction between the drudonic particle and its QDO center.

Here the characteristic frequency of the QDOs ω that is directly connected to the

localization of the drudons around their oscillating centers is used as a parameter to

study the behavior of the model in describing the interactions.

First, in Fig. 5.2a we report the PES of the QDO dimer with different values of
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ω ∈ [0.25,1.50], compared to the PES of the H2 molecule. In the QDO model, as the

frequency diminishes, the drudons become progressively delocalized with a consequent

lowering of the binding energy and elongation of the equilibrium ‘bond’ length. For H2

at distances of around 8∼9 Bohr the binding energy in the PES is already negative,

with respect to that of the QDOs which is still basically null, due to the fact that the

two electrons of the molecule are already delocalized (we will see this later), while the

drudons remain localized due to the height of the quadratic potential’s well that is

governed by the frequency (Fig. 5.2a) and the mass (Fig. 5.2b). Yet, as ω diminishes,

the two drudons become monotonically more delocalized, while for µ, since it also

affects the kinetics of the system, the change in the form of the PES is not consistent

for all values of R (Fig. 5.2b). At short distances, the decrease of the mass increases

the kinetic energy and the overall energy, while at large distances the decrease of the

mass increases the binding. Finally, since the charge affects in particular the Coulomb

attraction, between the drudons and their opposite QDO centers, in the short range

it increases the binding energy, without affecting the long-range interaction region

(Fig. 5.2c) for which the QDOs remain in average neutrally charged objects and only

polarization affects the interaction. Although the charge doesn’t seem to greatly affect

the binding energy in the long range, this is not the case for the response properties

on which the model is usually parameterized[88, 62, 38].

In order to better understand the drudons’ delocalization as a function of the pa-

rameters it is best to examine some of the single-particle and two-particle observables.

Regarding the single-particle observables, it is fundamental to study the external

one-body potential as a function of the distance between the two QDO centers (or

atomic nuclei, for the H2 molecule) (upper panels in Fig. 5.3). Moreover, we can define

a parameter that is connected to this quantity and is related to the probability of the

two drudonic (or fermionic) particles to form a bond. By assuming that the molecular

axis is along the z coordinate and that the center of mass of the homogeneous dimers

is at the origin of the reference system, we can define the function

P (R) =
−〈z1〉+ 〈z2〉

R
, (5.1)

where 〈z1〉 and 〈z2〉 are the average positions of the two particles along the z axis

computed through the DMC sampling and R = |R1 −R2| is the distance between the

two QDOs or atomic centers (lower panels in Fig. 5.3).
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b.a. c.

Figure 5.4: Two-body DMC observables obtained with the Mol.+J wavefunction, as a function of

the relative distance R between the QDO centers (or the nuclei) for the QDO dimer (compared to

the H2 molecule). The upper panels correspond to the average two-body Coulomb potential energy

〈v12(r1, r2)〉 (Eq. 2.41), while the lower panels correspond to the two-particle distances minus the

two-center distance D(R) = 〈r12〉 − R (the dimers are positioned along the z axis and the origin of

the coordinate system is in the center of the bond). As for the previous figures, a. µ = q = 1 and

variable ω ∈ [0.25,1.50]; b. ω = q = 1 and variable µ ∈ [0.25,1.50]; c. ω = µ = 1 and variable q ∈
[0.25,1.50].

In the limit of non-interacting particles, that are on average positioned around

their oscillating centers, the values of the average positions 〈z1〉 and 〈z2〉 with respect

to the origin of the reference will be equal respectively to 〈z1〉 ≈ −R/2 and 〈z2〉 ≈ R/2

(depending on the choice of the position of the first and second atom or QDO), ie.

P (R→∞) = 1.

In the case of the H2 molecule, the average value of the symmetric single-particle po-

tential 〈vi(ri)〉 which is identical for both electrons, in the dissociation limit converges

to the value of −1.0 Ha (average potential energy of the isolated hydrogen atom) and

progressively decreases due to the interaction of the electrons with the opposite attrac-

tive center (upper panes Fig. 5.3). This same behavior is mimicked by the function

P (R) that converges from the value of 1, in the non-interacting limit, towards 0 signal-

ing the formation of a chemical bond, for which the two electrons are ‘shared’ between

the two atomic centers and are thus in average distributed around the center of the
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bond.

For the homogeneous QDO dimer, on the other hand, in the dissociation limit

the single-particle energies converge towards the average potential energies of isolated

harmonic oscillators, ie. 3
4
ω (upper panels Fig. 5.3), and as the QDOs come close to

each other, the single-particle energy tends towards that of a charged particle in the

attractive Coulomb potential (with a shift due to the quadratic potential) signaling

again that the drudons are shifting towards the opposite center, as suggested also by

the behavior of the function P (R), in the lower panels of Fig. 5.3. As the two QDOs

start interacting they come closer to the center of mass of the molecule, ie. P (R) < 1,

until the value of the function becomes negative, which corresponds to the case in

which the two drudons are now closer to the opposite center. The limit of P (R) = −1

corresponds to the exact inversion of the drudonic particles that now on average are

localized around the opposite QDO center. This happens because, for small values of

the frequency ω or large values of the charge q, the drudonic particles tend to tunnel

through the potential barrier, drifting away from their oscillating center and getting

caught in the attractive Coulomb potential of the opposite QDO. Mass (Fig. 5.3b) and

charge (Fig. 5.3c) have a different effect on the single-particle energy in the short-range

limit since the former affects the kinetic energy and the Coulomb attraction, while

increasing the latter increases proportionally the attraction lowering the single-particle

energy. This polarization effect is responsible for the absolute minimum of the PESs

of the QDO model (Fig. 5.2). The tunneling effect is also induced by the increase of µ

that lowers the kinetic energy contribution in comparison with the attractive Coulomb.

It is thus clear that in the QDO model, we can not really identify a chemical bond (for

which P (R) = 0) in the proper sense, even in the short-range limit.

A second set of interesting observables is that of the two-body Coulomb potential

v12(r1, r2) (upper panels of Fig. 5.4) and of the average two-particle distance minus the

distance between the QDO centers (or atoms)

D(R) = 〈r12〉 − R, (5.2)

where 〈r12〉 is the Monte Carlo average of the module distance r12 = |r1 − r2| between

the two quantum particles computed on the entire DMC sampling (lower panels in

Fig. 5.4). In the non-interacting limit, both the two-body repulsion and the function

D(R) converge to zero, ie D(R → ∞) → 0, since the average position of the two
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quantum particles will be around their oscillation centers (or nuclear centers), and the

interaction will be zero.

On average for both the QDO model and the H2 molecule, D(R) is positive, signal-

ing that the average distance of the two quantum particles is larger than that between

the QDO or nuclear centers. Despite this, it is interesting to see that for small values

of the frequency (for example ω = 0.25) or high values of the charge (for example

q = 1.50) it happens that D(R) < 0, meaning that the two drudons are closer to each

other compared to their centers (lower panels of Fig. 5.4a and Fig. 5.4c). Thus, this

drifting phenomenon happens when the frequency of the quadratic potential becomes

too low compared to the Coulomb attraction between the drudon and the opposite

center, leading to the tunneling phenomena previously discussed. Consequently, due

to this drift the average repulsive energy between the two particle potential v12(r1, r2)

shown in the upper panels of Fig. 5.4 has a corresponding local maximum due to the

increase of the repulsion energy.

In conclusion, the comparison between the QDO dimer with the H2 molecule has

highlighted the overall behavior of the model, which is ascribed to the asymmetry of

the single-particle potential energies and the form of the quadratic potentials of the

oscillating centers. Due to the overall single-particle potential energies, the model is un-

able to define a covalent chemical bond via accumulation of the charge density between

the QDOs, and the absolute minimum in the PES is due to the Coulomb potentials

that attract the drudonic particles towards the opposite QDO center counterbalancing

the localization induced by the quadratic potential energy. If the harmonic potential

is not sufficiently high (low values of ω), the induced polarization effect becomes too

strong and the drudons spontaneously drift towards the opposite centers, undergoing

a process that is similar to a phase transition in which the distance between the QDO

centers is the order parameter.

Despite this limitation, it is still possible to find a set of parameters ω, µ, and q,

so that the QDO model can also reproduce the PES of covalent bonds. This can be

achieved for instance by defining a set of parameters that are dependent on the relative

distances between the QDO centers. For example, considering the simplest case of the

H2 molecule, it is possible to reproduce its PES by varying the frequency ω of the QDO

model as a function of the distance (Fig. 5.5).
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a.

b.

Figure 5.5: a. ω as a function of the position

R for which the corresponding QDO(ω) curves

intersect the PES of the H2 molecule. For a

small distance of ≈ 1 bohr, we observe that the

QDO(ω) curves intersect the PES of H2 in two

points. b. QDO(ω:R) PES (red and blue circles)

obtained by varying the frequency according to

the values in panel a, compared with the PES of

H2 (black line) obtained with DMC method.

By varying the frequency (µ = q = 1)

we obtain a set of QDO PESs each in-

tersecting the H2 PES at various val-

ues of the distance R, ie. E[H2(R)] +

2E[H] = E[QDO2(ω;R)] − 2E[QDO(ω)],

that corresponds to setting E[H2(R)] −
E[QDO2(ω;R)] + 1 + 3ω = 0 ∀ R. By

plotting the values of the frequencies ω

for which the corresponding QDO curves

intersect the H2 PES, as a function of

the interatomic distance R, we obtain the

data displayed in Fig. 5.5a. By selecting

for each R the values of ω to match the H2

PES we obtain the binding profile shown

in Fig. 5.5b.

Here, we must remark that these are

only a set of preliminary tests where only

the frequency of the QDO model was

changed to reproduce a given binding en-

ergy curve for a chemically bonded sys-

tem. Yet, we hypothesize, that matching

the response properties (polarizability and dispersion coefficients) for QDO and elec-

tronic systems for different values of R might lead to a more promising QDO model

for chemical bonding. In addition, a QDO model for all relevant interatomic distances

might need to be based on a more general effective single-particle potential. We defer

the assessment of these promising directions to future work.

5.3 Conclusions

In the last decades, the QDO model has been successfully applied to describe disper-

sion interactions in Quantum Chemistry and solid state physics, being at the basis of

modern dispersion theories[115, 72] such as MBD[179]. In order to describe these long-
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range interactions the model is usually exploited in the limit of dipole interactions

since the Hamiltonian can be easily diagonalized without introducing a significant

computational overhead to the methods in which it is introduced, such as DFT[9, 146].

Thus far, the focus has primarily been on the long-range distances of those interac-

tions that the method is able to predict based on a parametrization obtained from

the knowledge of the physical response properties of the systems[8, 31, 47, 62]. How-

ever, in the short-range limit, the dipole-Coupled QDO model has imaginary solutions,

while the QDO model with the Coulomb potential, although numerically stable, lacks

the general parametrization necessary to reproduce the correct interaction energies,

requiring additional corrections, such as dumping functions[204, 38, 9], and empiri-

cal potentials[87, 86, 88, 31, 38] or energy contributions coming from other Quantum

Chemistry methods, such as the HF exchange[152]. One approach for reintroducing

the short-range repulsion was suggested in Ref. 47, assuming that in a homogeneous

QDO dimer the two Drude particles representing the entirety of the valence electrons of

a closed shell atom in a spinless state, could be considered as indistinguishable bosons.

Starting from this assumption the authors symmetrized the wavefunction following the

same approach used by W. Heitler and F. London[70] to symmetrize the spatial part

of the electronic wavefunction of the H2 molecule. Although this procedure has been

shown to give consistent results for a perturbative approach[47, 190, 62], and could be

justifiable within the limit of the dipole interaction, for which the homogeneous dipoles

can be considered as identical quasi-particles, it becomes inapplicable in the limit of full

Coulomb interactions in which the drudonic degrees of freedom become decoupled with

respect to the positions of their oscillating centers[152, 31, 38], also making the exten-

sion of this approach to higher asymmetric multipole moments problematic[190, 62].

As discussed in this work, in the limit of full Coulomb interaction each drudon exists

in a distinct single-particle potential, making them distinguishable particles, no matter

their parametrization, and consequently, the application of a particular spin statistics

becomes non-trivial.

To define a more general parametrization of the short-range potential, the ‘nearly

exact’ solution of the QDO model presented in this work stands as an important mile-

stone since it presents a variational framework to pursue the construction of a uni-

vocal and general potential to better mimic the short-range interaction of a wider

set of chemical bonds, starting in particular with vdW and hydrogen bonds. This
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can be achieved, for example through the construction of univocal anisotropic effec-

tive potentials, parameterized through modern machine-learning methods or Neural-

Networks [189, 175, 188, 73], that apart from avoiding the critical behavior of the model

in the short range, would also correctly reproduce the electronic impermeability of the

chemical complexes, preserving its intrinsic efficiency[31, 38].

An alternative approach, shown in this Chapter for the case of the H2 molecule,

could be that of introducing an explicit dependence of the QDO parametrization on

the relative distances between the oscillation centers.

Among the many possible directions, our future works will explore a broader set of

chemically bonded systems, different ways to parameterize one-particle and two-particle

potentials in the QDO model, the transition regime between bonded and non-bonded

interactions, going beyond atomic dimers, and developing an efficient parameterization

of the variational wavefunctions for Coulomb-coupled QDOs.
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Chapter 6

Computational study of TeMePh+
2

interacting with OPPh3 in the DCE

solvent

Parts of this Chapter have been published in this or a similar form in:

L. Groslambert, Y. Cornaton, M. Ditte, E. Aubert, P. Pale, A. Tkatchenko, J-P. Djukic,

V. Mamane. “Affinity of Telluronium Chalcogen Bond Donors for Lewis Bases in

Solution: A Critical Experimental-Theoretical Joint study” Chem. Eur. J. e202302933

(2023)

and have been produced in collaboration with the above authors. The LED/DLPNO-

CCSD(T) calculations and the calculations including the COSMO solvation model have

been done by Dr. Y. Cornaton.

This Chapter is dedicated to the computational study of the affinity of a Lewis acid,

namely the diphenylmethyltelluronium cation TeMePh+
2 with triphenylphosphine oxide

OPPh3 Lewis base, which form a Lewis donor-acceptor complex through a localized

chalcogen bond in the solution of ethylene dichloride (DCE).
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This work was motivated by the necessity to interpret the experimental mea-

surement of the enthalpies of telluronium salts [Ar2MeTe]X, where X are various

counterions, using Isotherm Titration Calorimetry (ITC). The enthalpies for the first

Figure 6.1: a) Numbering and position of the σ-

holes σ1−3 in Ar2MeTe+; b)-e) different views

of the DFT-determined electrostatic potential

map for TeMePh+
2 drawn on an isosurface of the

density (0.03 Å−3) showing the localization of

σ1−3.

association of OPPh3 with a series of sub-

stituted telluronium salts in the DCE sol-

vent were measured to be in the range

from -0.5 to -5 kcal/mol. The compari-

son of the measured values with the the-

oretical predictions using state-of-the-art

methods was necessary to understand the

association mechanism. We are especially

interested in the importance of the van

der Waals contributions to the binding

mechanism and to the effects of the sol-

vent. Due to the size of the studied sys-

tem, we have chosen to apply state-of-the-

art DFT calculations using the PBE func-

tional with different dispersion schemes

described in Secs. 3.3 and 3.4. We com-

pare the performance of the various dis-

persion methods and compare various sol-

vation approaches in order to understand

the effects of the solvent, namely: the re-

actants in the vacuum; the molecules in a conductor-like screening model of implicit

solvation, ie COSMO [103], where the environment is included as a continuum with

a fixed value of the permittivity; the molecules in a partial explicit solvent, using one

explicit DCE molecule per free σ-hole (Fig. 6.1); and a hybrid approach, where one

explicit DCE molecule per free σ-hole is complemented by the implicit COSMO model.

The molecules involved in the reactions are: the diphenylmethyltelluronium cation

TeMePh+
2 (Te - tellurium; Me - methyl CH3; Ph - phenyl C6H5), which is one of the

Lewis acids from the diarylmethyltelluronium cations Ar2MeTe+ group, where Ar is

a general aryl group (see Fig. 6.2a); triphenylphosphine oxide OPPh3 (O - oxygen;

P - phosphorus; Ph - phenyl C6H5), which is on the other hand a organophosphorus
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Lewis base, often abbreviated also as TPPO (see Fig. 6.2b); and ethylene dichloride

C2H4Cl2 often written as 1,2-dichloroethane, DCE or EDC, which is a solvent in which

the association of TeMePh+
2 and OPPh3 was studied (see Fig. 6.2c).

Figure 6.2: (a) TeMePh+
2 , (b) OPPh3, and (c) DCE. The color coding: pink - H; brown - C; red -

O; purple - P; green - Cl; and yellow - Te.

Through this Chapter, we study 1:1, 1:2 and 1:3 adducts of TeMePh+
2 with OPPh3,

defined as:

• 1:1 adducts (3 options for the σ-hole occupancy: σ1, σ2, σ3):

TeMePh+
2 + OPPh3 → [(Ph3PO)·TeMePh2]+

(C2H4Cl2)3·TeMePh+
2 + OPPh3 → [(C2H4Cl2)2(Ph3PO)·TeMePh2]+ + C2H4Cl2

• 1:2 adducts (3 options for the σ-hole occupancy: σ1,2, σ1,3, σ2,3):

TeMePh+
2 + 2 OPPh3 → [(Ph3PO)2·TeMePh2]+

(C2H4Cl2)3·TeMePh+
2 + 2 OPPh3→ [(C2H4Cl2)(Ph3PO)·TeMePh2]+ + 2 C2H4Cl2

• 1:3 adduct (1 option for the σ-hole occupancy: σ1,2,3):

TeMePh+
2 + 3 OPPh3 → [(Ph3PO)3·TeMePh2]+

(C2H4Cl2)3·TeMePh+
2 + 3 OPPh3 → [(Ph3PO)·TeMePh2]+ + 3 C2H4Cl2,

where for each adduct the first chemical equation corresponds to the association in the

vacuum or in the COSMO implicit solvent model, and the second chemical equation

corresponds to the association in the partial explicit or hybrid solvation with one

explicit DCE molecule per free σ-hole. An example of the 1:1 adduct in the partial

explicit DCE solvent is shown in Fig. 6.3. All the other possibilities can be found in

Appendix A2.

The Chapter is structured as follows: in Sec. 6.1 we specify the computational
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Figure 6.3: 1:1 adduct for σ1 with 1 explicit DCE molecule per free σ-hole: (C2H4Cl2)3·TeMePh+
2

+ OPPh3 → [(C2H4Cl2)2(Ph3PO)·TeMePh2]+ + C2H4Cl2

details; in Sec. 6.2 we describe the calculations of the enthalpies and Gibbs free energies

in the ideal gas approximation; in Sec. 6.3 we apply the local energy decomposition of

domain-based local pair natural orbital CCSD(T) to the 1:1 adduct in the vacuum, in

order to analyze the energy components; in Sec. 6.4 we calculate the thermochemistry

quantities of all the adducts in the implicit solvent model and hybrid solvation approach

using pairwise and many-body dispersion methods, and in the vacuum and partial

explicit solvent, analyzing in more detail the effects of a broader palette of the dispersion

methods; and finally in Sec. 6.5 we show supporting analysis of the convergence of some

of the previously discussed results.

6.1 Computational details

TightSCF and TightPNO thresholds were used for the domain-based local pair natural

orbital CCSD(T) [150] calculations in the Orca program package, version 4.2.0. [136].

The Karlsruhe 2nd generation default triple-ζ valence with polarization (def2-TZVP)

basis set [210] was used in these calculations, as well as RIJK auxiliary basis set [201].

Fixed-node diffusion Monte Carlo [52, 95, 14] calculations were carried out using the

QMeCha quantum Monte Carlo package [12]. For the trial wavefunction we have used

a Slater determinant, whose molecular orbitals are obtained from DFT calculations

executed with the ORCA package[136], using the PBE functional, BFD effective core

potentials (ECPs) and the corresponding cc-pVTZ basis set [22] with the addition of

augmented functions from the all-electron aug-cc-pVTZ basis set [98, 205]. To reduce
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the wavefunction’s variance we added a Jastrow factor similar to that introduced in

Marchi et al. [123, 26] and optimized with the stochastic reconfiguration approach [26].

To guarantee the absence of the size-consistency error in the DMC calculations, we

compare the convergence of DMC energies as a function of the time step dτ obtained

with two different energy cut-off schemes, a novel size-consistent one from Barborini

et al. (labeled as ’MB’) [1] and that proposed by Zen et al. (labeled as ’Zen’) [207].

All the calculations including COSMO implicit solvent were done in the SCM

ADF2022.01 package [178], using scalar relativistic corrections with the Zeroth Order

Relativistic Approximation [192], all-electron triple-ζ Slater-type with single polariza-

tion function basis set (TZP) [191] and PBE functional [143]. The parameters of the

COSMO implicit solvent were set to ε = 10.66 and r = 3.15 Å, corresponding to the

DCE environment.

All the calculations in the vacuum and in the partial explicit solvent without the

COSMO implicit solvent were done in FHI aims (version 221103) [2], ASE [112], and the

dftd4 package [25] softwares, using scalar relativistic corrections with the Zeroth Order

Relativistic Approximation [192], PBE [143] and PBE0 [4] functionals, with all-electron

light, intermediate and tight basis sets composed of numerical atomic orbitals [69].

6.2 Thermochemistry quantities

In this section, we discuss the calculations of two thermochemistry quantities, namely

the enthalpy H and Gibbs free energy Gibbs. The equations in this section are written

as implemented in the Atomic Simulation Environment (ASE) [112], in the SI units.

More detailed derivation can be found for example in Ref. 35.

Both, the enthalpy and Gibbs free energy, are calculated in the limit of an ideal

gas, assuming that all the spatial degrees of freedom are independent and thus can be

separated into the translational, rotational, and vibrational degrees of freedom.

The enthalpy of an ideal gas, which is independent of pressure, at temperature T
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can be calculated as

H(T ) = Eelec + EZPE +

∫ T

0

CpdT, (6.1)

where the first term is the electronic energy, the second term is the zero-point energy

and the third term is an integral over the heat capacity at constant pressure. The heat

capacity can be separated into the translational, rotational, vibrational and electronic

heat capacities

Cp = kB + CV,trans + CV,rot + CV,vib + CV,elec, (6.2)

where the first term is for switching from constant volume to constant pressure. The

translational heat capacity of a 3-dimensional gas is 3/2kB, and the rotational heat

capacity is

CV,rot =


0, if monatomic

kB, if linear
3
2
kB, if nonlinear.

(6.3)

The electronic heat capacity is assumed to be 0 and the integrated form of the vibra-

tional part is ∫ T

0

CV,vibdT =
vib DOF∑

i

εi
eεi/kBT − 1

, (6.4)

with 3N-6 and 3N-5 degrees of freedom for nonlinear and linear molecules respectively

(N is the number of atoms), where εi = hωi are the energies corresponding to the

individual vibrational frequencies ωi.

The Gibbs free energy of an ideal gas is given as

G(T, P ) = H(T )− TS(T, P ), (6.5)

where S(T, P ) is the entropy as a function of the temperature and pressure, which can

be separated into the translational, rotational, electronic and vibrational contributions

S(T, P ) = S(T, P 0)− kB ln
P

P 0
= Strans + Srot + Selec + Svib − kB ln

P

P 0
. (6.6)

The translational term is given by

Strans = kB

{
ln

[(
2πMkBT

h2

)3/2
kBT

P 0

]
+

5

2

}
, (6.7)
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the rotational term is given by

Srot =


0, if monatomic

kB

[
ln
(

8π2IkBT
σh2

)
+ 1
]
, if linear

kB

{
ln

[
√
πIAIBIC

σ

(
8π2kBT
h2

)3/2
]

+ 3
2

}
, if nonlinear

, (6.8)

where IA, IB and IC are the three principle moments of inertia, I is the degenerate

moment of inertia for linear molecules and σ is the symmetry number of the molecule.

The vibrational contribution is given by

Svib = kB

vib DOF∑
i

[
εi

kBT (eεi/kBT − 1)
− ln

(
1− e−εi/kBT

)]
, (6.9)

again with 3N-6 and 3N-5 degrees of freedom for nonlinear and linear molecules re-

spectively (N is the number of atoms). And finally, the electronic contribution to the

entropy is

Selec = kB ln [2× (total spin) + 1] , (6.10)

which is 0 for singlet electronic states (total spin = 0).

The inputs needed from the quantum chemical calculations are thus the electronic

energy Eelec and the frequencies of the phonons (obtained in the harmonic approxima-

tion at the equilibrium geometries) in order to find the energies εi and the zero-point

energy correction EZPE.

6.3 LED/DLPNO-CCSD(T) analysis

The analysis of non-local interactions supporting the formation of a molecular complex

from two or more fragments requires the physically sound decomposition of an inter-

fragment interaction energy term into meaningful canonical interactions. Compared

to DFT methods with additional dispersion that consist of native DFT functionals

patched with a term accounting for dispersion interactions, wavefunction-based meth-

ods give access to physically consistent energy decompositions and to the quantification

of non-covalent contributions [79, 156, 116]. By the use of adequate energy decompo-

sition schemes, the mapping of the interactions acting in the periphery of the main
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fragment-anchoring interaction is possible and allows us to evaluate the importance of

non-covalent interactions in the process of molecular aggregation [59, 58]. Neese and

Bistoni outlined the analytical power of the local energy decomposition (LED) [153] and

domain-based local pair natural orbital Coupled Cluster with singles-doubles and per-

turbative triples (DLPNO-CCSD(T)) [150, 149, 148] method which was used to trace

down the importance of dispersion in the structuration of agostic C-H metal interac-

tions.

Table 6.1: The binding energies ∆E0 of

[(Ph3PO)·TeMePh2]+ with OPPh3 at

position σ2 optimized at the PBE-D4-

COSMO level of theory obtained using

the DMC method as a function of the

time step δτ , for two different energy

cut-off schemes, one from Barborini et

al. (MB) [1] and that proposed by Zen

et al. (Zen) [207].

δτ ∆E0 (MB) ∆E0(Zen)

[a.u.] [kcal/mol] [kcal/mol]

0.10 -29.7(3) -31.8(2)

0.05 -32.6(4) -31.2(4)

0.01 -30.7(6) -32.0(9)

The DLPNO-CCSD(T) method combines the high

accuracy of the coupled-cluster approach with the

reduced computational cost [117] stemming from

the localization of the orbitals constructed at the

Hartree-Fock level. The LED [153] analysis al-

lows us to extract the various contributions of

user-defined inter-fragment interactions in a way

reminiscent of the energy decomposition analy-

sis (EDA) [211] as applied to DFT calculations.

The LED/DLPNO-CCSD(T) analysis was there-

fore applied to [(Ph3PO)·TeMePh2]+ in its PBE-

D4-COSMO optimized geometry (see Sec. 6.4 for

details) wherein OPPh3 faces the σ-hole σ2 (see

Fig. A2.2): TeMePh+
2 being the first fragment and

OPPh3 the second one. The analysis, shown in

Fig. 6.4, was carried out in the gas phase by vary-

ing the O-Te distance keeping the fragments’ geometries rigid. This approach, although

rather simplified, provides a good picture of the interactions that play a significant role

in the formation of the molecular complex.

It is also worth to mention here, that due to the known discrepancies between the

CCSD(T) and diffusion Monte Carlo methods [52, 95, 14] for large molecular com-

plexes [5], we calculated the gas phase binding energies of [(Ph3PO)·TeMePh2]+ at

the equilibrium distance using both, the DLPNO-CCSD(T) and DMC methods. The

DMC binding energies ∆E0 of [(Ph3PO)·TeMePh2]+ with OPPh3 at position σ2 as a

function of the time step dτ can be found in Tab. 6.1. Based on the monotonic be-

havior of ∆E0 (Zen) we conclude, that the converged value of the formation energy
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Figure 6.4: a) Interaction energy curve for the [(Ph3PO)·TeMePh2]+ adduct along the O-Te dis-

tance at the DLPNO-CCSD(T)/def2-TZVP level of theory; b) plot of the intra- and inter-fragment

energies; c) the contributions to the inter-fragment energy. The vertical dashed lines show the ri, re

and r0 distances, described in Sec. 6.3.

for given molecular orbitals is -32.0(9) kcal/mol. This value is statistically indistin-

guishable from -32.5 kcal/mol obtained by DLPNO-CCSD(T) (see Fig. A2.2), which

increases the reliability of the LED/DLPNO-CCSD(T) analysis.

The validity of the chosen fragmentation used in the LED [153] analysis was veri-

fied by the Mülliken population analysis showing that none of the localized molecular

orbitals are delocalized on both fragments for O-Te distances above 152 pm. This

also confirmed that the fragments are not strongly covalently bonded even at such O-

Te distances shorter than the equilibrium distance re (Fig. A2.2). Within the chosen

fragmentation scheme, ongoing from a long distance to r0= d(O-Te) = 200 pm, the

stabilizing inter-fragment contribution surpasses the sum of the intra-fragment ones.

At distances longer than ca. 200 pm, even if both fragments are partly individually

destabilized in the presence of the other, their mutual interaction nonetheless favors the

formation of the adduct through an overly stabilizing inter-fragment energy term. Con-
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sidering both intra-fragment contributions, the OPPh3 fragment is more destabilized

than TeMePh+
2 , except around the equilibrium O-Te distance re (re= d(O-Te) = 292

pm) (Fig. A2.2b). The stabilizing electrostatic contribution, dominated by electron-

nucleus attraction energy terms, represents more than 72% of the inter-fragment energy

at any O-Te distance (Fig. A2.2c) with a minimum close to re. In turn, the exchange

contribution accounts for less than 13% of the inter-fragment energy, with a maximum

around re. The dispersion force contribution surpasses the exchange one at distances

longer than re, reaching apex with 17% of the inter-fragment energy around the in-

flection point distance ri (ri = d(O-Te) = 332pm) of the interaction energy curve.

These results demonstrate that the chalcogen bond between TeMePh+
2 and OPPh3 is

overwhelmingly non-locally non-covalent in nature and only weakly covalent at a local

level as the system reaches re. From re to shorter distances, the exchange becomes

effective and acts as an evanescent intermolecular anchor that opens a narrow channel

for charge density transfer. In conclusion, the study carried out at the non-local level

confirms the drive of electrostatics supported by dispersion in the self-aggregation of

the telluronium cation and OPPh3 in the gas phase.

6.4 Thermochemistry results

In solution, solvent screening, ion pairing and possible explicit interactions of solvent

molecules may temper the attractive electrostatic interactions existing between the

telluronium cation and a neutral Lewis base. This complex problem is approached from

the viewpoint of thermodynamics by using DFT with additional dispersion methods

(see Sec. 3.4) and comparing implicit and explicit solvation schemes using DFT with

various dispersion methods.

As shown in the previous section with the DLPNO-CCSD(T) investigation on a rigid

model, dispersion force plays a fundamental role in the cohesion of [(Ph3PO)·TeMePh2]+

complex; the scrutiny of the quality of the scaling of the dispersion interactions pro-

vided for large molecular complexes at the DFT level is therefore justified.

The first calculations of the enthalpy for the 1:1 adduct of the first association of

OPPh3 with TeMePh+
2 at position σ2 using PBE functional with D4 pairwise method [32]
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and with the COSMO solvent model (PBE-D4-COSMO), led to a value of ∆H = -

11 kcal/mol, which diverges significantly from the best experimental values provided by

ITC experiments and the associated thermogram deconvolutions (∆H = -2.9(1) kcal/mol

or -1.8(1) kcal/mol for two different approaches). This is not surprising, though.

Table 6.2: The enthalpies and Gibbs free energies

of the association (in kcal/mol) of the OPPh3

molecules with TeMePh+
2 at 298.15 K computed

at the PBE-D4 and PBE-MBD@rsSCS level of

theory in the implicit and hybrid solvation.

method D4
MBD

@rsSCS

occ.

σ-hole
∆H ∆G ∆H ∆G

implicit solvent (COSMO DCE)

1:1 σ1 -10 +5 -9 -7

σ2 -11 +3 -9 +7

σ3 -10 +2 -9 +5

1:2 σ1,2 -23 +3 -25 +2

σ1,3 -24 +3 -26 +2

σ2,3 -24 +4 -25 0

1:3 σ1,2,3 -46 -10 -41 0

hybrid solvation (DCE)

1:1 σ1 -14 -8 -9 -2

σ2 -14 -9 -13 -6

σ3 -14 -7 -13 -8

1:2 σ1,2 -24 -16 - -

σ1,3 -24 -14 - -

σ2,3 -22 -17 -22 -15

1:3 σ1,2,3 -39 -33 -34 -22

While there exist occurrences of a good

match between DFT with additional dis-

persion and with continuous screening

solvation model-computed thermochem-

istry parameters with ITC data for sys-

tems implying neutral molecules or bear-

ing highly delocalized charges [65, 64,

129, 130], significant discrepancies have

been often reported for chemical reactions

involving salts in which the counterion is

systematically omitted in the DFT cal-

culations and in which the solvent is a

discrete actor [145, 128, 84].

Due to the discrepancy between the

experiment and the first calculations of

the thermochemistry quantities, the ther-

modynamics of the association of one,

two and three molecules of OPPh3 with

TeMePh+
2 were studied with various sol-

vation formulations and with various ver-

sions of the dispersion methods.

The question of solvation was ad-

dressed using COSMO either fully im-

plicitly or with hybrid implicit COSMO

with an explicit amount of solvent in the

vicinity of the Te center (1 explicit DCE

molecule per free σ-hole) knowing, that

the COSMO model applied to isolated ions may reputedly produce inaccurate solvation
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energy contributions [104]. For the DFT methods, the PBE functional was used with

two dispersion approaches, namely Grimme’s empirical pairwise dispersion method

PBE-D4 [32] and the Tkatchenko’s many-body dispersion method employing the range-

separation of the self-consistent screening of polarizabilities PBE-MBD@rsSCS [9] that

differ by the construction of their dispersion treatment, which may induce slight dif-

ferences in the thermodynamics of the association of extended molecular systems. The

implicit and hybrid solvation approaches are followed by a more detailed analysis of

a broader set of dispersion methods in the vacuum and in the partial explicit DCE

solvent without the COSMO model.

For all the results in this section, we have to mind another inaccuracy arising from

the rigid rotor harmonic oscillator approximation that questions the reliability of the

computed enthalpies and Gibbs free energies for the weakly bonded molecular com-

plexes, for which critical intermolecular vibrational modes in van der Waals complexes

are present at low frequencies in the range of ∼0-200 cm−1 [94, 171, 57].

So three situations were hence considered:

a) the implicit solvation by ways of the standard COSMO model;

b) the hybrid implicit plus partial explicit solvation considering the competition of

the Lewis base binding to the Te center with explicitly weakly Te-interacting DCE

molecules, i.e. one DCE molecule per available σ-hole; and

c) in the vacuum and in the partial explicit DCE solvent without the COSMO model.

6.4.1 Implicit solvation

At this level of solvation, the association of the OPPh3 molecules with TeMePh+
2 is

slightly endergonic, in contradiction with experimental observations (Tab. 6.2). The

difference of enthalpy of the first association between the three 1:1 [(Ph3PO)·TeMePh2]+

adducts falls below the DFT accuracy limit, seemingly suggesting that the three σ-holes

have the same probability of hosting a Lewis base. The same observation still holds

when considering the 1:2 adducts, suggesting that the position of the first associated

Lewis base has no influence over the position of the association of a second base. The

experimental data suggest that real solvation and counterion binding do indeed cancel

roughly 80-90% of the stabilizing interaction energy that can be calculated by DFT for
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static models taken in the COSMO implicit solvent (Tab. 6.2). To verify the influence

of the type of the dispersion method on the divergence between the computed thermo-

dynamics and the experimental ones, the results obtained with the D4 [25] method of

the dispersion were compared with calculations with the same native DFT functional,

i.e. PBE, but using instead the MBD@rsSCS [9, 179] method for dispersion. From

the optimized structures obtained from D4 and MBD@rsSCS with PBE, no major dif-

ferences were observed in the geometries of the adducts. Again, no major differences

between the enthalpies of the association for the two approaches were observed for

the 1:1 and 1:2 adducts [(Ph3PO)·TeMePh2]+ and [(Ph3PO)2·TeMePh2]+ respectively;

most values remained within 1-5 kcal/mol of difference. The Gibbs energies of the as-

sociation diverged significantly though for the 1:3 adduct [(Ph3PO)3·TeMePh2]+, with

a higher overestimation of exergonicity with the D4 model. If many-body correlation

effects can be ruled out as the main source of discrepancy with experimental data for

the 1:1 and 1:2 adducts, the MBD@rsSCS method tends to overestimate the Gibbs

energies of association less, particularly for the 1:3 adduct.

6.4.2 Hybrid solvation

This hybrid solvation model introduces competition between OPPh3 and DCE for

interacting with the Te center in the thermochemical balance: in the chosen model this

entails that each DCE solvent molecule arbitrarily occupies one “free” σ-hole of the Te

in TeMePh+
2 , while the COSMO implicit solvation is kept active. Tab. 6.2 shows that

accounting for explicit molecules of solvent does not influence greatly the enthalpies

of association of OPPh3 with TeMePh+
2 , whereas it significantly influences the Gibbs

energies, evidencing the importance of the entropic factor. The hybrid implicit/explicit

solvation approach predicts the associations of OPPh3 with TeMePh+
2 to be exergonic;

the second association being less favored than the first, which somewhat matches the

experimental trend. Using the MBD@rsSCS method for the dispersion, instead of

the D4 method, induces no significant variations in the geometries and only slight

differences in the enthalpies and Gibbs free energies of association when applying the

hybrid solvation approach. It is however noticed that for the formation of the 1:3

adduct [(Ph3PO)3·TeMePh2]+ the Gibbs free energy of association displays a difference

of ca. -9 kcal/mol between the two dispersion methods, where the D4 method again
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significantly overestimates the exergonicity of the 1:3 association.

6.4.3 Vacuum and explicit solvation

Due to the large discrepancy between the D4 and MBD@rsSCS for the 1:3 adduct in

the implicit and hybrid solution, a further investigation of the impact of the dispersion

method was necessary. We thus compared the pure PBE, D4 pairwise method [25],

Tkatchenko-Scheffler (TS) pairwise approach [180], the range-separation self-consistent

screening version of the many-body dispersion method (MBD@rsSCS) [179, 9] and the

non-local many-body dispersion method (MBD-NL) [75]. Due to the missing implemen-

tation of the COSMO implicit solvent model in all the software used, the comparison

of the various dispersion schemes has been performed in the vacuum and in the partial

explicit DCE solvent. Despite the error in total values of ∆H and ∆G, which is due to

the over-stabilization in the vacuum compared to the solvent, we argue that there are

consistent differences between the pairwise methods and the many-body ones, which

are relevant for this work: as a matter of fact MBD@rsSCS and MBD-NL both increase

the values of ∆H and ∆G (i.e. make them more positive).

The thermochemistry results obtained using PBE functional and the intermediate

basis set are summarized in Tab. 6.3, and show a 1 to 2 kcal/mol agreement between

TS and D4 methods (both pairwise) for all the systems except for the 1:3 adduct,

where TS gives lower values of about 5 kcal/mol for the ∆G. Both flavors of MBD are

within 1 to 2 kcal/mol for the 1:1 and 1:2 adducts and within 3 kcal/mol for the 1:3

adduct for both enthalpies and the Gibbs free energies, with MBD-NL being always

higher. In fact, MBD-NL substantially improves the treatment of charge transfer effect

and ionicity, when compared to MBD@rsSCS [75]. The many-body treatment of the

dispersion interactions persistently leads to higher enthalpies and Gibbs free energies,

when compared to the pairwise methods, with differences of 2 kcal/mol, 5 kcal/mol

and 9 kcal/mol for the 1:1, 1:2 and 1:3 enthalpies respectively and of 3 kcal/mol,

4-5 kcal/mol and 8 kcal/mol for the 1:1, 1:2 and 1:3 Gibbs free energies respectively.

Interestingly MBD gives higher enthalpies and Gibbs free energies also in the case of the

1:2 adducts, where MBD@rsSCS calculations, done using the COSMO implicit solvent

model, have the opposite trend. The pure PBE without the dispersion interactions
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Table 6.3: The enthalpies and Gibbs free energies of the association (in kcal/mol) of the OPPh3

molecules with TeMePh+
2 at 298.15 K computed at the PBE, PBE-D4, PBE-TS, PBE-MBD@rsSCS

and PBE-MBD-NL level of theory with the intermediate basis set in the vacuum and the partial

explicit solvent.

method PBE D4 TS
MBD@

rsSCS
MBD-NL

occ. σ-

hole
∆H ∆G ∆H ∆G ∆H ∆G ∆H ∆G ∆H ∆G

in vacuum

1:1 σ1 -21 -12 -30 -17 -30 -17 -28 -15 -28 -14

σ2 -22 -11 -29 -16 -29 -16 -27 -14 -27 -13

σ3 -20 -10 -30 -17 -31 -15 -28 -15 -28 -14

1:2 σ1,2 - - -56 -30 -57 -28 -52 -26 -51 -25

σ1,3 - - -56 -29 -56 -29 -53 -27 -51 -24

σ2,3 - - -57 -29 -57 -29 -53 -26 -52 -25

1:3 σ1,2,3 - - -83 -42 -84 -47 -77 -37 -74 -34

partial explicit DCE (1 per free σ-hole)

1:1 σ1 -16 -14 -25 -21 -26 -22 -22 -18 -21 -17

σ2 -16 -14 -23 -19 -24 -20 -22 -18 -21 -17

σ3 -16 -13 -25 -20 -26 -20 -24 -19 -23 -19

underestimates the enthalpies and Gibbs free energies in all the calculated cases, due

to the missing crucial dispersion attraction as shown in Sec. 6.3. Both enthalpies and

Gibbs free energies are higher (less negative) in the presence of the partial explicit

DCE solvent for the 1:1 adducts, having the correct trend when compared to the

experimental values, which is not the case of the calculations done in the COSMO

implicit solvent. MBD-NL is on average 2.5 kcal/mol higher (less negative) than the

pairwise D4 dispersion method.
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6.5 Additional analysis of the pairwise vs many-

body dispersion methods

Table 6.4: The differences of the PBE-D4 and

PBE-MBD-NL enthalpies, Gibbs free energies and

single point binding energies of the association (in

kcal/mol) of the OPPh3 molecules with TeMePh+
2

at 298.15 K computed with the intermediate basis

set in the vacuum.

method D4 - MBD-NL

occ. σ-

hole
∆∆H ∆∆G ∆∆E0

1:1 σ1 -2.4 -2.4 -2.4

σ2 -2.7 -2.4 -2.7

σ3 -2.4 -2.5 -2.4

avg -2.5 -2.4 -2.5

1:2 σ1,2 -4.5 -4.4 -4.5

σ1,3 -5.0 -4.6 -5.1

σ2,3 -5.7 -4.7 -5.8

avg -5.1 -4.6 -5.1

1:3 σ1,2,3 -8.5 -7.2 -8.6

fixed OPPh3 molecules without TeMePh+
2

1:2 σ1,2 - - -0.5

σ1,3 - - -0.5

σ2,3 - - -1.2

avg - - -0.7

1:3 σ1,2,3 - - -2.0

The differences between pairwise and

many-body dispersion methods in the gas

phase can be explained by comparing

the differences of the single point bind-

ing energies ∆E0. The average differ-

ences ∆∆E0 = ∆ED4
0 − ∆EMBD-NL

0 are

of -2.5 kcal/mol, -5.1 kcal/mol and -

8.6 kcal/mol for the 1:1, 1:2 and 1:3

adducts respectively (Tab. 6.4). These

differences increase almost linearly with

the number of OPPh3, persisting also

for ∆∆H and ∆∆G. The small devi-

ations come mostly from the ∆∆E0 be-

tween OPPh3 molecules, which we found

to be of -0.7 kcal/mol and -2.0 kcal/mol

for the 1:2 and 1:3 adducts respectively

(Tab. 6.4). We also find these results to

be independent of the structural parame-

ters, since almost the same energy differ-

ences ∆∆E0 are obtained using both the

geometries obtained at fixed D4 or MBD-

NL level.

As a proof of the weak dependency

of the geometries of the systems on the

type of the dispersion methods, we show

in Tab. 6.5 the Te-O distances of the optimized structures using all the dispersion meth-

ods mentioned above. All the results with additional dispersion for the 1:1 adducts

in the vacuum are within 0.06 Å, with slightly overestimated distances for the pure

PBE. With the partial explicit DCE solvent for the 1:1 adducts, we see large differ-
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ences between the pairwise and many-body methods for σ1, which can be a sign of

an unconverged structural minima. The distances with the COSMO implicit and hy-

brid solvation methods are always slightly larger than those in the vacuum and partial

explicit solution.

In order to check the convergence of the thermochemical quantities with respect

to the basis set we performed calculations of the 1:1 adducts in the vacuum and in

the partial explicit DCE using the light basis set [69]. The results are summarized

in Appendix A3 in Tab. A3.1, showing 1-2 kcal/mol difference when compared to the

intermediate basis set. Interestingly the enthalpies are always less negative with the

intermediate basis set in the vacuum, but the differences do not have a fixed sign for the

case of explicit partial DCE. This difference is small compared to the DFT precision,

so we do not expect further significant changes using the more accurate tight basis set,

which is too large for thermochemistry calculations of the studied systems.

The error caused by the choice of the generalized gradient approximation (GGA)

PBE functional was tested by recalculating the thermochemistry quantities using the

hybrid PBE0 functional in the light basis set. The results of the 1:1 adducts in the

vacuum and in the partial explicit DCE in Appendix A3 in Tab. A3.2 indicate a slight

deviation of about 1-2 kcal/mol between the PBE and PBE0 results, with PBE being

always higher (less negative). These discrepancies are within the accuracy of the DFT

method, so we considered them to be indistinguishable and the use of the cheaper GGA

PBE functional is sufficient.

In Tabs. A3.3, A3.4 and A3.5 we report the single point binding energies of PBE

in the light and intermediate basis sets and of the PBE0 in the light basis set used for

the calculations of the thermochemistry quantities discussed above. As we analyzed

in the pairwise versus many-body methods paragraph, all the main trends observed in

∆H and ∆G can be seen already in the ∆E0.

The last analysis is the comparison of both functionals in all three basis sets using all

the dispersion methods mentioned above for fixed geometries of the systems obtained

at the PBE-D4-COSMO level of theory for 1:1 adducts in the vacuum and in the partial

explicit solvent (Tabs. A3.6-A3.11). The differences between PBE and PBE0 for all the

basis sets are up to 2 kcal/mol, with PBE being mostly higher (less negative). Both
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Table 6.5: The Te-O distances (in Å) of [(Ph3PO)·TeMePh2]+ computed at the PBE, PBE-D4,

PBE-TS, PBE-MBD@rsSCS and PBE-MBD-NL level of theory with the intermediate basis set in

the vacuum and the partial explicit solvation and with PBE-D4 in the COSMO and hybrid solvent.

method PBE D4 TS
MBD@

rsSCS
MBD-NL D4

occ. σ-

hole
Te-O Te-O Te-O Te-O Te-O Te-O

in vacuum COSMO solvent

1:1 σ1 2.68 2.59 2.63 2.61 2.61 2.76

σ2 2.65 2.58 2.61 2.60 2.60 2.76

σ3 2.65 2.60 2.64 2.58 2.58 2.82

partial explicit DCE (1 per free σ-hole) hybrid solvent

1:1 σ1 2.74 2.63 2.66 2.77 2.77 2.87

σ2 2.73 2.69 2.70 2.72 2.72 2.82

σ3 2.69 2.63 2.64 2.65 2.65 2.85

functionals show very similar dependencies on the basis set, with differences between

the light and the tight basis set being up to 2 kcal/mol, with the larger basis set always

leading to higher (less negative) binding energies. The differences between the various

dispersion methods in all six cases follow the trends observed for the thermochemistry

quantities.

6.6 Conclusions

Even though the computed association ∆H and ∆G values lie far from the experimen-

tal values, they clearly show the extent of the solvent’s screening and entropic effects.

Explicit solvation indeed outlines a significant solvent-dependent entropic contribution

to the Gibbs free energy of association that is made visible using the hybrid solvation

approach. Nonetheless the O-Te interaction in [(Ph3PO)·TeMePh2]+ has a light cova-

lent character that outlines that such chalcogen molecular complexes are nothing but a

new class of Lewis-type donor-acceptor complexes in which charge density transfer may
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be tuned by adjusting the electron-withdrawing properties of substituents either at the

telluronium cation or at the binding base. Last, it is found that pair-wise and many-

body methods for the dispersion interactions have similar performances in reproducing

the association energies of small to medium-large molecular complexes from the 1:1

to the 1:2 complexes of TeMePh+
2 with OPPh3. However, for large molecular systems

such as 1:3 assemblies, the MBD approach yields a lower over-stabilization of molecu-

lar complexes. This result suggests that the systematic comparison of pair-wise versus

many-body methods should be carried out for large assemblies containing extended or

numerous π systems, particularly when the closest match with experimental data is

sought. An improvement of the theoretical study, in order to reduce the discrepancy

between the measured and calculated enthalpies, could be achieved via the inclusion

of the counterion of the salt and via a better description of the solvent, beyond the

hybrid approach used in this work.
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Chapter 7

Summary and Outlook

In the last decade, the interest of computational Quantum Chemistry has progressively

shifted towards the accurate ab initio description of large chemical compounds, and

from the study of intramolecular interactions to that of weaker intermolecular inter-

actions. This was stimulated by the development of new generations of hardware in

high-performance computing facilities and of new electronic-structure methods. Yet,

ab initio approaches to solve the Schrödinger equation for large systems of interest are

still unfeasible, especially considering the accuracy required to describe some of their

physical and chemical properties. For example, to study molecules in a solvent, the

correct description of the interactions between the solute and the environment, domi-

nated by electrostatics, polarization and dispersion contributions, is necessary for the

modelling of the structural properties, the excitation energies, the reactivity or the op-

tical properties of the solute. In order to decrease the limiting computational cost, the

separation of the energy and time scales in the systems has been successfully exploited.

In the so-called embedding methods, the system of interest is split into fragments each

treated using computational methods of different accuracy and thus also of different

computational costs. Yet, the most common embedding methods still suffer from dif-

ficulties in capturing the correct mutual polarization of the main fragment and the

environment, and from approximations of the many-body dispersion effects through

pairwise functions that only depend on the distances between the nuclei.

In this Thesis, we contributed to the embedding approaches by the development of
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a new embedding method, ie the El-QDO method, in which the environment is mod-

elled via quantum Drude oscillators, mimicking the response of real matter, while the

main fragment is described at the fully electronic level through an ab initio method. In

the El-QDO approach, we introduced a single many-body Hamiltonian for the mixed

system of electrons and QDOs, proposed a correlated ansatz to represent the total vari-

ational wavefunction, and developed the quantum Monte Carlo algorithms for solving

the problem, implementing them in the QMeCha quantum Monte Carlo package[12].

The applications of the El-QDO embedding method reported in Chap. 4 demonstrate

the ability of the approach to capture the many-body mutual polarization and dis-

persion effects between the molecular electronic sub-system and the QDO environ-

ment. By comparing our results with the state-of-the-art DFT calculations and with

QM:MM approaches we highlighted the limitations of the common pairwise approaches

in describing the dispersion interaction contributions between the environment and the

electronic subsystem. From these first results, it is clear that the El-QDO framework

developed in this Thesis opens new possibilities for studying small to medium-sized

molecular systems in a large explicit environment, built from point charges and QDOs.

This will allow us to predict the effects of the environment on the structural and

electronic properties of subsystems of interest that arise from electrostatics, mutual

polarization and many-body dispersion interactions. All this can be achieved with a

computational cost that is comparable to that of the subsystem in the vacuum, ie

without the presence of the environment. Furthermore, the El-QDO approach can be

implemented in other numerical methods such as Coupled Cluster and Configuration

Interaction, with an appropriate generalization of the total wavefunction.

Despite the success of these first applications, modelling the short-range limit of

the interactions between QDOs, and between QDOs and electrons in a systematic way

still remains a challenge. One of the first steps in this direction has been taken in

Chap. 5, where we have studied the potential energy surface of the Coulomb-coupled

QDO dimer for all spatial separations, via quantum Monte Carlo methods, constructing

a variational ansatz inspired by the physical properties of the model. We discussed the

similarities and differences between the model and the H2 molecule, and we explained

the origin of the potential energy surface minima of the QDO dimer, which is due to the

combination of the repulsion between the QDO centers and the drift of the drudonic

particles towards the opposite Coulomb hole. Furthermore, within this Chapter, we
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showed that even though the model is unable to form a covalent bond, it can be

parametrized to reproduce the PES of covalently bonded atomic dimers, through a

reparametrization of the Hamiltonian as a function of the distance. The generalization

of the short-range regime in the QDO model, and of its interaction with the electrons,

is also crucial for the construction of a more portable quantum Force-Field built out

of interacting QDOs. Such a quantum Force-Field would naturally include the correct

many-body dispersion effects, and at the same time would be able to at least effectively

describe the short-range interactions between the environment and the subsystem of

interest. Thus, the results presented in this Thesis will serve as a starting point in this

broader direction that will inspire and guide further investigations.

Finally in Chap. 6 we showed the importance of the dispersion interactions and

the effects of the environment on the association energies of biomolecular complexes.

It is clear from the presented results, that a proper description of the many-body

dispersion effects together with the inclusion of explicit solvent molecules are necessary

to close the gap between the theoretical prediction and the experimental findings.

Unfortunately, we were able to include only up to 3 explicit DCE solvent molecules at

the full ab initio level with the currently available HPC facilities. Thus a reliable and

more general embedding method with explicit treatment of electrostatics, polarization

and dispersion, like the El-QDO method developed in this Thesis, will be of great

interest in the fields of biochemistry, biophysics, biology and many others.

In conclusion, the developments, applications and analyses presented in this Thesis

may become important tools for the investigation of a wider variety of solvated systems,

expanding the landscape of the existing QM:MM and QM:QM methods, or of the

implicit solvent models. Through the further generalization of the El-QDO embedding

for all distances, the method will be computationally efficient and able to stand as

an alternative for the QM:MM embedding approaches based on the classical point

charges and classical polarizable dipoles for correlated methods of Quantum Chemistry,

making a significant impact in the fields of drug development and in the simulations

of biologically relevant systems.
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free energy study of the oxidation mechanism of dihydroorotate dehydrogenase

(class 1a) from lactococcus lactis. J. Phys. Chem. B, 119(4):1468–1473, 2015.

[163] Dominic A. Sirianni, Xiao Zhu, Doree F. Sitkoff, Daniel L. Cheney, and C. David

Sherrill. The influence of a solvent environment on direct non-covalent interac-

tions between two molecules: A symmetry-adapted perturbation theory study of

polarization tuning of π-π interactions by water. J. Chem. Phys., 156(19):194306,

2022.

[164] J. C. Slater. The theory of complex spectra. Phys. Rev., 34:1293–1322, Nov 1929.

[165] J. C. Slater. Note on hartree’s method. Phys. Rev., 35:210, 1930.

[166] Vlad P. Sokhan, Andrew P. Jones, Flaviu S. Cipcigan, Jason Crain, and Glenn J.

Martyna. Signature properties of water: Their molecular electronic origins. Proc.

Natl. Acad. Sci., 112(20):6341–6346, 2015.

[167] Thomas Sommerfeld and Kenneth D. Jordan. Quantum drude oscillator model

for describing the interaction of excess electrons with water clusters: An appli-

cation to (h2o)13-. J. Phys. Chem. A, 109(50):11531–11538, 2005.

[168] S. Sorella, M. Casula, and D. Rocca. Weak binding betweem two aromatic rings:

feeling the van det waals attraction by quantum monte carlo methods. J. Chem

Phys., 127:14105, 2007.

149



[169] Sandro Sorella. Generalized lanczos algorithm for variational quantum monte

carlo. Phys. Rev. B, 64:024512, Jun 2001.

[170] Sandro Sorella. Wave function optimization in the variational monte carlo

method. Phys. Rev. B, 71:241103, Jun 2005.

[171] Sebastian Spicher and Stefan Grimme. Single-point hessian calculations for im-

proved vibrational frequencies and rigid-rotor-harmonic-oscillator thermodynam-

ics. J. Chem. Theor. Comput., 17(3):1701–1714, 2021. PMID: 33554604.

[172] Fernand Spiegelman, Nathalie Tarrat, Jérôme Cuny, Leo Dontot, Evgeny Posen-
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Appendices

A1 Parameterization of El-FF, QDO and El-QDO

models, and supporting results

Parametrization of the El-FF embedding, the QDOs used in the Thesis, the short-

range repulsion for QDO and El-QDO models and supporting results for the El-QDO

applications.

Table A1.1: Parametrization of the pairwise dispersion part of the El-FF embedding used in this

work [93].

ε [kcal/mol] σ[Å]

CC6H6 0.0700 3.5500

HC6H6 0.0300 2.4200

OH2O 0.1521 3.1507

HH2O 0.0460 0.4000
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Table A1.2: The parametrization (in Hartree atomic units) of the quantum Drude oscillators for Ne,

Ar, Kr, Xe atoms and for the water molecule used in this work.

q ω µ

Ne [88] 1.2494 1.2965 0.3491

Ar [88] 1.3314 0.7272 0.3020

Kr [88] 1.3741 0.6359 0.2796

Xe [88] 1.3570 0.5152 0.2541

H2O [31] 1.1973 0.6287 0.3656
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Table A1.3: The parameters of the external short-range repulsion from Eq. 2.66 with N=2 for the

systems used in this work. C1 and C2 denote the energetically lowest and the second lowest geom-

etry of the water dimer respectively, R and U denote refit and universal respectively and QDO=D

and QDO=A denote the QDO representing the donor and the acceptor in the El-QDO model re-

spectively.

a1 [mHa] a2 [mHa] b1 [a−1
0 ] b2 [a−1

0 ]

QDO-QDO

Ne 1.518·105 3.270·100 2.362 7.451

Ar 4.030·105 5.925·10−2 1.891 33.380

Kr 4.867·105 3.376·100 1.753 5.957

Xe 5.049·105 3.466·100 1.567 5.020

H2O (R, C1) 1.851·105 1.491·102 1.927 5.176

H2O (R, C2) 1.573·105 1.496·102 1.956 5.064

H2O [31] (U) 6.133·105 1.056·103 2.324 1.514

El-QDO

Ne 6.085·105 3.377·100 2.611 5.997

Ar 3.112·106 3.462·100 2.129 5.140

Kr 5.788·106 3.436·100 2.034 4.714

Xe 2.041·107 3.652·100 1.932 4.073

H2O (C1, QDO=D) 9.074·105 1.503·102 2.042 52.388

H2O (C2, QDO=D) 1.153·106 1.503·108 2.080 3.858

H2O (C1, QDO=A) 1.198·106 1.492·102 2.136 5.163

H2O (C2, QDO=A) 5.887·105 1.501·102 2.091 4.909
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Table A1.4: The all-electron vs ECP calculations of the singlet-triplet gap (in kcal/mol) of

ortho-benzyne with the aug-cc-pVTZ basis set at the UPBE0 level of theory. The differences are

2.87 kcal/mol and 2.86 kcal/mol in the vacuum and in the 4W cage respectively, thus we have cho-

sen the ECP error for the DMC calculation to be 2.85 kcal/mol.

all-electron

vacuum 28.12

4w cage 28.35

ECP

vacuum 25.25

4w cage 25.49
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A2 Adducts of TeMePh+
2 with OPPh3

Figures containing the rest of the adducts of TeMePh+
2 with OPPh3 studied in the

vacuum and the partial explicit solvent.

Figure A2.1: 1:1 adduct for σ1: TeMePh+
2 + OPPh3 → [(Ph3PO)·TeMePh2]+

Figure A2.2: 1:1 adduct for σ2: TeMePh+
2 + OPPh3 → [(Ph3PO)·TeMePh2]+

Figure A2.3: 1:1 adduct for σ3: TeMePh+
2 + OPPh3 → [(Ph3PO)·TeMePh2]+
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Figure A2.4: 1:2 adduct for σ1,2: TeMePh+
2 + 2 OPPh3 → [(Ph3PO)2·TeMePh2]+

Figure A2.5: 1:2 adduct for σ1,3: TeMePh+
2 + 2 OPPh3 → [(Ph3PO)2·TeMePh2]+

Figure A2.6: 1:2 adduct for σ2,3: TeMePh+
2 + 2 OPPh3 → [(Ph3PO)2·TeMePh2]+
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Figure A2.7: 1:3 adduct for σ1,2,3: TeMePh+
2 + 3 OPPh3 → [(Ph3PO)3·TeMePh2]+

Figure A2.8: 1:1 adduct for σ2 with 1 explicit DCE molecule per free σ-hole: (C2H4Cl2)3·TeMePh+
2

+ OPPh3 → [(C2H4Cl2)2(Ph3PO)·TeMePh2]+ + C2H4Cl2

Figure A2.9: 1:1 adduct for σ3 with 1 explicit DCE molecule per free σ-hole: (C2H4Cl2)3·TeMePh+
2

+ OPPh3 → [(C2H4Cl2)2(Ph3PO)·TeMePh2]+ + C2H4Cl2
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A3 Additional results of TeMePh+
2

Addition results of the computational study of TeMePh+
2 interacting with OPPh3 in

DCE solvent.
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Table A3.1: The enthalpies and Gibbs free energies of association (in kcal/mol) of the OPPh3

molecules with TeMePh+
2 at 298.15 K computed at the PBE, PBE-D4, PBE-TS, PBE-MBD@rsSCS

and PBE-MBD-NL level of theory with the light basis set in the vacuum and the partial explicit

solvation.

method PBE D4 TS
MBD@

rsSCS
MBD-NL

occ. σ-

hole
∆H ∆G ∆H ∆G ∆H ∆G ∆H ∆G ∆H ∆G

in vacuum

1:1 σ1 -21 -11 -31 -18 -30 -18 -29 -16 -28 -16

σ2 -22 -10 -30 -16 -29 -17 -28 -14 -27 -14

σ3 -20 -9 -31 -17 -31 -17 -29 -15 -28 -14

1:2 σ1,2 - - -56 -29 -57 -31 -53 -27 -52 -26

σ1,3 - - -57 -30 -57 -31 -54 -28 -52 -26

σ2,3 - - -58 -30 -58 -32 -54 -28 -52 -26

1:3 σ1,2,3 - - -84 -42 -87 -47 -79 -39 -76 -36

partial explicit DCE (1 per free σ-hole)

1:1 σ1 -17 -9 -23 -20 -24 -25 -22 -19 -22 -18

σ2 -16 -9 -23 -19 -24 -20 -22 -18 -22 -18

σ3 -14 -8 -25 -21 -27 -22 -24 -20 -23 -19
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Table A3.2: The enthalpies and Gibbs free energies of association (in kcal/mol) of OPPh3 molecules

with TeMePh+
2 at 298.15 K computed at the PBE0, PBE0-D4, PBE0-TS, PBE0-MBD@rsSCS and

PBE0-MBD-NL level of theory with the light basis set in the vacuum and a partial explicit solva-

tion.

method PBE0 D4 TS
MBD@

rsSCS
MBD-NL

occ. σ-

hole
∆H ∆G ∆H ∆G ∆H ∆G ∆H ∆G ∆H ∆G

in vacuum

1:1 σ1 -22 -10 -32 -19 -31 -19 -30 -17 -30 -17

σ2 -23 -11 -31 -17 -30 -18 -28 -15 -28 -14

σ3 -21 -10 -32 -18 -32 -18 -30 -16 -29 -15

partial explicit DCE (1 per free σ-hole)

1:1 σ1 -18 -9 -25 -23 -25 -22 -24 -20 -23 -20

σ2 -18 -9 -25 -21 -26 -22 -24 -20 -23 -20

σ3 -16 -8 -27 -22 -28 -23 -26 -21 -25 -21
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Table A3.3: The single point binding energies of the association (in kcal/mol) of the OPPh3

molecules with TeMePh+
2 computed at the PBE, PBE-D4, PBE-TS, PBE-MBD@rsSCS and PBE-

MBD-NL level of theory with the light basis set in the vacuum and the partial explicit solvation.

method PBE D4 TS
MBD@

rsSCS
MBD-NL

occ. σ-

hole
∆E0 ∆E0 ∆E0 ∆E0 ∆E0

in vacuum

1:1 σ1 -23 -32 -32 -30 -30

σ2 -24 -31 -31 -29 -29

σ3 -22 -32 -32 -30 -30

1:2 σ1,2 - -59 -60 -56 -55

σ1,3 - -60 -60 -57 -55

σ2,3 - -61 -61 -57 -55

1:3 σ1,2,3 - -89 -92 -83 -80

partial explicit DCE (1 per free σ-hole)

1:1 σ1 -17 -23 -24 -23 -22

σ2 -17 -24 -25 -23 -22

σ3 -14 -25 -27 -24 -23
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Table A3.4: The single point binding energies of the association (in kcal/mol) of the OPPh3

molecules with TeMePh+
2 computed at the PBE, PBE-D4, PBE-TS, PBE-MBD@rsSCS and PBE-

MBD-NL level of theory with the intermediate basis set in the vacuum and the partial explicit sol-

vation.

method PBE D4 TS
MBD@

rsSCS
MBD-NL

occ. σ-

hole
∆E0 ∆E0 ∆E0 ∆E0 ∆E0

in vacuum

1:1 σ1 -22 -32 -31 -30 -29

σ2 -23 -31 -30 -28 -28

σ3 -21 -32 -32 -30 -29

1:2 σ1,2 - -58 -60 -55 -54

σ1,3 - -59 -59 -56 -54

σ2,3 - -60 -60 -56 -54

1:3 σ1,2,3 - -88 -89 -81 -79

partial explicit DCE (1 per free σ-hole)

1:1 σ1 -16 -25 -26 -23 -22

σ2 -16 -23 -24 -22 -22

σ3 -16 -25 -26 -24 -23
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Table A3.5: The single point binding energies of the association (in kcal/mol) of the OPPh3

molecules with TeMePh+
2 computed at the PBE0, PBE0-D4, PBE0-TS, PBE0-MBD@rsSCS and

PBE0-MBD-NL level of theory with the light basis set in the vacuum and the partial explicit solva-

tion.

method PBE D4 TS
MBD@

rsSCS
MBD-NL

occ. σ-

hole
∆E0 ∆E0 ∆E0 ∆E0 ∆E0

in vacuum

1:1 σ1 -23 -34 -32 -31 -31

σ2 -24 -32 -32 -30 -29

σ3 -22 -33 -33 -31 -30

partial explicit DCE (1 per free σ-hole)

1:1 σ1 -18 -25 -26 -25 -24

σ2 -18 -25 -26 -24 -23

σ3 -16 -27 -28 -26 -25
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Table A3.6: The single point binding energies of the association (in kcal/mol) of the OPPh3

molecules with TeMePh+
2 computed at the PBE, PBE-D4, PBE-TS, PBE-MBD@rsSCS and PBE-

MBD-NL level of theory with the light basis set in the vacuum and the partial explicit solvation

calculating at the geometries obtained at the PBE-D4-COSMO level of theory.

method PBE D4 TS
MBD@

rsSCS
MBD-NL

occ. σ-

hole
∆E0 ∆E0 ∆E0 ∆E0 ∆E0

in vacuum

1:1 σ1 -21 -32 -32 -30 -30

σ2 -20 -31 -30 -29 -28

σ3 -21 -32 -31 -30 -29

partial explicit DCE (1 per free σ-hole)

1:1 σ1 -14 -24 -25 -23 -23

σ2 -15 -24 -25 -23 -22

σ3 -14 -25 -27 -24 -23
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Table A3.7: The single point binding energies of the association (in kcal/mol) of the OPPh3

molecules with TeMePh+
2 computed at the PBE, PBE-D4, PBE-TS, PBE-MBD@rsSCS and PBE-

MBD-NL level of theory with the intermediate basis set in the vacuum and the partial explicit sol-

vation calculating at the geometries obtained at the PBE-D4-COSMO level of theory.

method PBE D4 TS
MBD@

rsSCS
MBD-NL

occ. σ-

hole
∆E0 ∆E0 ∆E0 ∆E0 ∆E0

in vacuum

1:1 σ1 -20 -32 -31 -30 -29

σ2 -20 -31 -30 -28 -28

σ3 -20 -31 -31 -29 -29

partial explicit DCE (1 per free σ-hole)

1:1 σ1 -14 -24 -24 -23 -22

σ2 -15 -24 -25 -23 -22

σ3 -14 -25 -26 -24 -23
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Table A3.8: The single point binding energies of the association (in kcal/mol) of the OPPh3

molecules with TeMePh+
2 computed at the PBE, PBE-D4, PBE-TS, PBE-MBD@rsSCS and PBE-

MBD-NL level of theory with the tight basis set in the vacuum and the partial explicit solvation

calculating at the geometries obtained at the PBE-D4-COSMO level of theory.

method PBE D4 TS
MBD@

rsSCS
MBD-NL

occ. σ-

hole
∆E0 ∆E0 ∆E0 ∆E0 ∆E0

in vacuum

1:1 σ1 -20 -31 -30 -29 -28

σ2 -19 -30 -29 -28 -27

σ3 -19 -30 -30 -28 -28

partial explicit DCE (1 per free σ-hole)

1:1 σ1 -13 -23 -23 -22 -21

σ2 -14 -23 -24 -22 -21

σ3 -13 -24 -25 -23 -22
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Table A3.9: The single point binding energies of the association (in kcal/mol) of the OPPh3

molecules with TeMePh+
2 computed at the PBE0, PBE0-D4, PBE0-TS, PBE0-MBD@rsSCS and

PBE0-MBD-NL level of theory with the light basis set in the vacuum and the partial explicit solva-

tion calculating at the geometries obtained at the PBE-D4-COSMO level of theory.

method PBE0 D4 TS
MBD@

rsSCS
MBD-NL

occ. σ-

hole
∆E0 ∆E0 ∆E0 ∆E0 ∆E0

in vacuum

1:1 σ1 -22 -33 -33 -31 -31

σ2 -22 -32 -31 -30 -29

σ3 -22 -33 -32 -31 -30

partial explicit DCE (1 per free σ-hole)

1:1 σ1 -16 -26 -26 -25 -24

σ2 -16 -25 -26 -24 -23

σ3 -16 -27 -28 -25 -25
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Table A3.10: The single point binding energies of the association (in kcal/mol) of the OPPh3

molecules with TeMePh+
2 computed at the PBE0, PBE0-D4, PBE0-TS, PBE0-MBD@rsSCS and

PBE0-MBD-NL level of theory with the intermediate basis set in the vacuum and the partial ex-

plicit solvation calculating at the geometries obtained at the PBE-D4-COSMO level of theory.

method PBE0 D4 TS
MBD@

rsSCS
MBD-NL

occ. σ-

hole
∆E0 ∆E0 ∆E0 ∆E0 ∆E0

in vacuum

1:1 σ1 -22 -33 -32 -31 -31

σ2 -21 -32 -31 -29 -29

σ3 -22 -32 -32 -30 -30

partial explicit DCE (1 per free σ-hole)

1:1 σ1 -16 -25 -26 -25 -24

σ2 -16 -25 -26 -24 -23

σ3 -16 -27 -28 -25 -25
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Table A3.11: The single point binding energies of the association (in kcal/mol) of the OPPh3

molecules with TeMePh+
2 computed at the PBE0, PBE0-D4, PBE0-TS, PBE0-MBD@rsSCS and

PBE0-MBD-NL level of theory with the tight basis set in the vacuum and the partial explicit solva-

tion calculating at the geometries obtained at the PBE-D4-COSMO level of theory.

method PBE0 D4 TS
MBD@

rsSCS
MBD-NL

occ. σ-

hole
∆E0 ∆E0 ∆E0 ∆E0 ∆E0

in vacuum

1:1 σ1 -21 -32 -31 -30 -28

σ2 -20 -30 -30 -28 -27

σ3 -20 -31 -30 -29 -28

partial explicit DCE (1 per free σ-hole)

1:1 σ1 -14 -24 -24 -23 -21

σ2 -15 -24 -24 -22 -21

σ3 -14 -25 -26 -24 -22
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Quantum Mechanics (QM), Molecular Mechanics (MM), Quantum Chemistry (QCH),

Force-Field (FF) Quantum Drude Oscillator (QDO), Quantum Monte Carlo (QMC),

Variational Monte Carlo (VMC), Diffusion Monte Carlo (DMC), Electrons - Quan-

tum Drude Oscillators (El-QDO), Electrons - Force-Field (El-FF), Quantum Mechan-

ics in Molecular Mechanics (QM:MM), Quantum Mechanics in Quantum Mechan-

ics (QM:QM), Hartree-Fock (HF), Density Functional Theory (DFT), Perdew-Burke-

Ernzerhof density functional (PBE), Perdew-Burke-Ernzerhof density functional with

mixture of Hartree-Fock exchange (PBE0), Grimme’s dispersion method (D4), Tkatchenko-

Scheffler dispersion method (TS), many-body dispersion (MBD), range-separated self-

consistent screening version of the many-body dispersion (MBD@rsSCS), non-local

version of the many-body dispersion (MBD-NL), local energy decomposition (LED),

Coupled Cluster (CC), Coupled Cluster with singles-doubles and perturbative triples

(CCSD(T)), domain-based local pair-natural orbital Coupled Cluster with singles-

doubles and perturbative triples (DLPNO-CCSD(T)), Configuration Interaction (CI),

Symmetry-Adapted Perturbation Theory (SAPT), Generalized Gradient Approxima-

tion (GGA), Zeroth-Order Regular Approximation (ZORA), time-dependent Schrödinger

equation (TDSE), time-independent Schrödinger equation (TISE), Molecular Dynam-

ics (MD), Potential Energy Surface (PES), Isotherm Titration Calorimetry (ITC), Path

Integral Monte Carlo (PIMC), van der Waals (vdW), singlet-triplet (ST), dispersion

(Dsp), exchange (Ex), full minus the exchange (F-Ex), Effective Core Potential (ECP),

PBE0 with unrestricted Kohn-Sham orbitals (UPBE0), Kohn-Sham (KS), Fixed-Node

(FN) Gaussian-type orbitals (GTO), Slater-type orbitals (STO), Determinant Locality

Approximation (DLA), Locality Approximation (LA)
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