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Abstract

Learning Representations of Atomistic Systems with Deep Neural Networks
Deep Learning has been shown to learn efficient representations for structured
data such as image, text or audio. However, with the rise of applying machine
learning to quantum chemistry, research has been largely focused on the de-
velopment of hand-crafted descriptors of atomistic systems. In this thesis, we
propose novel neural network architectures that are able to learn efficient rep-
resentations of molecules and materials. We demonstrate the capabilities of
our models by accurately predicting chemical properties across compositional
and configurational space on a variety of datasets. Beyond that, we perform
a study of the quantum-mechanical properties of C20-fullerene that would not
have been computationally feasible with conventional ab initio molecular dy-
namics. Finally, we analyze the trained models to find evidence that they have
learned local representations of chemical environments and atom embeddings
that agree with basic chemical knowledge.

Zusammenfassung

Lernen von Repräsentationen für Atomistische Systeme mit Tiefen Neu-
ronalen Netzen Tiefes Lernen hat gezeigt, dass es effiziente Repräsentatio-
nen für strukturierte Daten wie Bilder, Texte oder Audio lernen kann. Mit
der zunehmenden Anwendung von Maschinellem Lernen in der Quanten-
chemie hat sich die Forschung dort vor allem auf die manuelle Entwick-
lung von Deskriptoren für atomistische Systeme konzentriert. In dieser Ar-
beit schlagen wir zwei neuartige Architekturen für Neuronale Netze vor, die
in der Lage sind, effiziente Repräsentationen für Moleküle und Materialien
zu erlernen. Wir demonstrieren die Fähigkeiten unserer Modelle durch die
genaue Vorhersage von chemischen Eigenschaften für Systeme mit verschiede-
nen Zusammensetzungen sowie verschiedenen Atomanordnungen. Darüber
hinaus führen wir eine Studie der quantenmechanischen Eigenschaften von
dem Fulleren C20 durch, welche mit konventionellen ab initio Moleküldynamik-
Simulationen nicht möglich gewesen wäre. Schließlich zeigt eine umfassende
Analyse der trainierten Modelle deutliche Hinweise darauf, dass sie lokale
Repräsentationen von chemischen Umgebungen sowie Atomeinbettungen gel-
ernt haben, die mit chemischem Grundlagenwissen übereinstimmen.
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Chapter 1

Introduction

Chemistry is integral to a wide variety of technologies ranging from food
processing and drug design to batteries and solar cells. The discovery of
novel molecules and materials with desired properties is crucial to progress
in these areas. While quantum-chemical calculations deliver the means to pre-
dict such properties for given atomistic systems and simulate their dynamic
behavior, the vastness of chemical compound space prevents an exhaustive ex-
ploration [Lil13]. To overcome this issue, discoveries in chemistry are guided
by databases of experimental and theoretical structures and properties. Those
are mined for systems with desired chemical properties using descriptors and
fingerprints that aim to encode chemical similarity, e.g. based on the molecular
graph [RH10] or quantum-chemical properties obtained from electronic struc-
ture calculations [KLK96]. Indeed, high-throughput screening computational
methods [Cur+13; Pyz+15], which combine electronic structure calculations
with data analysis techniques, have proven to be a powerful tool, e.g. in the
discovery of improved batteries [KC09; Hau+13], catalysts [Nør+09] and pho-
tovoltaics [Hac+11]. However, the computational cost of accurate quantum-
chemical calculations remains the bottleneck of these approaches.

In recent years, there has been increased interest in applying machine
learning techniques to model quantum-chemical systems [Lil13]. A significant
part of the research has been dedicated to engineering of features that char-
acterize global molecular similarity [Rup+12; Mon+12; Han+13; Han+15] or
local chemical environments [BP07; BKC13] based on atomic positions. Then,
a non-linear regression method – such as kernel ridge regression or a neural
network – is used to correlate these features with the chemical property of in-
terest. In these types of approaches, the representation of an atomistic system
is fixed and can not be adapted to the task at hand. While this may be desirable
if there is only a limited amount of data available, such an approach struggles
to exploit regularities in the data that are not reflected in the descriptor. This is
in particular the case if such internal structure is strongly property-specific or
can only be approximated based on chemical intuition. E.g., the similarity of
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2 CHAPTER 1. INTRODUCTION

atom types can not be easily encoded, especially if we aim to avoid heuristics
that only apply to certain classes of molecules or materials.

In other applications, such as computer vision and natural language pro-
cessing, recent breakthroughs in deep neural networks [KSH12; SVL14; Vin+15;
Mni+15] have caused a major shift towards end-to-end learning of representa-
tions [LBH15; Sch15]. Just like images, text or audio, molecules and materials
are highly organized data that show local structure such as chemical bonds or
functional groups.

The goal of this thesis is to develop deep neural networks that are capable
of learning representations for atomistic systems. Beyond that we aim to pro-
vide techniques to extract insights about the obtained representation as well as
the underlying data. We will reuse the deep learning architecture in a variety
of applications, thus, the resulting representation has to adapt to the task at
hand. The predictions obtained from the learned representation should fol-
low fundamental quantum-mechanical principles. Therefore, we will encode
important invariances, e.g. towards rotation and translation, directly into the
deep learning model and constrain our models to obey physical laws such as
energy conservation. Following this principle, we aim to increase the sample
efficiency of our models without reducing the generality of the approach, as
it would be the case when including chemical intuition and heuristics into
manually crafted features.

We will apply the developed deep learning techniques to a variety of tasks
ranging from the prediction of various chemical properties across chemical
compound space for molecules and solids to accelerating molecular dynam-
ics simulations. This constitutes an important step toward machine learning-
driven quantum-chemical exploration. By analyzing the learned representa-
tions, we will get a glimpse into the inner working of the neural network in
order to validate whether the model has learned known chemical concepts or
might even provide novel insights.

1.1 Theoretical background

In this section, we will introduce some necessary background and important
terminology that is used throughout the thesis. First, we will define atomistic
systems before we introduce the quantum mechanical foundations to illustrate
the complexity of electronic structure calculations. Then, we will go on to
discuss density functional theory – the electronic structure method providing
the reference calculations used in this thesis. Finally, we describe the tasks that
the methods in this work are applied to.
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(a) Molecule: Salicylic acid (b) Bulk crystal: Diamond

Figure 1.1: Examples of atomistic systems.

1.1.1 Atomistic systems

An atomistic system S consisting of N atoms can generally be described as a
set of tuples

S = {(Zi, ri)| i ∈ [1, natoms]},

where Z is the nuclear charge that characterizes the atom type and r is the
position of the atom. We conveniently write interatomic distances dij = ∥ri −
rj∥.

In this thesis, we will consider two types of atomistic systems, namely
molecules and bulk crystals. Molecules consist of a set of atoms that are con-
nected by chemical bonds (Fig. 1.1a). Crystals are highly organized atomistic
systems where the atoms are located in a unit cell that repeats periodically
and forms the Bravais lattice [AM76]. Fig. 1.1b shows diamond with its cubic
unit cell. In an ideal crystal, the cell repeats infinitely in all three directions of
the lattice. This is called periodic boundary condition (PBC). Thus, we can
write a crystal as a set of tuples

S = {(Zi, ri + n1l1 + n2l2 + n3l3)| i ∈ [1, natoms]; n1, n2, n3 ∈ N},

where lk are the lattice vectors that span the unit cell.

1.1.2 The Schrödinger equation

A significant part of quantum chemistry is concerned with finding approxi-
mate solutions to the time-independent Schrödinger equation

Ĥ Ψ = E Ψ

of an atomistic system with the total energy E and the wave function Ψ. The
quantum-mechanical Hamiltonian operator represents how charged particles
(electrons and nuclei) interact among each other and can be written in atomic
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units as follows:

Ĥ =−∑
i

1
2me

∇2
i  

kinetic energy
of electrons

−∑
k

1
2Mk

∇2
k  

kinetic energy
of nuclei

(1.1)

−∑
i

∑
k

Zk

dik  
electron-nuclear

attraction

+ ∑
i<j

1
dij  

electron-electron
repulsion

+ ∑
k<l

ZkZl

dkl  
nuclear-nuclear

repulsion

with electron indices i, j, atom indices k, l, the electron mass me, the mass
Mk of nucleus k and the Laplacians ∇i, ∇k of the electrons and nuclei, re-
spectively [SO96; Cra04]. Within the Born-Oppenheimer approximation, the
nuclear positions are considered fixed compared to the much faster electrons.
Therefore, we obtain the electronic Hamiltonian

Ĥel = −∑
i

1
2
∇2

i − ∑
i

∑
k

Zk

dik
+ ∑

i<j

1
dij

, (1.2)

while the nuclei are effectively considered point charges which generate the
external potential. Still, this constitutes an n-body problem for which there
exists no analytic solution for n > 1 electrons.

A major reason that the solution to this is much more complex than in
classical mechanics is that the electrons obey quantum-mechanical principles,
and have to be described by the many-body wave function Ψ(r1, . . . , rN)

1. This
can be represented in a set of basis functions so that all necessary constraints,
such as the antisymmetry of the electron wave function

Ψ(r1, . . . , ri, . . . , rj, . . . , rN) = −Ψ(r1, . . . , rj, . . . , ri, . . . , rN), (1.3)

are fulfilled. The variational principle states that the eigenvalues of the Hamil-
tonian are bounded from below, thus,

E =

∫
ΨĤelΨdr∫

Ψ2dr
≥ E0 (1.4)

where the ground state E0 is the lowest possible energy of a system. Eq 1.4
allows us to compare the quality representations of the wave function with
the criterion of which achieves a lower ground state [SO96; Cra04]. At the
same time, this presents a solution to the Schrödinger equation, namely to
minimize the energy which involves computing the integrals in Eq. 1.4. This
can be achieved by a self-consistent field approach, where the Hamiltonian is
applied to a trial wave function to obtain a more accurate set of wave function
parameters.

1For simplicity, we neglect the electron spin in this introduction.
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The choice of how the wave function is parametrized determines the accu-
racy of the solution as well as the computational cost. While the Hartree-Fock
approximation, where the wave function is represented by a single Slater de-
terminant, scales with O(n4), more accurate calculations like CCSD(T) already
scale with O(n7) [Cra04]. Therefore, an accurate solution becomes soon in-
feasible with growing system sizes and more complex representations of the
wave function.

1.1.3 Density functional theory

As we have seen in the last section, a major scaling issue is that the wave func-
tion depends on the positions of all particles. A simpler object is the electron
density ρ(r) which corresponds to the probability of finding an electron at
position r, and is normalized to the number of electrons

N =
∫

ρ(r)dr. (1.5)

Hohenberg and Kohn [HK64] showed that there exists a unique mapping from
the ground-state electron density ρ0(r) to the external potential, which implies
that it also determines the wave function. Therefore, we can write the ground-
state energy as a functional of the density:

E0 = T̄[ρ0(r)]  
kinetic energy

of electrons

+ V̄ne[ρ0(r)]  
nuclear-electron

attraction

+ V̄ee[ρ0(r)]  
electron-electron

repulsion

(1.6)

Beyond that, Hohenberg and Kohn [HK64] showed that the density obeys a
variational principle, i.e.,

T̄[ρ(r)] + V̄ne[ρ(r)] + V̄ee[ρ(r)] = Ē[ρ(r)] ≥ E0, (1.7)

which would allow us to compute the ground-state energy, if we knew the
exact energy functional Ē[ρ(r)] [Cra04]. However, we do not know how the
kinetic energy T̄ and the electron-electron repulsion V̄ee can be obtained from
the density.

Kohn and Sham [KS65] introduced a formalism to rewrite the energy func-
tional as a system of non-interacting electrons

Ē[ρ(r)] = T̄ni[ρ0(r)]  
kinetic energy of

non-interacting electrons

+ V̄ne[ρ0(r)]  
nuclear-electron

attraction

+ V̄ee[ρ0(r)]  
classic

electron repulsion

(1.8)

+ ∆T̄[ρ0(r)]  
interaction correction

of kinetic energy

+ ∆V̄ee[ρ0(r)]  
non-classical

electron repulsion

, (1.9)

where the last two terms are corrections that reintroduce the electron interac-
tions and are summarized as the exchange-correlation energy Ēxc = ∆T̄[ρ0(r)]+
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∆V̄ee[ρ0(r)]. This leads to the same ground-state energy as the original system,
which now can be decomposed in terms of electronic basis functions

ρ0(r) = ∑
i
|ϕi(r)|2. (1.10)

The solution can be obtained through a self-consistent field approach using
the Kohn-Sham operator

ĥi = −1
2
∇2

i − ∑
k

Zk

rik
+
∫

ρ(r′)
∥r − r′∥dr′ +

∂Ēxc[ρ(r)]
∂ρ(r)

, (1.11)

where the last term is the functional derivative of the exchange-correlation
functional.

While density functional theory (DFT) is exact in principle, one would
have to know the correct Ēxc to obtain the correct ground state. Since this
is not the case, there exist several approximations with varying accuracy and
computational cost. The most simple approaches approximate the exchange-
correlation locally, i.e., depending on the density at a given location r. These
functionals are called local (spin) density approximations (LDA/LSDA) and
are in practice derived from the uniform electron gas, where the density is a
constant [Cra04; PZ81]. This approach can be extended by using the gradient
of the density in so-called generalized gradient approximation (GGA) func-
tionals. Popular GGA functionals include the parameter-free PBE [PBE96] and
fitted functionals like B88 [Bec88]. Hybrid functionals such as B3LYP [Bec88;
LYP88; Bec93] or PBE0 [PEB96] include exact exchange from the Hartree-Fock
formalism using the Kohn-Sham orbitals.

The data sets employed in this thesis have been calculated using DFT with
various functionals (see Appendix A). The computational cost of DFT scales
with O(n3) w.r.t. the number of particles. The exchange-correlation functional
can increase the cost. E.g. DFT using hybrid functionals scales with O(n4)
since those require the exchange term from Hartree-Fock.

1.1.4 Typical quantum-chemical tasks for ML

At absolute zero temperature, atomistic systems relax into a state where all
atomic forces cancel, which we call equilibrium. A common task for ML
in quantum chemistry is the prediction of properties for systems at equilib-
rium across chemical compound space. One important property is the energy
needed to break the atomistic system down into single, non-interacting atoms,
which is called atomization energy or formation energy for molecules and
materials, respectively.

On the other hand, molecular dynamics (MD) simulations approximate
the time evolution of a system including, e.g., interactions with the environ-
ment. In this case, the data contains not only the equilibrium configuration
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of an atomistic system, but also perturbed configurations, often together with
the atomic forces. The energy of the system depending on the atomic positions
defines its potential energy surface (PES) E(r1, . . . rnatoms). The force on atom i
can then be obtained as the negative derivative of the energy:

Fi = −∂E(r1, . . . rnatoms)

∂ri

Predicting PESs and the associated force fields is another important applica-
tion of ML for quantum chemistry which we will tackle in this thesis.

Even though density functional theory is faster than accurate wave function
methods, it is still a bottleneck in exploring chemical space and performing
large-scale molecular dynamics simulations. This is because these application
require huge numbers of calculations. As we will demonstrate in this thesis,
machine learning has the potential to speed up these applications, even for
small molecules, by several orders of magnitude.

1.2 Description of the chapters

Chapter 2 (Representing atomistic systems) We introduce necessary back-
ground on how to represent atomistic systems for machine learning. We re-
view necessary and desirable properties of representations and, with that in
mind, analyze a variety of existing descriptors. Finally, we draw conclusions
on requirements and constraints for learning a representation.

Chapter 3 (Learning representations of chemical enviroments) Based on
the analysis of Chapter 2, we conceive a deep tensor neural network (DTNN)
architecture that is able to learn a representation for atomistic systems while
exhibiting the previously established necessary constraints and invariances.
We use our model to predict molecular energies across chemical compound
space as well as molecular dynamics trajectories. Beyond that, we analyze the
learned representation to obtain quantum chemical insights.

Chapter 4 (Continuous-filter convolutional neural networks) In this chap-
ter, we revisit the modeling of quantum interactions in DTNNs under the
aspect of convolutions. We develop continuous-filter convolutional layers that
we use to build SchNet: an improved architecture to learn representations for
atomistic systems. This allows us to define filters with periodic boundary con-
ditions that we use for the prediction of formation energies of bulk materials.

Chapter 5 (Potential energy surfaces) In this chapter, we apply SchNet to the
prediction of potential energy surfaces (PES) and corresponding force fields.
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Specifically, we use a combined loss to obtain a combined model that can
accurately predict molecular dynamics trajectories from a set of trajectories of
small organic molecules. Beyond that we apply our method to the prediction
of a PES with chemical and conformational changes. Finally, we demonstrate
the capabilities of SchNet by using it to drive an MD simulation of the fullerene
C20.

1.3 Main contributions of this thesis

This thesis provides the following main contributions:

• Development of Deep Tensor Neural Networks (DTNNs) for predict-
ing molecular energies We develop a neural network architecture that
is able to predict atomization energies using atom types and positions
as input in an end-to-end fashion. The model learns atom-wise repre-
sentations of chemical environments and follows fundamental quantum-
chemical principles such as invariance towards rotation, translation and
atom indexing. DTNNs provide size-extensive predictions at chemical
accuracy (≤ 1 kcal mol−1) in compositional and configurational chemi-
cal space.

• Development of continuous-filter convolutional layers and the SchNet
architecture We develop continuous-filter convolutional layers in order
to model quantum interactions of atoms at arbitrary positions. We built
upon the DTNN principles to propose SchNet: a continuous-filter con-
volutional network for molecules and materials. SchNet is able to pre-
dict various chemical properties of a benchmark dataset of small, organic
molecules as well as formation energies of a diverse set of bulk materials.

• Analysis of the representations learned by DTNN and SchNet models
We analyze the representations obtained from DTNN and SchNet in or-
der to gain insights about the model and the underlying data. We study
the energy partitioning provided by the models in terms of stability. Fur-
thermore, the neural networks generate a local chemical potential which
can probed by a test charge in order to analyze the spatial structure of
the obtained representations. The sensitivity of chemical environments
is analyzed to estimate the range of atomic interactions.

• Application to potential energy surfaces and force fields We train SchNet
models using a combined objective of energies and forces in order to ob-
tain accurate potential energy surfaces and corresponding conservative
force fields. We will use this to perform an path-integral MD simulation
on C20 fullerene with SchNet, reducing the required computing time
from 7 years to less than 7 hours.
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1.4 Previously published work

Many results in this thesis have previously been published in conference pro-
ceedings and journals. They are taken from the following articles:
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Gross. “How to represent crystal structures for machine learning: To-
wards fast prediction of electronic properties”. Phys. Rev. B 89 (20),
p. 205118, 2014

• K. T. Schütt, F. Arbabzadah, S. Chmiela, K.-R. Müller, and A. Tkatchenko.
“Quantum-chemical insights from deep tensor neural networks”. Nature
Communications 8, 13890, 2017

• K. T. Schütt, P.-J. Kindermans, H. E. Sauceda, S. Chmiela, A. Tkatchenko,
and K.-R. Müller. “SchNet: A continuous-filter convolutional neural net-
work for modeling quantum interactions”. in: Advances in Neural Infor-
mation Processing Systems 30, pp. 992–1002. 2017

• K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and K.-R.
Müller. “SchNet - a deep learning architecture for molecules and mate-
rials”. The Journal of Chemical Physics 148 (24), 241722, 2018

Figures and tables that are fully or partially taken from previously published
work, cite the original source in the bold caption title.
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Chapter 2

Representing atomistic systems

Predicting properties of atomistic system based on previously observed data is
an established procedure in chemistry. In chemoinformatics, predictive models
are often used to perform fast virtual screening by correlating the structure of
a compound to chemical properties (quantitative structure-property relation-
ship, QSPR) or the biological activity (quantitative structure-activity relation-
ship, QSAR) [KLK95]. This is usually achieved by a regression of a descriptor
of the compound to the property of interest. These descriptors can be de-
rived from the composition, topology and geometry of the compound, or even
include results from quantum-chemical calculations [KG93; KLK95; SV03].
These approaches are well suited to predict complex properties such as toxicity
or solubility. They are not designed for highly accurate predictions of funda-
mental quantum-chemical properties such as atomization energies or atomic
forces. For purposes like finding stable structures or molecular dynamics sim-
ulations, where these properties are required, classical (semi-empirical) force
fields are fitted to data from experiments or electronic structure calculations.
Examples for such force fields are AMBER [Cor+95], CHARMM [Bro+83] or
GROMOS [GB87]. However, these approaches are tailored towards a restricted
class of systems and properties. Beyond that, they rely on terms incorporating
bond lengths, angles and dihedral angles such that they usually do not allow
for bond breaking.

The reason for descriptors in chemoinformatics to be painstakingly opti-
mized to specific atomistic systems, is that linear regression methods are ap-
plied. Given more powerful non-linear machine learning techniques, such as
kernel methods [CV95; Mül+01; SS02] or deep neural networks [Bis95; LeC+98;
LBH15], we are able to use more general features. These may even include first
principles information, i.e. encode the full information of the quantum Hamil-
tonian [Lil+15]. Within the Born-Oppenheimer approximation, this amounts
to the types and positions of the atoms in an atomistic system. Note that,
depending on the property to be predicted, not the full information might be
required, e.g. due to invariance of the property w.r.t. rotation and translation.

11



12 CHAPTER 2. REPRESENTING ATOMISTIC SYSTEMS

First principles Chemical graphs Classical force fields

atoms, atoms, bonds, atoms, bond lengths,

positions rings angles, . . .

virtual screening
✓ ✓ ✓

equilibrium required equilibrium required

molecular dynamics
✓ ✗ ✓

no bond breaking

chemical &
configurational space

✓ ✗ ✗

Table 2.1: Possible applications for machine learning descriptors using
first-principles information, chemical graphs or terms from classical force fields.
The table shows whether the descriptor are applicable (✓), applicable with
limitations (✓) or not applicable (✗).

Depending on the task, machine learning representations can be inspired
by the approaches above, i.e., be derived from first principles, chemoinformat-
ics descriptors or classical force fields. An overview of suitable applications is
shown in Table 2.1. Note that first-principles representations are the only op-
tion that can be applied to all listed applications, even though the equilibrium
geometry is required for virtual screening. While this may be prohibitive in
certain situations, a computationally cheap force field can be used to obtain
the approximate structure before ML is used to accurately predict the desired
property.

In this thesis, we aim for machine learning methods that can obtain rep-
resentations applicable to all kinds of atomistic systems and across chemical
as well as configurational space. Only with such a representation, it is con-
ceivable to accurately model general quantum interactions and, in doing so,
be able to extract quantum-chemical insights. This can only be achieved by
a representation derived from first principles (see Table 2.1). In the follow-
ing sections, we will discuss desirable properties of such a representation and
review existing categories of descriptors for molecules and solids.

2.1 Properties of atomistic representations

A machine learning method in combination with well-crafted features should
be able to deliver highly accurate predictions while requiring as few train-
ing examples as possible. To achieve this, the chosen representation has to
fulfill certain requirements in order to generalize well. Beyond that, in quan-
tum chemistry we would like the representation to follow further application-
specific requirements. Lilienfeld et al. [Lil+15] have formulated a list of desir-
able properties of machine learning descriptors. In the following, we review
the requirements of this list that we deem most important:
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Uniqueness

Obviously, it is crucial that the representation x contains all relevant infor-
mation to uniquely describe the atomistic system S up to invariances of the
desired property y = f (x), i.e.

xS = xS′ =⇒ f (xS) = f (xS′). (2.1)

Otherwise, it is not possible to correctly predict a property that is not equal
for those two systems. Having each atomistic system uniquely characterized
such that

xS = xS′ ⇐⇒ S = S′, (2.2)

possibly up to rotations and translations, would even result in an invert-
ible representation. This is only required for properties without invariances.
Lilienfeld et al. [Lil+15] additionally list the "completeness" or "global nature"
of the descriptor as a requirement in contrast to local representations that only
reflect a local environment. However, we argue that this is already covered by
the definition of uniqueness.

Invariances / Equivariances

Invariances of the property to be predicted with respect to input transforma-
tions reduce the domain that needs to be covered by the machine learning
model. Therefore, less training examples will be required to achieve the same
accuracy. However, this is only the case if the representation reflects these in-
variances. E.g., following the invariances of the total energy of an atomistic
system, the representation for this task should be invariant to translation, ro-
tation and permutation. In contrast, a representation for atomic forces should
be equivariant with respect to rotation and permutation. If an invariance can-
not be explicitly incorporated in the descriptor, it can be learned using data
augmentation [Mon+12].

Differentiability

Many quantum chemical properties evolve continuously during atom move-
ment. To properly model this behavior, the representation has to be continuous
as well. Beyond that, it may be necessary to differentiate a property prediction
with respect to the atom positions. For instance, the force Fi acting on atom i
is defined as the negative derivative of the energy w.r.t. the position:

Fi = − ∂E
∂ri

. (2.3)

This makes it possible to optimize the atom positions in order to obtain the
equilibrium structure, or to perform molecular dynamics simulations. In these
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CM BoB PRDF / HDAD SOAP ACSF

uniqueness ✓ ✗ ✗ ✓ ✗

invariant to translation ✓ ✓ ✓ ✓ ✓

invariant to rotation ✓ ✓ ✓ ✓ ✓

invariant to atom indexing ✗ ✗ ✓ ✓ ✓

differentiable ✓ ✓ ✗ ✓ ✓

cross-element generalization  ✗ ✗ ✗ ✗

Table 2.2: Properties of various descriptors. We list Coulomb matrix (CM)
[Rup+12], Bag of Bonds (BoB) [Han+15], partial radial distribution functions (PRDF)
[Sch+14], histograms of distances, angles and dihedral angles (HDAD) [HL16],
smooth overlaps of atomic potentials (SOAP) and atom-centered symmetry functions
(ACSF) [Beh11]. The table shows whether the properties are fulfilled (✓), partially
fulfilled (✓) or not fulfilled (✗). Cross-element generalization is theoretically possible
with the Coulomb matrix, however, the used similarity measure turns out to be
detrimental ( ).

cases, both the representation and the machine learning model need to be
(multiple times) differentiable. While this is often the case for the machine
learning method, non-differentiable features occur regularly. Examples of this
are one-hot encodings of single and double bonds [Duv+15; Kea+16; Gil+17]
or external potentials discretized on a grid [Sny+12] which both introduce
discontinuities and lead to noisy gradients [Sny+15; Bal+17]. When deriva-
tive information such as atomic forces are available in the reference data and
supposed to be incorporated in the loss function, at least second order differ-
entiability is required for gradient descent training.

Cross-element generalization

We suggest an additional desired property: the representation should be able
to allow for learning from the observed interactions of atoms to interactions of
atoms of another type. This requires a sense of similarity between atom types,
e.g. by using chemical concepts such as electronegativity or the group of the
periodic table. While this can be helpful if the similarity measure is chosen
correctly, it can disadvantageous if it does not correlate well with the similarity
of the target property. In this case, it is often better to regard different atom
types as orthogonal.
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2.2 Representations for molecules and solids

After reviewing some desirable properties of representations, we will have
a look at some descriptors and evaluate them with the latter in mind. As
mentioned above, we will restrict ourselves to first-principles representations,
i.e., we will not discuss fingerprints as employed in chemoinformatics that
are not able to reflect configurational degrees of freedom. Table 2.2 gives an
overview about which of the discussed representations fulfills the previously
discussed requirements.

2.2.1 Coulomb matrix

Rupp et al. [Rup+12] proposed the Coulomb matrix (CM) as a representation
to predict properties of molecules across chemical compound space. It is an
adjacency matrix with nuclear charge rescaled to fit atomic energies on the
diagonal and the Coulomb repulsion of atoms i and j on the off-diagonal:

Cij =

{
0.5Z2.4

i for i = j
ZiZj

∥ri−rj∥ for i ̸= j

This representation is invariant to rotations and translations due to the pair-
wise distances that are part of the Coulomb term. However, it lacks invariance
to atom indexing. Therefore, the eigenspectrum of the Coulomb matrix was
initially used to achieve this invariance [Rup+12]. However, this violates the
uniqueness requirement as there can be multiple Coulomb matrices with the
same eigenspectrum. Montavon et al. [Mon+12] and Hansen et al. [Han+13]
achieved the permutational invariance instead by either sorting by column
norm or adding training examples augmented by randomly permuting the
atoms. However, both of these techniques have drawbacks: Sorting leads to a
representation with singularities at the atom configurations where the norms
of multiple columns are equal. Therefore, in these cases permutational invari-
ance is not given. Beyond that, this creates discontinuities in the predicted
property during atom movement. In the data augmentation approach, the
number of permutations grows rapidly with the size of the system, so that this
approach becomes less and less effective or even computational infeasible.

Another issue with the Coulomb matrix is that the repulsion of the nuclei,
while being part of the Hamiltonian, is not very informative of the chemi-
cal similarity and, thus, not useful for cross-element generalization. Chemical
similarity depends much more on the valence electrons as reflected in the
groups of the periodic table. Hansen et al. [Han+15] propose the Bag of Bonds
(BoB) model to alleviate this issue. Here, the terms of the Coulomb matrix are
reordered into bags of equivalent atom types or pairs of atom types, respec-
tively. This effectively makes atoms and atom interactions of different types
orthogonal. While this eliminates the inappropriate measure of chemical sim-
ilarity, it also prevents learning across atom types.
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Figure 2.1: Illustration of partial radial distribution function representation. The
atom types α, β are color-coded in gray and red. A crystal unit cell with two atoms
(left) is replicated such that all distances up to r3 are covered. The distances lying in
a shell ri (middle) are counted per pair of atom types and put in a histogram (right).
Normalizing this by shell volume Vri and number of atoms per type yields gαβ(r).

2.2.2 Many-body expansions

The many-body expansion decomposes the energy of an atomistic system S
into n-body terms [DT07]:

E(S) =
natoms

∑
i=1

E(1)(ri) +
natoms

∑
i<j

E(2)(ri, rj) +
natoms

∑
i<j<k

E(3)(ri, rj, rk) + . . . (2.4)

In choosing concrete n-body terms, a variety machine learning descriptors can
be designed. These are then no longer an expansions of the energy, but a
unique decomposition of the geometry of the atomistic system from which
the energy or any other property can be inferred. In practice, one often ne-
glects higher-order terms, sacrificing uniqueness for computational efficiency.
Beyond that, these term can often not be fit properly without a huge amount
of training data. The previously discussed BoB model can be seen as a many-
body expansion with 1- and 2-body terms that model the Coulomb repul-
sion. Huang and Lilienfeld [HL16] have proposed BAML (bond-angles ma-
chine learning) where the idea of BoB was extended to 3- and 4-body terms.
Similarly, the MBTR [HR17] is a general framework for building tensors of
many-body terms.

The approaches above still require zero-padding of the bags since different
atom type compositions result in different bag sizes. This can be circumvented
by using a histogram over value ranges of many-body terms instead of bags.
The partial radial distribution function (PRDF) representation is a 2-body vari-
ant of this idea [Sch+14]. It has been applied to the prediction of the density
of states at Fermi level of bulk crystals and was inspired by the radial distri-
bution function as used in x-ray powder diffraction [BT98]. The core idea is
to collect statistics about the distribution of distances between atoms of type α
and β (see Fig. 2.1). The distances rαi β j of all atoms αi and β j are collected in a
normalized histogram bin

gαβ(r) =
1

nαnβVr

nα

∑
i=1

nβ

∑
j=1

1r<rαi βj<r+dr (2.5)

where Nα, Nβ are the numbers of atoms of the respective type and Vr is the
volume of the shell that corresponds to the bin. Normalization is important
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here since there are more atoms situated in a shell with larger radius r due
to the increased volume. Just like BoB, this kind of representation can be
extended to 3- and 4-body terms as done by Faber et al. [Fab+17] with their
HD (histogram of distances), HDA (histogram of distances and angles) and
HDAD (histogram of distances, angles and dihedral angles) representations.
A disadvantage all of these approaches share is that they are not differentiable.
This can be solved by using Gaussian basis functions instead, e.g., as applied
in atom-centered symmetry functions [BP07; Beh11] (see Section 2.2.3).

Malshe et al. [Mal+09] proposed an approach for predicting potential en-
ergy surfaces that directly uses interatomic distances rij as input for n-body

neural network fn : R
n2−n

2 → R forming the potential:

E =
natoms

∑
i<j

f2(rij) +
natoms

∑
i<j<k

f3(rij, rik, rjk) + . . .

A drawback of this approach is that the n-body neural networks are not invari-
ant to the order of inputs rij, rik, rjk, . . . for n ≥ 3. Furthermore, for each n-body
term, a separate n-body neural network is required that needs to be trained to
fit the corresponding energy contribution which limits the expressive power
of the whole model to highest explicitly modeled n-body term. In contrast,
the previously described representations BoB, PRDF and HDAD contain all n-
body terms up to the specified order such that a (non-linear) machine learning
method is able to infer some higher-order interactions.

2.2.3 Chemical environments

Instead of decomposing atomistic systems in terms of n-body interactions, an
alternative is a partitioning into local, chemical environments. From Fig. 2.1,
it may appear that the PRDF does this, however, due to the sum over all atoms
of the same type, localizing information is lost. This does not affect the pre-
dictability of a global property, such as the energy, if all many-body terms in
Eq. 2.4 are included due to the uniqueness of the full expansion. However,
a representation may be more efficient, in terms of computational cost and
required training data, when localized information is retained.

In terms of the many-body expansion, this amounts to a reordering of the
terms in Eq. 2.4 by the atoms i defining the center of the chemical environ-
ments:

E(S) =
natoms

∑
i=1

[
E(1)(ri) +

1
2

natoms

∑
j ̸=i

E(2)(ri, rj) +
1
3

natoms

∑
j ̸=i

natoms

∑
k ̸=i,k ̸=j

E(3)(ri, rj, rk) + . . .

]
(2.6)

=
natoms

∑
i=1

Ei(r1, . . . , rnatoms) (2.7)
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Now, the energy contributions Ei can either be calculated by many-body en-
ergy terms (Eq. 2.6) or inferred from an arbitrary ML representation. This
could be based on a many-body decomposition as introduced in Section 2.2.2
for the global case or any other localized version of previously introduced
representation such as CM or BoB.

Alternatively, a density function ρ(r) can be defined over the space from
which features are derived. This approach has been adopted by Hirn, Poil-
vert, and Mallat [HPM15] in a global setting using wavelet scattering trans-
forms [HMP17; Eic+17] as well as for chemical environments by the Smooth
Overlap of Atomic Positions (SOAP) kernel introduced by Bartók, Kondor, and
Csányi [BKC13]. Here, a similarity of chemical environments ρ, ρ′ is defined
as

S(ρ, ρ′) =
∫

ρ(r)ρ′(r)dr

which is then used define the rotationally invariant SOAP kernel [BKC13]

k(ρ, ρ′) =
∫ ⏐⏐S(ρ, R̂ρ′)

⏐⏐n dR̂,

where n is a hyper-parameter. Choosing the neighborhood densities ρ to be
Gaussians expanded in spherical harmonics, allows for a smooth overlap of
chemical environments. Similarly, moment tensors [Sha16] represent chemical
environment through polynomials that are invariant to rotation, translation
and atom permutations.

A representation of chemical environments that models the many-body
decomposition explicitly are the atom-centered symmetry functions (ACSF)
as proposed by Behler and Parrinello [BP07]. Behler [Beh11] has proposed a
variety of 2- and 3-body symmetry functions, e.g., the radial 2-body function

G2
i =

natoms

∑
j ̸=i

e−η(rij−rs)2
fc(rij)

for center atom i summed over neighboring atoms j and hyper-parameter rs
that centers the Gaussian on a distance value. The symmetry function shows
similarities with the radial distribution function, but only considers 2-body
terms including atom i. In contrast to the histogram-based representations
introduced in the last section, G2

i is differentiable as it uses Gaussian basis
functions instead of rectangular bins. The cutoff function

fc(rij) =

{
1
2 cos

(
πrij
rc

)
+ 1

2 for rij ≤ rc

0 for rij > rc

fulfills a similar purpose as the volume normalization in the PRDF represen-
tation, i.e. it compensates for more atoms at larger distances and enforces a
local environment. Fig 2.2 shows how both representations initially weight
atoms at distances rij. While the PRDF normalization decays faster than the
ACSF cutoff, it does not go towards zero but keeps the collective contribution
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Figure 2.2: Comparison of the effects of cutoff functions of PRDF (left) and
atom-centered symmetry function G2

i (right). We assume uniform distribution of
interatomic distances rij (top) and uniform distribution of atom positions r in space
(bottom).

of atoms in each radial bin constant, assuming uniform distribution of atoms
in space. In contrast, the ACSF cutoff decreases less rapid in the beginning but
then decreases smoothly to zero, in effect emphasizing atom contributions at
medium distances and localizing the representation by bringing atom contri-
butions smoothly to zero at distances rc = 8 and larger. In a similar fashion,
angular symmetry functions are defined, e.g.,

G4
i = 21−ζ

natoms

∑
j,k ̸=i

(1 + λ cos θijk)
ζe−η(r2

ij+r2
ik+r2

jk) fc(rij) fc(rik) fc(rjk).

To predict potential energy surfaces, a neural network is used for each
chemical environment to predict its local energy contribution before those
are summed to obtain the total energy. The energy contributions are la-
tent variables that do not need to be known but are learned during back-
propagation [BP07]. ACSFs are used to represent the geometry of the system
while the composition is taken into account by neural networks specific to the
type of the center atom. The types of the neighboring atoms are not taken
into account and generalization across atom types is not possible since for
each atom type a separate network is trained. Other approaches that build
upon Behler’s atom-centered symmetry functions include ANI-1[SIR17] and
TensorMol-0.1 [Yao+18].
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2.3 Summary and discussion

In this chapter, we have reviewed a set of desired properties of representations
for atomistic systems as well as some commonly used machine learning de-
scriptors. None of those fulfills all required properties. While the Coulomb
matrix is the only discussed representation that is always unique, it does not
fulfill all required invariances and implies an unsuitable chemical similarity
based on nuclear charges. All other representation consider different atom
types as orthogonal such that cross-element generalization is not possible. We
reviewed two important concepts of atomistic representations: many-body ex-
pansions and chemical environments. While both have the potential to be
unique, in many cases only a finite number of many-body terms, a small
cutoff or a limited number of spherical harmonics coefficients are chosen to
prevent overfitting or reduce computational cost. However, these methods
are able to increase the reproduction accuracy of geometric structure system-
atically by addition of higher many-body terms [HL16] or tuning of hyper-
parameters [BKC13].

Having established this foundation, we will use the above concepts to de-
velop deep learning architectures that are capable to learn representations ful-
filling all desired properties introduced in this chapter.



Chapter 3

Deep tensor neural networks

In the previous chapter, we have reviewed existing, manually engineered fea-
tures for molecules and materials. Even with all the discussed possibilities
to represent atomistic systems, there are some clear advantages of learning a
representation.

Scale adaption The data domain for the machine learning model can
widely vary for different applications. E.g., in molecular dynamics the precise
positions of atoms have to be reflected in the representation. In contrast, in vir-
tual screening we only deal with equilibrium structures where the positional
resolution may be much coarser. On the other hand, here, the ML model has to
cover chemical compound space with varying compositions and system sizes.

Task adaption In the previous chapter, we discussed cross-element gener-
alization, i.e., the ability to transfer knowledge from atoms of one atom type
to those of another, for which a similarity of atom types would need to be
encoded in the descriptor. This is complicated if not infeasible to do in a
fixed representation as it would require to know the quantum chemical prop-
erties of each atom which is exactly what we attempt to learn. Moreover, a
full quantum-mechanical specification may not be required if we only aim to
predict specific chemical properties.

Insights In recent years, there have been significant efforts to explain pre-
dictions of non-linear ML models [Bae+10; SVZ13; ZF14; Bac+15; Mon+17;
Kin+18]. These allow to extract insights about the model as well as the data.
Specifying a representation already determines the vocabulary that these ap-
proaches can use to explain the prediction. Learning a complex feature space
embedding of chemical environment enables us to find patterns in this feature
space. Beyond that, learning representations with cross-element generalization
allows for more general chemical insights beyond discrete atom types.

In the following, we will successively develop the molecular deep tensor
neural network (DTNN): a deep learning architecture based on the insights

21
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Figure 3.1: Visualization of the deep tensor neural network (DTNN) architecture.
Chemical environments centered at atom i are represented by vector x(t)i that are
repeatedly refined by additive pair-wise interaction corrections (grey). The
interaction network (yellow) models the effect of a neighboring chemical
environment x(t)j at distance dij on the refined environment. They are implemented

using a factorized tensor layer (yellow). After the final representation x(T)i of every
atom has been obtained, energy contributions are predicted atom-wise using a
fully-connected output network with one hidden layer. Finally, these atom-wise
energies are summed to yield the molecular energy.
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from the last chapter, specifically using concepts from the many-body expan-
sion and the notion of interlinked chemical environments. The proposed end-
to-end method will exclusively use first principles information as input, i.e.,
the atomistic systems is encoded by their atom types and positions. Fig. 3.1
gives a visual overview of the proposed approach. We will limit the scope to
the prediction of energies for molecules and discuss other chemical properties
as well as materials with periodic boundary conditions in later chapters.

3.1 Embedding chemical environments

As discussed in Section 2.2.3, chemical environments have the advantage that
they make the model scalable in terms of system size by decoupling local atom
neighborhoods. In case of the energy, this can be written as

E(S) =
natoms

∑
i=1

Ei((Z1, r1), . . . , (Zatoms, rnatoms)).

A drawback of the discussed methods was that atom types have been consid-
ered orthogonal rendering cross-element generalization impossible. Therefore,
we will define an embedding in a feature space that represents a chemical en-
vironments consisting of the center atom as well as the interactions with the
surrounding atoms.

As a starting point, we choose the most basic chemical environment: the
single atom. Atom i of an atomistic system S is defined by its atom type,
represented by it nuclear charge Zi and position ri. To embed this in a vector
space Rnfeats , where nfeats is the number of features, we only need to consider
its atom type Zi. Since there exist only a limited number of chemical elements,
we can simply define a lookup table of atom type embeddings A ∈ Rntypes×nfeats .
Therefore, the initial embedding of the chemical environment,

x(0)i = A[Zi ,:], (3.1)

is simply the Zith row of the embedding matrix A, similar to how word embed-
dings are used in neural networks for natural language processing [Mik+13a;
Mik+13b]. The embedding represents the quantum-chemical properties of an
atom and, as such, enables cross-element generalization and can be interpreted
as a dressed atom [Han+15]. Embeddings can either be learned in advance or,
as in our case, initialized randomly and learned as a parameter of the neural
network during back-propagation.

The obtained embedding obviously is invariant to rotation and translation
as it does not use positional information at this stage. In the next section,
we will introduce positional information through successive interactions of
chemical environment to link and refine the defined embeddings in order to
obtain more and more complete descriptions of the chemical environments.
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(a) T=0 (b) T=1 (c) T=2

Figure 3.2: Illustration of how chemical environments are successively refined
with higher-order interactions at the example of an H2O molecule. Initially, each
chemical environment x(0) only represents of a single isolated atom (a). In
successive, pairwise interaction refinements, increasingly more environment
information is aggregated within the atom-wise representations (b,c). This allows for
a decoupling of chemical environments and prediction of the energy from atom-wise
energy contributions.

3.2 Interactions of chemical environments

In Section 2.2.2 and 2.2.3, we introduced the many-body expansion and how
it can be applied to representations of chemical environments. Instead of
expanding the energy in many-body terms directly, the decomposition into
many-body interactions systematically guides the design of machine learning
representations. In the same spirit, we will apply this to the previously defined
representation x(1)i .

A naive option would be to explicitly define explicit n-body neural net-
works f (n) for each n ∈ [2, natoms]:

xi = x(1)i + ∑
j ̸=i

f (2)((xi, ri), (xj, rj)) + ∑
j,k ̸=i
k ̸=j

f (3)((xi, ri), (xj, rj), (xk, rk)) + . . .

In this approach the n-body networks have to be manually designed as they
take more and more inputs with increasing n. Beyond that, rotational and
translational invariance need to be either learned from data or manually en-
forced by using distances, angels, dihedral angles and so on, instead of atomic
positions. Finally, this leads to ∑N

n=1 (
natoms

n ) terms considering terms up to
order N.

Since we do not deal with scalar energies anymore but with potentially
complex representations of chemical environments, there is, however, a more
efficient approach: Instead of explicitly modeling an n-body neural network,
we design an interaction network v : RF × R → RF that we use to model
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perturbations

x(t+1)
i = x(t)i + ∑

j ̸=i
v(x(t)j , dij), (3.2)

to the chemical environment x(t)i by its neighboring environments x(t)j depend-
ing on their distance dij = ∥ri − rj∥. Applying this perturbation recursively,
successively refines the representation and correlates chemical environments
with increasing complexity. This behavior is illustrated in Fig. 3.2 using the
water molecule as an example. The recursively applied interaction function
has the advantage that only one interaction network has to be trained and
evaluated. On top of that, we already incorporate all desired invariances, with
respect to rotation, translation and atom indexing, since we only use pairwise
distances to describe the geometry of the system.

The proposed approach shows similarities to known concepts from physics
and machine learning. E.g., the additive perturbation of the representation
is the core principle of residual neural networks [He+16]. Given a suitably
defined v and large enough F, applying Eq. 3.2 repeatedly T times can rep-
resent the collection of all walks of length T ending at atom i. In that sense,
this is closely related to diffusion kernels [KL02] or the transition function in
graph neural networks as proposed by Scarselli et al. [Sca+09]. Several graph
neural network architectures following a similar principle have been devel-
oped for molecular graphs [Duv+15; Kea+16] and other graph data [Bru+13;
HBL15]. According to Gilmer et al. [Gil+17], these neural networks, including
DTNNs, can be reformulated within the framework of message-passing neu-
ral networks, where the interaction function is considered a message-passing
between nodes of a graph. Considering the initial representation as coeffi-
cients of atom-centered basis functions, the interaction network v can also be
interpreted as reducing the overlap of those basis functions from two nearby
atoms. Ideally, this leads to a final atomistic representation that allows for the
additive partitioning of the target property into atom-wise contributions. In
this picture, the DTNN learns an atom-centered basis that is adapted to the
scale of the input data as well as the property to be predicted.

The embeddings and interaction networks as described above will be used
in all model architectures developed throughout this thesis. The differences
between those lie in the specific design of interactions v and output networks
o.

3.3 Tensor layers and factorization

Modeling the interaction function v(xj, dij) requires the combination of two
inputs of different scale and dimensionality. A simple stacking of inputs, re-
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Figure 3.3: Comparison of features for regression of bond stretching energies of
H2. As features, we use scalar distances dij or distances in a radial basis d̂ij with
∆µ = 0.1 and γ = 10, respectively. The energies were computed by Brockherde et al.
[Bro+17] with DFT at the PBE level of theory.

sulting in a fully-connected layer

v(xj, dij) = W
[

xj1 · · · xjF dij

]⊺
+ b

as the first layer of the interaction network, only allows for additive compo-
sition of distance and chemical environment. A more expressive architecture
should also allow for multiplicative compositions, as the distance can be seen
as a non-linear damping factor: the larger the distance, the weaker we expect
the influence of a neighboring chemical environment to be.

A related problem can be observed in neural networks for natural language
processing when combining word representations and hidden states in recur-
rent neural networks [SMH11] or merging word representations in recursive
neural networks [Soc+13]. This is solved by introducing tensor layers, where
we introduce an additional weight tensor V ∈ Rnfeats×nfeats×1 that composes dis-
tance and chemical environment through a tensor product. The interaction
term for feature k is then

vk(xj, dij) = x(t)j Vkdij +
(

W
[

xj1 · · · xjF dij

]⊺)
k
+ bk (3.3)

with the tensor slice Vk ∈ Rnfeats×1. Similar tensor layers have also been applied
in tensor RNNs [SMH11]) and recursive neural tensor networks [Soc+13] in
natural language processing as well as deep tensor neural networks for speech
recognition [YDS13].

A crucial shortcoming of the interaction function in Eq. 3.3 is that the linear
relationship of the scalar distance amounts to a linear scaling of the tensor
slices Vk. This does clearly not characterize the non-linear interaction of atoms
well. We solve this by representing the distance within a radial basis

d̂ij =
[
exp(−γ(∥ri − rj∥ − k∆µ)2)

]
0≤k≤rcut/∆µ

(3.4)
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with ∆µ being the spacing of Gaussians with scale γ on a grid ranging from
0 to the distance cutoff rcut. The radial basis grid is reminiscent of the par-
tial radial distribution function representation [Sch+14] and the atom-centered
symmetry function G2

i [Beh11] as described in Chapter 2. It decouples the
distance regimes by increasing the dimension and serving as a non-linearity.

These effects are demonstrated in Fig. 3.3. A linear regression model taking
directly the scalar distances is not able to fit the potential of stretching the bond
of an H2 molecule. However, in the feature space of the radial basis d̂ij, a linear
model is flexible enough to fit the potential perfectly. Therefore, it should
also be flexible enough to express two-body interaction functions in order to
arbitrarily perturb the features of the chemical environment representations.
Additionally, we apply the hyperbolic tangent to the interaction function

vijk = tanh
(

c(t)j Vkd̂ij + (Wcc(t)j )k + (Wdd̂ij)k + bk

)
, (3.5)

to allow for further nonlinearity in the interaction perturbation. While neural
networks with tanh activation functions tend to suffer from vanishing gradi-
ents [BSF94; Hoc98], the shortcut-connection x(t)i in Eq. 3.2 alleviates this effect
as the gradient can pass through the linear term:

∂x(t+1)
i

∂x(t)j

=

⎧⎨⎩
∂v(x(t)i )

∂x(t)i

if i ̸= j

1 if i = j
(3.6)

While Eq. 3.5 sufficiently models the interaction function, it has the major
drawback that the weight tensor V ∈ Rnfeats×nfeats×nrbf incorporates many pa-
rameters which makes the tensor layer both computationally expensive and
prone to overfitting. This can be solved by using a factorization of the tensor,
as described by Taylor and Hinton [TH09], yielding

vij = tanh
[
Wx f

(
(W f xxj + b f1) ◦ (W f dd̂ij + b f2)

)]
, (3.7)

where ◦ is the Hadamard product while b f1 and b f1 are the biases in factor
space. The weight matrices W f x ∈ Rnfactors×nfeats and W f d ∈ Rnfactors×nrbf map
their respective inputs into factor space while Wx f ∈ Rnfeats×nfactors maps the
result of the interaction back into the feature space of chemical environments.
Increasing the number of factors lets the factorization converge towards the
full tensor product. On the other hand, choosing only a limited number of
factors decreases the number of parameters significantly, thus, reducing the
computational cost. On top of that, this can serve as a bottleneck to prevent
overfitting.

3.4 Output network

After applying a fixed number of interaction perturbations T, we obtain the
final atom-wise representation x(T)i that describes atom i in its broader chemi-
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cal environment. Through this effective decoupling of chemical environments,
we can now predict the energy as a sum over atom-wise energy contributions

E =
natoms

∑
i=1

Ei =
natoms

∑
i=1

o(x(T)i ), (3.8)

where o : Rnfeats → R is an output network, mapping from representation to
the atom-wise energy contributions. We model the output network using one
hidden layer with tanh activation, predicting a scaled energy contribution Êi.
We obtain the final energy contribution

Ei = EσÊi + Eµ,

where Eµ is the mean and Eσ is the standard deviation of the energy per atom.
These can be estimated before training from the training set using

Eµ =
1

nstruct

nstruct

∑
s=1

E(m)/n(m)
atoms

Eσ =

√
1

nstruct − 1

nstruct

∑
s=1

(E(m)/n(m)
atoms − Eµ)2

reference energy E(m) of a training example n(m)
atoms atoms. This constitutes a

good starting point for training at the per-atom mean predictor.

3.5 Results

In the following, we demonstrate the versatility of DTNNs in learning repre-
sentations of chemical environments in molecules. We will use our model to
predict accurate energies for datasets with compositional as well as configu-
rational degrees of freedom. For this, we will train DTNNs on data sets that
include a diverse set of molecules across chemical compound space as well as
on molecular dynamics trajectories of single molecules.

We employ DTNN models with up to T = 3 interaction refinements and
consistently use nfeats = 30 features to represent chemical environments and
nfactors = 60 in the factorized tensor layers for all trained models. All DTNN
models are trained by minimizing the squared loss using stochastic gradient
descent with momentum set to 0.9. We split the data into subsets for training
validation and testing. We train all models for 3,000 epochs, where we validate
for early stopping after every epoch. The final results are taken from the
model with best validation error. The reported errors are averages over five
repetitions of random subsampling on the respective test set.
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Table 3.1: Mean abs. errors and standard errors over five repetitions of DTNNs in
chemical compound space [Sch+17a]. The evaluated model use T ∈ {1, 2, 3}
interaction passes and are trained on te QM7b and QM9 data set with the given
number of reference calculations N used for training. Errors are given in kcal mol−1.
Best results in bold.

Data set N T=1 T=2 T=3

QM7b (EPBE0) 5,768 1.28 ± 0.04 1.04 ± 0.02 1.04 ± 0.01

QM9 (U0) 25,000 1.61 ± 0.02 1.09 ± 0.01 1.04 ± 0.02

50,000 1.49 ± 0.02 0.96 ± 0.01 0.94 ± 0.01

100,000 1.54 ± 0.03 0.93 ± 0.02 0.84 ± 0.02
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Figure 3.4: Learning curves and error distribution for DTNNs trained on QM9
with T ∈ {1, 2, 3} [Sch+17a]. Left: mean abs. errors and standard errors as error bars
depending on number of training examples. Right: error distribution with the box
spanning from the 25% to the 75% quantile and the whiskers marking the 5% and
95% quantiles.

3.5.1 Chemical compound space

As a first challenge to our model, we evaluate its performance on the accurate
prediction of energies from density functional theory (DFT) for equilibrium
molecules across chemical compound space. In order to achieve this, DTNNs
have to be able to generalize over molecules of different structures, composi-
tions and sizes. For this purpose, we employ two datasets – QM7b and QM9 –
of small organic molecules with up to 7 or 9 heavy atoms, respectively. Further
details on the data are available in Appendix A. We use a validation set of 721
examples for QM7b (10%) and of 1,000 examples for QM9. The learning rate
is set to 10−6 for both datasets.

Table 3.1 lists the performances of DTNN models with up to T = 3 in-
teraction refinements for both data sets and varying training set sizes. We
observe that the addition of refinement steps consistently improves the per-
formance of the neural networks. DTNNs reach the chemical accuracy of
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Figure 3.5: Molecules with the top-10 largest prediction errors of DTNN with
T = 2 trained on 50k examples [Sch+17a].

1.0 kcal mol−1when training on 5.8k examples from QM7b or 25k examples
from QM9. Fig. 3.4 shows the learning curves for models with one, two and
three interaction passes. While T = 1 only performs best for small datasets
with up to about 2k-3k training examples, there is only a small difference for
larger training sets with more than 10k reference calculations. The right side
of Fig. 3.4 shows the distribution of errors for this regime. We see that with
increasing amount of data and number of interactions, the error distributions
get narrower. However, the plot does not give information about the extent of
examples with extreme errors. Fig. 3.5 illustrates the molecules corresponding
to those outliers, exhibiting errors up to 44.3 kcal mol−1. While these errors
seem disastrous, it is important to notice that the shown molecules exhibit un-
conventional bonding. Therefore, it is plausible that these molecules are not
sufficiently represented by the training data.

A desirable property of predictions in chemical compound space is that
the machine learning method is able to generalize across various system sizes.
Fig. 3.6 shows mean abs. errors depending on the number of atoms of the
test molecule. While small molecules exhibit on average errors larger than
1 kcal mol−1, mean abs. errors of molecules with more than 18 atoms reach
chemical accuracy. This behavior seems surprising at first since one might
suspect that the prediction errors per atom accumulate due to the energy par-
titioning performed by our model. However, there are more large molecules
in the dataset due to the rapidly increasing possibilities to combine atoms into
valid molecules. Since the performed energy loss is not weighted by the num-
ber of atoms, this leads to an emphasis on large molecules, possibly at the cost
of small ones. On the other hand, one could argue that predictions of larger
molecules can be improved by knowledge about their local structure learned
from smaller molecules.

In order to test this hypothesis, we train a DTNN on a set of 5k molecules
with more than 20 atoms drawn from QM9. On an independent test set that
includes the same kind of large molecules, the DTNN achieves a MAE of
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Figure 3.6: Dependence of energy prediction errors on the number of atoms with
DTNN trained on QM9 [Sch+17a]. The mean absolute errors are shown for each
molecule size separately indicating that larger molecules exhibit smaller errors. The
inset shows the test error on large molecules (≥ 20 atoms) for a DTNN trained on a
set of 5,000 separate, large molecules (≥ 20 atoms) while adding an increasing
number of small molecules (≤ 15 atoms).

2.1 kcal mol−1. Next, we start to add smaller molecules with less than 15
atoms to the training set. As expected, the test error decreases to less than
1.5 kcal mol−1. Therefore, we conclude that the DTNN model is able to gener-
alize well from smaller to larger molecules.

While a large part of the variance of the energy in QM9 can be explained
by the composition of molecules, DTNN clearly takes the geometry of the
molecule into account. This can be demonstrated by the prediction results on
the largest set of isomers in QM9 with the composition C7O2H10 as they only
differ in the positions of atoms. Fig. 3.7 shows the performance of DTNN
trained on QM9 on the isomer subset. The distribution of predicted energies
matches that of the reference calculation with the exception of a small bump
at about -1840 kcal mol−1. Looking at the scatter plot of the inset, this is likely
caused by a couple of underestimated outliers at that energy level. Overall, the
mean abs. error measured on the isomer subset is 0.89 kcal mol−1. Another
important aspect of energy prediction beyond accuracy is that the ranking
of local energy minima is correct. Our model performs with a Kendall rank
correlation coefficient τ = 0.969 on the isomers (τ = 1 for perfect agreement,
τ = 0 for statistical independence). This makes our model applicable to a
stability ranking of these compounds.

3.5.2 Molecular dynamics

After we have demonstrated that DTNNs are able to represent compositional
as well as structural changes and predict the associated energies with high
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Figure 3.7: Prediction of C7O2H10 isomer atomization energies [Sch+17a]. The
DTNN was trained on the full QM9 database. The energy distribution was generated
using kernel density estimation. The inset shows a scatter plot of DFT vs. predicted
atomization energies.
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Figure 3.8: Short excerpt of the MD trajectory and associated energy distribution
of toluene [Sch+17a]. The DFT energies (black) are plotted against the energy
predictions of DTNN (orange).

accuracy, we go on to examine whether our model is also able to resolve small
configurational changes. We will test this setting on molecular dynamics tra-
jectories of single molecules. This presents a radically different challenge to
the chemical compound space setting: While the composition stays constant,
the datasets contain a much more diverse set of configurations as the MD sim-
ulation explores beyond the typical bond distances and angles exhibited by
equilibrium molecules.

Table 3.2 shows the performance of DTNN on MD trajectories of four small
organic molecules taken from the MD17 data collection. Details on this data
is given in Appendix A. The learning rate is set to 10−4 and the validation
sets consist of 1,000 examples for all MD trajectories. The mean absolute er-
rors of all molecular trajectories are well below 1 kcal mol−1. This is because
the majority of the energy variation in QM9 comes from the composition and
major structural changes, while there are only comparatively small conforma-



3.5. RESULTS 33

Table 3.2: Mean abs. errors and standard errors over five repetitions of DTNNs for
molecular dynamics trajectories [Sch+17a]. The evaluated models use T ∈ {1, 2, 3}
interaction passes and are trained on MD trajectories of small organic molecules with
the given number of reference calculations N used for training. The mean predictor
is given as a baseline. Errors are given in kcal mol−1. Best results in bold.

Dataset N mean pred. T=1 T=2 T=3

Benzene 25k 1.86 ± 0.00 0.07 ± 0.00 0.05 ± 0.00 0.04 ± 0.00

50k 1.86 ± 0.00 0.06 ± 0.00 0.04 ± 0.00 0.04 ± 0.00

100k 1.86 ± 0.00 0.07 ± 0.00 0.05 ± 0.00 0.05 ± 0.00

Toluene 25k 4.05 ± 0.00 0.48 ± 0.01 0.20 ± 0.00 0.23 ± 0.00

50k 4.05 ± 0.00 0.44 ± 0.00 0.18 ± 0.00 0.18 ± 0.00

100k 4.05 ± 0.00 0.42 ± 0.01 0.16 ± 0.00 0.17 ± 0.00

Malonaldehyde 25k 3.27 ± 0.00 0.54 ± 0.00 0.23 ± 0.00 0.23 ± 0.00

50k 3.27 ± 0.00 0.49 ± 0.01 0.20 ± 0.00 0.19 ± 0.00

100k 3.27 ± 0.00 0.51 ± 0.01 0.18 ± 0.00 0.17 ± 0.00

Salicylic acid 25k 4.30 ± 0.00 0.80 ± 0.02 0.54 ± 0.02 0.79 ± 0.02

50k 4.30 ± 0.00 0.73 ± 0.01 0.41 ± 0.00 0.50 ± 0.01

100k 4.30 ± 0.00 0.67 ± 0.01 0.39 ± 0.01 0.42 ± 0.01

tional perturbations caused by the MD simulation in the MD17 datasets. In
this scenario, we observe that for three out of four molecules, best results are
obtained using two interaction passes. This indicates that DTNN is not able
to correctly extract the higher-order interactions beyond T = 2 with the given
amount of data. To get an intuition of the obtained accuracy, Fig. 3.8 visualizes
the prediction of a short fraction of the trajectory of toluene. All major features
of the trajectory are well reproduced by the DTNN model. However, the low
and high spikes tend to be slightly over- or underestimated, respectively.

For comparison, Table 3.3 shows results of a kernel ridge regression model
with the Coulomb matrix as input features and the Matérn kernel taken from
Chmiela et al. [Chm+17]. At first, it seems surprising that such a simple
descriptor as the Coulomb matrix outperforms DTNN in this setting, more-
over while using less training data. However, many of the weaknesses of
the Coulomb matrix discussed in Chapter 2 do not apply here. Due to the
fixed composition, there is no need for correct cross-element generalization or
invariance to atom permutations. We just have to enumerate the atoms con-
sistently across the whole trajectory. Thus, each atom is uniquely identified
and the type information is encoded in the feature dimension, similar to the
atom type ordering of bag-of-bonds. On the other hand, the Coulomb matrix
has the advantage that the molecule is represented uniquely. In this case, this
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Table 3.3: Mean abs. errors of kernel ridge regression using the Matérn kernel and
the Coulomb matrix. Kernel ridge regression results are taken from Chmiela et al.
[Chm+17]. The DTNN with the best performing T on 50,000 training examples is
listed. Errors are given in kcal mol−1. Best results in bold.

Dataset KRR with CM DTNN (best T)

N mean abs. error N mean abs. error

Benzene 36,000 0.04 50,000 0.04

Toluene 45,000 0.06 50,000 0.18

Malonaldehyde 27,000 0.11 50,000 0.19

Salicylic acid 48,000 0.10 50,000 0.41

proves to be the deciding factor. Since DTNN is not able to learn higher-order
interactions beyond T = 2, as discussed above, it cannot uniquely represent
all details of the molecular geometry. Therefore, it lacks accuracy in some
conformations, e.g., the spikes in Fig. 3.8.

Given larger molecules or a potential energy surface with reactions as a
task, we expect that the ability of DTNN to decompose molecules into lo-
cal environments would give DTNN an advantage over the Coulomb matrix.
Similar chemical environments within the molecule can then be recognized by
DTNN which improves generalization. Moreover, this scenario is more similar
to the chemical compound space setting since atom assignment becomes am-
biguous with greater atom movement or even changes in the bond structure of
the molecule. In this case, the drawbacks of the Coulomb matrix apply again.

3.6 Analysis

After demonstrating that deep tensor neural networks are able to accurately
predict energies for compositional and configurational degrees of freedom, we
go on to analyze the obtained representation. In particular, we examine how
the interaction passes of deep tensor neural networks influence the represen-
tation and whether chemically meaningful insights can be extracted. Beyond
that we study the behavior of the model outside the training manifold for the
special case of alchemical pathways.

3.6.1 Energy partitioning

The first aspect of our model we will take a closer look at is the implicit en-
ergy partitioning it provides. Having a consistent energy partitioning scheme
presents a long-standing challenge in quantum-chemistry. Many alternative
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schemes have been suggested that partition space, e.g. using Voronoi polyhe-
dra [Fon+04], topological features of the electron density Atoms in Molecules
[BB72] or Hirshfeld surfaces [Hir77; SB97].

As the existence of such variety suggests, there is no unique partitioning
of a molecule into atom environments or its energy into atomic contributions.
This applies in particular in our setting, where we have no information about
the electron density, but can only infer terms from the many-body expansion
based on our dataset of molecular geometries and energies. Given two distinct
atoms A and B, we can write the energy in terms of the many-body expansion

E = E(1)(A) + E(1)(B) + E(2)(A, B)

where E(1) and E(2) correspond to the 1- and 2-body energies. Based on this,
we are able to partition the energy in terms of atomic contributions EA, EB as

E = E(1)(A) + αE(2)(A, B)  
EA

+ E(1)(B) + (1 − α)E(2)(A, B)  
EB

(3.9)

with 0 ≤ α ≤ 1. It is easy to see that there is no way to determine α uniquely
in general, independent of the number of training examples we have available
to fit the many-body terms. Only for the case that atoms A and B are of the
same type, we can assume symmetry, i.e., α = 0.5. Adding a third atom C
already results in

E = E(1)(A) + αE(2)(A, B) + βE(2)(A, C) + λ1E(3)(A, B, C)  
EA

+ E(1)(B) + (1 − α)E(2)(A, B) + γE(2)(A, C) + λ2E(3)(A, B, C)  
EB

+ E(1)(C) + (1 − β)E(2)(A, C) + (1 − γ)E(2)(A, C) + λ3E(3)(A, B, C)  
EC

,

(3.10)

with 0 ≤ β ≤ 1 and λ1 + λ2 + λ3 = 1. Since all many-body terms are essen-
tially projected to one atom and the coefficients are independent of the n-body
terms E(n), the non-uniqueness becomes more and more opaque as we keep
adding distinct atoms to the system.

While the partition schemes above have to introduce additional constraints,
the DTNN finds an energy partitioning by design in a data-driven fashion.
Since the training of neural networks is a non-convex optimization problem,
the learned representation may be different after each training, even if all
hyper-parameters of the model such as the size of the atom representation
and the number of interaction refinements is kept constant. Because of this and
the discussed non-uniqueness, different partitionings may be obtained when
training repeatedly. However, there still might be a preferred partitioning of
energies enforced by the DTNN. Fig. 3.9 shows that this is not the case for the
QM9 dataset. The distributions of atomic energy contributions per atom type
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Figure 3.9: Distribution of energy contributions for atoms of types H, C, N, O and
atomization energies from QM9 molecules predicted by DTNN models. The
models were trained on 100k examples and use three interaction blocks. Each color
corresponds to a model trained on a different subset. The distributions of
atomization energy predictions agree across models (bottom).

Figure 3.10: Distribution of energy contributions for atoms of types H, C and total
energy predictions of DTNN models trained on benzene (C6H6). The models were
trained on 50k examples and apply two interaction passes. Each color corresponds to
a model trained on a different subset. The distributions of total energy predictions
agree across models (bottom).
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Figure 3.11: Distribution of energy contributions for atoms of types H, C, O and
total energy predictions of DTNN models trained on malonaldehyde (C3H4O2).
The models were trained on 50k examples and apply two interaction passes. Each
color corresponds to a model trained on a different subset. The distributions of total
energy predictions agree across models (bottom).

predicted by DTNNs for multiple training repetitions vary significantly across
models. On the other hand, the DTNNs share highly similar distributions of
molecular energies that are shown at the bottom of Fig. 3.9. Complementary
figures in Appendix B.1 show this in greater detail for the energy contributions
of two models from Fig 3.9, plotted against each other in scatter plots.

As QM9 only contains equilibrium configurations, this might give the
model too much flexibility to assign the energy contributions since the space
of possible atom configurations is only sampled discretely. Therefore, we ad-
ditionally examine DTNN models trained on molecular dynamics trajectories
of benzene (Fig. 3.10) and malonaldehyde (Fig. 3.11). While the distribution
of energy contributions of atoms in benzene are quite similar for four out of
five repetitions, the distributions in the malonaldehyde dataset are more di-
verse again, which is similar to what we observed in QM9. Thus, this behavior
does not appear to depend on the range of conformations present in the data
set, but rather on the number of distinct atom types in the data. This is also
supported by our theoretical argument in Eqs. 3.9 and 3.10. We conclude that
deep tensor neural networks learn different energy partitioning schemes, that
are equivalent in prediction accuracy.

3.6.2 Local chemical potentials

After having discussed the non-uniqueness of atom-wise energy contributions,
we go on to examine the representation regarding spatial changes and inter-
actions. To this end, we introduce a test charge p to the atomistic system
which we will use to probe the space surrounding the atoms. Since we can
only represent atoms in our model, the test charge is bound to be an atom in
our model. This brings the problem that the molecule would be drastically
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Figure 3.12: Local chemical potentials ΩM
H (r) of various molecules from

QM9 [Sch+17a]. We have used a hydrogen probe atom and a DTNN model with two
interaction passes. The potential is plotted on an isosurface with ∑i ∥r − ri∥−2 = 3.8
Å−2.

influenced by adding another atom and, moreover, that the resulting molecule
is bound to leave the training manifold if we trained the neural network only
on equilibrium configuration or single molecular dynamics trajectories with a
fixed number of atoms. We solve this by letting the probe atom feel the in-
fluence of the molecule, but not vice versa. This allows us to define a local
chemical potential ΩM

A (r) of the molecules M as the energy of the test charge
of atom type A located at position r. It is important to note that this potential
does not correspond to the actual potential of the molecule, but is a tool for us
to visualize the spatial structure of the representation.

Fig. 3.12 visualizes such potentials for a DTNN trained on QM9 with two
interaction passes on a smooth isosurface with constant ∑i ∥r − ri∥−2 around
a selection of molecules from the dataset. The shown potentials clearly reflect
the expected symmetries that stem from the rotational and translational in-
variance of DTNN, and even chemical concepts such as bond saturation and
different degrees of aromaticity.

Fig. 3.13 illustrates how the DTNN architecture has to be modified in order
to predict the local potential ΩM

A (r). First, we represent the test charge by a
virtual probe atom with charge Zp at position rp which gives us an initial
embedding

xp = A[Zp,:] (3.11)

from the embedding matrix A learned by DTNN. Analogue to the interaction
refinements defined in Eq. 3.2, we let the atoms of molecule act on the probe:

x(t+1)
p = x(t)p +

natoms

∑
j=1

v(x(t)j , dij), (3.12)

Finally, we obtain the probe energy by applying the output network to the
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Figure 3.13: Visualization of how local chemical potentials are
calculated [Sch+17a]. The left part represents the probe atom that acts as a test
charge

probe representation

ΩM
A (r) = o(x(T)p ). (3.13)

Fig. 3.14 demonstrates the influence of the probe atom on the local po-
tential. Even though the probe does not influence the molecule, each probe
atom representation reacts differently to the presence of the molecular atoms
in terms of the predicted energy. While all probe atoms yield structurally sim-
ilar potentials, there are differences in the energy ranges as well as sensitivity
towards interatomic interactions. E.g., the hydrogen probe has a compact en-
ergy range of 60 kcal mol−1and shows fine-grained features such as low energy
near hydrogen sites and at the center of the ring and high energies near sites
of carbon and oxygen. On the other hand, the energy of the carbon probe
decreases much quicker.

We will focus on using the acquired visualizations to further understand-
ing of the inner workings of DTNNs. Therefore, we observe how the local
potentials change with the number of interaction passes and the used training
set. Fig. 3.15 shows a comparison between benzene potentials using a hydro-
gen probe of DTNNs trained on QM9 and, respectively, the MD17 trajectory of
benzene. For each training dataset, we show models with T ∈ {1, 2, 3} inter-
action passes. Since the MD17 models are trained on total energies instead of
atomization energies, the energies are significantly lower. However, we focus
exclusively on the structural features of ΩM

A (r). The models trained on MD17
show much clearer distinguished regions corresponding to low and high ener-
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Figure 3.14: Local chemical potentials ΩM
A (r) for benzene, toluene, salicylic acid

and malonaldehyde with probe atoms of type A ∈ {H, C, N, O} [Sch+17a]. All
potentials are plotted on an isosurface with ∑i ∥r − ri∥−2 = 3.8 Å−2 and energy
ranges are adjusted per column.
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QM9
atomization energy
[kcal/mol] 

MD17
total energy
[kcal/mol] 

-12196-12210-12223 -12206-12210-12215 -12208-12210-12212

-128 -88 -48 -102 -82 -62 -99 -76 -60

Interactions passes T=1 T=2 T=3

Figure 3.15: Local chemical potentials ΩM
H (r) for benzene using DTNNs trained on

QM9 (top) and an MD17 trajectory of benzene (bottom) using T interaction passes.
All potentials are plotted on an isosurface with ∑i ∥r − ri∥−2 = 3.8 Å−2 and energy
ranges are adjusted per molecule.

gies. Since the MD17 model was trained on a single MD trajectory, it includes
only the set of interactions present in benzene, however, is able to model local
deformations. This can only be achieved by a smoother interaction function,
while the large variety of interactions only covers typical bond lengths.

Another aspect to examine is the change of the local chemical potentials
in Fig. 3.15 with increasing interaction passes T. For both QM9 and MD17
models, the models with T = 1 exhibit sharp features that appear to be ar-
tifacts from the insufficient pair-wise interactions that these DTNNs are able
to represent. With higher number of interaction passes, the potentials become
smoother. This can be explained as the DTNN is modeled similar to a diffu-
sion process [KL02]. The effect of this can be observed in particular for the
MD17 model: while the low-energy areas for T = 1 are concentrated at the
carbon ring, they are partially propagated to the hydrogens for two and three
interaction passes. This leads not only to low-energy areas near the hydrogen
sites but also in a compression of the energy range. In an extreme scenario, one
could think of a representation where the energy contributions are completely
delocalized and equally distributed between the atoms. Therefore, the DTNN
architecture is ideally suited for the energy, however, might not be suited for
properties that require localized structural information.

3.6.3 Alchemical pathways

An important application of energy prediction with ML is the discovery of sta-
ble, low-energy compounds. A DTNN model trained on QM9 could be used
for this task as it is defined for the complete chemical space and not just for
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Figure 3.16: Alchemical path from benzene to s-triazine [Sch+17a]. The path was
generated with fixed atom position (blue) as well as relaxed atom positions (orange).

discrete chemical graphs. For this, the model has to behave rather smoothly
outside of its training domain. As QM9 did not include non-equilibrium con-
figurations that would produce energy barriers, this might indeed be the case.
To be able to smoothly optimize in chemical compound space, we also have
to be able to blend atoms in and out as well as morph between atom types.
This is called an alchemical reaction [Lil13]. While it does not reflect nature,
it opens up reaction pathways for our search. Therefore, one has to force the
search to arrive at a chemically valid setting at the end of the optimization.

To generate a chemical path, we morph atom types by interpolating lin-
early between atom type representations. Given two nuclear charges Za, Zb ∈
N, we define the embedding for any charge Zi = αiZa + (1 − α)Zb with
0 ≤ α ≤ 1 as

x(0)i = αi A[Za,:] + (1 − αi)A[Zb,:]. (3.14)

Similarly, in order to add or remove atoms, we introduce fading factors β1, . . . , βn ∈
[0, 1] for each atom. This way, interactions with other atoms

x(t+1)
i = x(t)i + ∑

j ̸=i
β jv(x

(t)
j , dij) (3.15)

as well as energy contributions to the molecular energy E = ∑n
i=1 βiEi can be

faded out smoothly.

Using this, we show alchemical reactions from benzene over pyridine and
pyrazine to s-triazine in Fig. 3.16. If we retain the geometry of benzene and
only morph and blend atoms to reach the target composition (blue), we ob-
serve a virtually linear rise in energy from benzene to s-triazine. When adding
linear interpolation of atom positions to the reaction (orange), the energy pro-
file gets rougher due to suboptimal atom distances during the path, but stays
below the composition-only reaction. This is in agreement with chemistry,
since the non-equilibrium configurations are expected to have higher energies.
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Note that we show only one possible alchemical path that was easy to gen-
erate manually. When performing an alchemical optimization even smoother
paths might be found. On the other hand, the optimization might also be
led astray by unnatural minima, similar to those causing adversarial exam-
ples [Sze+14; GSS15]. Furthermore, in order to arrive at equilibrium config-
urations, a model that is trained also on non-relaxed molecules is required
to correctly model the energy barriers between equilibriums. In this case,
the alchemical pathways are needed even more to circumvent these barri-
ers. Performing an alchemical optimization using a suitable training set with
both compositional and configurational degrees of freedom is subject to future
work.

3.7 Summary and discussion

In this chapter, we have introduced a general framework to learn representa-
tions of atomistic systems from first-principles information. Starting from em-
beddings of single atoms, we have systematically constructed complex atom-
wise representations of chemical environments by modeling repeated pair-
wise interactions. As a concrete implementation of such interactions, we have
proposed a neural network architecture, where the perturbation by a neighbor-
ing environment is modeled using a factorized tensor layer. We could show
that these deep tensor neural networks are able to predict chemically accu-
rate energies throughout chemical and configurational space. Furthermore,
we have analyzed the obtained representations regarding the learned energy
partitioning, the spatial structure of the learned interactions as well as the
smoothness of the obtained potential energy surface outside of the training
domain.

The intrinsic non-uniqueness of the energy partitioning could not be re-
solved by DTNNs. The existence of many equivalent representations is analog
to solutions of the electronic problem in different basis sets. However, this
must not be the case in other neural networks since there might be a simple,
preferred solution when using a different approach. This would also be a
strong indicator for a more suitable neural network architecture.

We have hinted at possible applications such as virtual screening of molec-
ular properties or modeling of potential energy surfaces for molecular dynam-
ics simulations which we will explore further in later chapters. Another appli-
cation that is subject to future work is the optimization of molecular properties
in alchemical space. In the next chapter, we will build upon the introduced
framework in order to further improve the prediction accuracy and extend
the scope of the architecture to other chemical properties as well as atomistic
systems with periodic boundary conditions.
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Chapter 4

Continuous-filter convolutional
neural networks

In the last chapter, we have established the deep tensor neural network frame-
work. An important design decision is how to model the quantum interactions
between atoms. While DTNNs have used factorized tensor layers, we will
employ convolutions in this chapter. In particular, we will examine how con-
volutional layers can model atoms at arbitrary positions instead of uniformly
sampled data such as pixels on a grid or discrete time series.

An issue of the DTNN implementation presented in Chapter 3 is its lack of
separation between learning atom-wise representations and interactions. Both
subtasks are essentially handled in the interaction function

vi = ∑
j ̸=i

tanh
[
Wx f

(
(W f xxj + b f1) ◦ (W f dd̂ij + b f2)

)]
,

i.e., atom and distance information are directly merged in the factorized tensor
layer. In contrast, the SchNet architecture, which we will introduce in this
chapter, uses filter-generating networks to learn the interaction function which in
turn will then modulate the atom-wise representations linearly. As a beneficial
side-effect, this will allow us to define periodic filters for materials.

First, we will introduce continuous-filter convolutional (cfconv) layers, which
are generalizations of discrete convolutional layers that are commonly used
in deep learning. Then, we will apply these to modeling of the interaction
function in the DTNN framework. Finally, we evaluate the prediction perfor-
mance of the new neural network architecture and analyze how the learned
representations have changed compared to those of DTNNs.

45
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4.1 Convolutional layers

Convolutional neural networks [LeC+89] have led to major breakthroughs ap-
plying machine learning to images [KSH12], videos [Kar+14] or audio data
[Oor+16]. Given a two-dimensional neuron layer, e.g. for the hidden activa-
tions within a convolutional neural network for images,

Xl =

⎡⎢⎢⎣
x11 . . . x1L

...
. . .

...

xK1 . . . xKL

⎤⎥⎥⎦
with size K = 2kcut + 1 by L = 2kcut + 1 and each entry xi,j ∈ RFin having Fin
features, the output of convolutional layer l is defined as

xl+1
i,j = (Xl ∗ W)(i, j) =

kcut

∑
k=−kcut

lcut

∑
l=−lcut

Wklxl
i−k,j−l + b. (4.1)

The star symbol "∗" represents the convolution, the filter tensor W ∈ RK×L×Fout×Fin

and the bias b ∈ RFout) are learned during training.

This leads to some favorable properties for learning of structured data:
First, the finite impulse responses of small filters, which can also be inter-
preted as locally-connected neurons, enable the neural network to recognize
local patterns [FM82; LeC+89]. Second, the weight sharing across the data di-
mensions i, j leads to translational invariance of these patterns [LB+95]. This
makes convolutional neural networks very efficient at recognizing local struc-
ture with a relatively small set of weights compared to fully-connected layers.

Due to these advantages, they should also be ideally suited to model quan-
tum interactions in atomistic systems. In this application, we also have strong
local interactions and require translational invariance of the system.

4.2 Continuous-filter convolutions

The commonly used convolutional layers, as presented above, employ discrete
filter tensors since they are usually applied to uniformly sampled data, e.g.
digital images, video and audio. However, this is not applicable for atomistic
systems, because the atoms can be located at arbitrary positions. E.g. when
predicting a potential energy surface, the output of a convolutional layer will
change rapidly when an atom moves from one grid cell to the next. Fig 4.1
(left) illustrates how this results in a discontinuous energy surface. Especially
when we require a correct derivative of the energy prediction, e.g. for the
prediction of atomic forces (see Chapter 5), this is not a viable solution.
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Figure 4.1: Discrete vs. continuous convolution filters [Sch+17b]. The discrete filter
(left) is not able to capture the subtle positional changes of the atoms resulting in
discontinuous energy predictions Ê (bottom left). The continuous filter captures
these changes and yields smooth energy predictions (bottom right).

Even though discrete convolutions are commonly used in deep learning
and signal processing, the convolution is defined for continuous functions.
E.g., for data in 3-dimensional space, we can convolve arbitrary functions ρ :
R3 → RF and W : R3 → RF as follows:

(ρ ∗ W)(r) =
∫

ra∈R3

ρ(ra) ◦ W(r − ra)dra. (4.2)

Here, "◦" is the element-wise product, i.e. we apply convolutions to all F
feature dimensions separately. Now let’s assume that ρ describes an atomistic
system by atom-wise features at discrete position

ρl(r) =
natoms

∑
i=1

1{r=ri}xl
i , (4.3)

where xl
i is the representation of the chemical environment of atom i at layer

l, analogous to how this was defined in the DTNN. On the other hand, the
filter function W describes the interaction of feature maps with an atom at the
relative position r− ri. The filter functions can be modeled by a filter-generating
neural network similar to those used in dynamic filter networks [Jia+16]. Plug-
ging this into Eq. 4.2, we get

(ρl ∗ W)(r) =
∫

ra∈R3

(
natoms

∑
j=1

1{ra=rj}xl
j

)
◦ W(r − ra)dra

=
natoms

∑
j=1

∫

ra∈R3

1{ra=rj}xl
j ◦ W(r − ra)dra

=
natoms

∑
j=1

xl
j ◦ W(r − rj) (4.4)

This gives us a continuous function in space which represents how the atoms
of the system act on another location in space. To obtain the influence of the
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Figure 4.2: The SchNet architecture [Sch+17b; Sch+18]. The illustration shows an
architectural overview (left), the interaction block (middle) and the filter-generating
network (right). The shifted softplus activation function is defined as
ssp(x) = ln(0.5ex + 0.5). The number of neurons used in the employed SchNet
models, if not specified otherwise, is given for each parameterized layer.

atoms on each other, we only need to calculate this at the atom positions

xl+1
i = (Xl ∗ W l)i =

natoms

∑
j=1

xl
j ◦ W(ri − rj), (4.5)

i.e., we perform a convolution at discrete locations in space using a continuous
filter function W.

In the following, we will develop an improved deep learning architecture
using such continuous-filter convolutional (cfconv) layers to model quantum
interactions. In particular, we will discuss how to design the filter-generating
networks in order to guarantee all required invariances.

4.3 SchNet

Building upon the principles of the previously described DTNNs, we propose
SchNet as an improved neural network architecture for learning representa-
tions for molecules and materials. Both methods share a number of their
essential building blocks, such as atom-wise embeddings, additive interaction
refinements and atom-wise contributions to the property to be predicted. Due
to the similarities to the DTNN, we will shortly describe the general structure
of SchNet, recapitulate reoccurring building blocks and point out noteworthy
differences.

Fig. 4.2 illustrates the proposed model architecture, which exhibits the
same overall structure as DTNNs. First, the representations of the chemical
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environments are initialized using an embedding lookup layer

x(0)i = A[Zi ,:],

just like in the DTNN, depicted in green in the left panel of Fig. 4.2. Next, we
apply several interaction blocks to these atom-wise representations, depicted
in yellow. While they serve the same purpose as the interaction passes of
DTNN, they present the largest change in the architecture. Most importantly,
the tensor layers of DTNNs are replaced by continuous-filter convolutions and
respective filter-generating networks in the interaction blocks. We will describe
these in detail in Section 4.3.1. Finally, an output network (blue in Fig. 4.2)
obtains the final prediction from the atomic environments using atom-wise
layers l, i.e., fully-connected layers

x(l+1)
i = W(l)x(l)i + b(l) (4.6)

that are applied separately to each atom i with tied weights W(l).

4.3.1 Interaction blocks

Analogous to the interaction passes of DTNNs, each interaction block of SchNet
models pair-wise interactions of chemical environments, thereby distributing
many-body information across the molecule. In contrast to DTNNs, there is
not one single interaction function v(xj, dij) that is repeatedly applied, but we
use a different convolution filter and untied weights in the atom-wise layers
of each block. We perturb the representations of atomic environments by an
interaction refinement modeled as a residual building block [He+16]

x(t+1)
i = x(t)i + v(t)

i , (4.7)

where v(t)
i is the residual mapping of atom i.

The middle panel of Fig. 4.2 illustrates how this residual is obtained. Most
importantly, we use a cfconv layer to convolve the chemical environments xt

i
with continuous filters Wt(ri − rj) following Eq. 4.5. Since our cfconv layers
are applied feature-wise, we achieve the cross-talk between feature maps by
atom-wise layers before and after the convolution. This is analogous to depth-
wise separable convolutional layers in Xception nets [Cho17] which could
outperform the architecturally similar InceptionV3 [Sze+16] on the ImageNet
dataset [Den+09] while having slighly less parameters. Beyond a potential
gain in accuracy, feature-wise convolutional layers reduce the number of fil-
ters. This reduces the computational cost, in particular for continuous-filter
convolutions, where each filter has to be computed by the filter-generating
network.
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Figure 4.3: Comparison of shifted softplus and ELU activation function. We show
plots of the activation functions (left), and their first (middle) and second derivatives
(right).

Activation function

We use a softplus activation function [Dug+01] that was shifted to cross the
origin:

f (x) = ln
(

1
2

ex +
1
2

)
. (4.8)

Fig. 4.3 shows the similarity of this activation function to the recently popular
exponential linear units (ELU) [CUH15] non-linearity

f (x) =

{
ex − 1 if x < 0
x otherwise

(4.9)

The first and second derivatives for ELU and softplus are shown in the middle
and right panel of Fig. 4.3, respectively. A crucial difference is that the shifted
softplus has infinite order of continuity while ELUs have a discontinuity start-
ing with the 2nd derivative. As discussed in Chapter 2, the differentiability of
the model, and therefore also of the employed activation functions is crucial
for the prediction of atomic forces. As shown in Fig. 4.3, the first derivative of
the softplus activation function is the sigmoid – a common activation function
itself – which makes it an ideal choice for the training of forces (see Chapter 5).

Comparison of SchNet and DTNN

Before moving on to detail the filter-generating networks used by SchNet,
we compare the interaction blocks and the factorized tensor layers of DTNN.
Recalling the DTNN interaction refinements

v(t)
i = ∑

j ̸=i
tanh

[
Wx f

(
(W f xxj + b f1) ◦ (W f dd̂ij + b f2)

)]
, (4.10)

we recognize that the crucial change here is the replacement of the hyperbolic
tangent within the sum over neighbors, with the softplus outside of the sum.
If we ignore the activation function in Eq. 4.10, we can reformulate a linear
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(a) 1st interaction block (b) 2nd interaction block (c) 3rd interaction block

Figure 4.4: Continuous convolution filters of SchNet [Sch+17b]. 10x10 Å cuts
through all 64 radial, three-dimensional filters in each interaction block. The model
has been trained on a molecular dynamics trajectory of ethanol. Negative values are
blue, positive values are red.

variant ṽ(t)
i of DTNN interactions as

h1 = W f xxj + b f1 (4.11)

W(ri − rj) =

{
W f dd̂ij + b f2 if ri − rj > 0
0 otherwise

(4.12)

ṽ(t)
i = Wx f

natoms

∑
j=1

h1 ◦ W(ri − rj) (4.13)

which corresponds to the first three layers of the SchNet interaction block (i.e.,
atom-wise → cfconv → atoms-wise). Therefore, the factorized tensor layer of
DTNNs can be interpreted as a generalized continuous-filter convolution with
a non-linearity within the sum. On the other hand, the interaction block of
SchNet is more general than the tensor layers of DTNN, since the filter function
W(ri − rj) can be freely chosen and another atom-wise layer has been added.
Finally, placing the activation function outside the sum keeps the convolution
linear, which will be important for defining periodic filters for materials in the
next section.

4.3.2 Filter-generating networks

In the interaction blocks of SchNet, filter-generating networks have to model
the interactions of feature maps depending on interatomic distances. Fig. 4.2
(right) shows the architecture of the filter-generating networks used in SchNet.
The convolution and architecture of SchNet already guarantee invariance with
respect to translation and atom indexing. Rotational invariances and proper-
ties have to be achieved by the design of the filter. In the following, we will
therefore discuss the design choices of the filter-generating network under this
aspect.
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Self-interaction

In an interatomic potential, we aim to avoid self-interaction of atoms, as re-
flected in the many-body expansion:

E(S) =
natoms

∑
i=1

E(1)(ri) +
natoms

∑
i<j

E(2)(ri, rj) +
natoms

∑
i<j<k

E(3)(ri, rj, rk) + . . .

DTNNs achieve this by restricting the sum to neighboring atoms j ̸= i. An
equivalent formulation of this is to define the filter-network such that W(ri −
rj) = 0 for ri = rj as we did in Eq. 4.12. Since there are never two atoms at the
same position, this is a unambiguous condition to exclude self-interaction.

Rotational invariance

As the input to the filter W(ri − rj) : R3 → R is already invariant to trans-
lations of the molecule, we only need to consider rotational invariance. Ana-
logue to the DTNN, this can easily achieved here by using only the interatomic
distances instead, resulting in a radial filter W(∥ri − rj∥) : R → R. Here,
we also use the radial basis of Gaussians (Eq. 3.4), we already employed in
the DTNN. Beyond the reasoning given for DTNNs, the entries of filter ten-
sors in discrete convolutional layers are initialized independently. However,
if we initialize a neural network with the usual weight distributions and non-
linearities, the resulting function is almost linear as the neuron activations are
close to zero. Therefore, the filter values would be strongly correlated, lead-
ing a plateauing cost function at the beginning of training. The radial basis
functions alleviate this problem by decorrelating the various distance regimes.

Fig. 4.4 shows 10x10 Å cuts through all 64 radial, three-dimensional filters
of each interaction block for a SchNet model trained on a molecular dynamics
trajectory of ethanol. In contrast to DTNN, we do not tie the weights across
interaction blocks, so the filters will change for each interaction.

Periodic boundary conditions

Bulk crystals are characterized by their periodic boundary conditions (PBCs),
i.e. a unit cell repeats infinitely in space on a lattice. Therefore, periodic
images of atoms have an identical chemical environment, and thus, should
also have an identical representation. This is already guaranteed in the SchNet
architecture, as we obtain the atom-wise representations from the chemical
enviroments. Due to the linearity of the convolution, we can make this more
efficient by moving the sum over periodic images into the filter. Considering
that representations xi = xia = xib are identical for repeated unit cells a and b,
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Figure 4.5: Dependence of convolutional filters on the employed periodic
boundary conditions [Sch+18]. 5Å x 5Å cuts through generated filters from the same
filter-generating networks (columns) under different periodic bounding conditions
(rows). Each filter is learned from data and represents the effect of an interaction on
a given feature of an atom representation located in the center of the filter.

we obtain

xl+1
i = xl+1

im =
1

nneighbors

natoms

∑
j=0

ncells

∑
b=0

xl
jb ◦ W̃ l(rjb − ria)

=
1

nneighbors

natoms

∑
j=0

xl
j ◦
(

ncells

∑
b=0

W̃ l(rjb − ria)

)
  

W

. (4.14)

Note that we average over neighbors in contrast to the filter for molecules
since we potentially have a large number of neighbors in a periodic system.
We compute the periodic filter before convolving only with the atomic rep-
resentations of one unit cell. Since they only depend on the atom positions,
all filters can be computed independently and potentially in parallel with the
atomic representations.

Fig. 4.5 shows four filters under different periodic boundary conditions.
While the filters without PBCs are radial, the filters with the PBCs of diamond
and graphite are superpositions of radial filters on the respective lattice.

4.4 Results

In the following, we will evaluate SchNet for the prediction of various molec-
ular properties across chemical compound space as well as formation energies
of bulk crystals. We use SchNet models with up to T = 6 interaction refine-
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Figure 4.6: Learning curves for DTNN and SchNet models [Sch+18]. Mean absolute
error in kcal mol−1of energy predictions (U0) on the QM9 dataset [Ram+14; BR09;
Rey15] depending on the number of interaction blocks and reference calculations
used for training are given. We give the best performing DTNN models as well as a
SchNet model with comparable hyper-parameters, using 30 features and 60 filters.

ments and consistently use nfeats = 64 features to represent chemical environ-
ments. For a full specification of the network, see Fig. 4.2.

In each experiment, we split the data into a training set of the sizes given
below and use a validation set for early stopping. All models are trained by
minimizing the squared loss using the ADAM optimizer [KB15] with 32 ex-
amples per mini-batch with an initial learning rate of 10−3 and an exponential
learning rate decay with ratio 0.96 per 100,000 steps. We train all models for
up to 10M parameter update steps and select the one that performs best on
the validation set. The remaining data is used for computing test errors. The
reported errors are averages over three repetitions of random subsampling.

4.4.1 Molecular properties across chemical compound space

In Section 3.5.1, we have used deep tensor neural networks to predict energies
for the QM9 benchmark dataset. Fig. 4.6 shows the performance of SchNet
with T ∈ {1, 2, 3, 6} compared to the best-performing DTNN (T = 3). Just
like in the DTNN model, we do not use a distance cutoff due to the relatively
small molecules in QM9. We use 10,000 examples for validation on the QM9
benchmark, following Faber et al. [Fab+17] and Gilmer et al. [Gil+17]. We train
a SchNet model with comparable settings to DTNN: we use 30-dimensional
atom-wise representation and 60 convolutional filters wich correspond to the
60-dimensional factor space in the DTNN. SchNet drastically improves over
DTNN in terms of mean absolute errors for all training set sizes. For training
sets larger than 25k examples, the SchNet model with one interaction block
even surpasses the DTNN with three interaction passes. This can be attributed
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Table 4.1: Number of parameter updates until model with lowest validation error
in early stopping. All models were trained for 10M iterations before the best models
were selected. Lowest number of required updates in bold.

Training examples T=1 T=2 T=3 T=6

10k 3.40M 1.77M 1.68M 0.93M

50k 5.72M 3.89M 4.55M 2.87M

100k 9.47M 7.09M 7.91M 5.96M

to the interaction blocks, in particular the filter-generating networks, that allow
for a more flexible interaction potential.

Comparing the SchNet models with varying numbers of interaction blocks
trained on 100k examples, we observe that more than two interaction blocks
reduce the error only slightly from 0.35 kcal mol−1 with T = 2 interaction
blocks to 0.32 kcal mol−1 for T ∈ {3, 6}. For smaller training sets, the dif-
ferences become more apparent. Here, the model with six interaction blocks
shows the lowest errors even though it has the most parameters. Additionally,
the model requires much less parameter updates to converge as shown in Ta-
ble 4.1. This indicates that the larger models can easier fit the interactions and
might yield a more suitable representation for the learning problem. There-
fore, we use SchNet models setting F = 64 and T = 6 in the following, if not
specified otherwise.

Up until now, we have only predicted the property U0 of the QM9 dataset,
i.e. the total energy at 0K. A full description for all properties can be found
in Appendix A. We have used the sum pooling of atomic contributions for all
properties except for the intensive properties ϵHOMO, ϵLUMO and ∆ϵ, for which
we have used mean pooling.

Table 4.2 shows mean absolute errors also for properties other than the
energy for SchNet and the message-passing neural network enn-s2s [Gil+17].
Gilmer et al. [Gil+17] have proposed the notion of message-passing neural
networks (MPNNs), under which they also categorize DTNN. They have de-
veloped the MPNN enn-s2s, which uses first-principles as well as information
about structural chemical features such as bonds and aromatic rings. In con-
trast to DTNN and SchNet, the output network uses a set2set approach that
results in a single representation for the molecule [VBK16].

SchNet outperforms enn-s2s for 8 of 12 properties and even achieves com-
parable performance with the ensemble for the properties U0, U and G. How-
ever, SchNet can not reach the performance of the message passing neural
networks for the dipole moment, polarizability and electronic spatial extent.
We conjecture this is due to the strong dependence of these properties to the
structure of the molecule such that they can not be as easily decomposed into
atomic contributions as the energy. Here, the set2set readout function of the



56 CHAPTER 4. CONTINUOUS-FILTER CNNS

Table 4.2: Mean absolute errors for energy predictions on the QM9 data set using
110k training examples [Sch+18]. We give error for SchNet, the message-passing
neural network enn-s2s as well as an ensemble of enn-s2s models [Gil+17]
in kcal mol−1. For SchNet, we give the average over three repetitions as well as
standard errors. Best single models in bold.

Property Unit SchNet (T = 6) enn-s2s enn-s2s-ens5

ϵHOMO kcal mol−1 0.95 ± 0.02 0.99 0.71

ϵLUMO kcal mol−1 0.78 ± 0.00 0.85 0.65

∆ϵ kcal mol−1 1.45 ± 0.00 1.59 1.22

ZPVE kcal mol−1 0.039 ± 0.001 0.035 0.030

µ Debye 0.033 ± 0.001 0.030 0.020

α Bohr3 0.235 ± 0.061 0.092 0.068

⟨R2⟩ Bohr2 0.073 ± 0.002 0.180 0.168

U0 kcal mol−1 0.32 ± 0.02 0.45 0.33

U kcal mol−1 0.44 ± 0.14 0.45 0.34

H kcal mol−1 0.32 ± 0.02 0.39 0.30

G kcal mol−1 0.32 ± 0.00 0.44 0.34

Cv cal / molK 0.033 ± 0.000 0.040 0.031

enn-s2s has more expressive power as it produces a graph-level embedding
which is then used to predict the property. Another possibility is to predict
physically meaningful terms as a proxy, e.g. a latent charges q̂i which is then
used to calculate the dipole moment [GBM17]:

µ =
natoms

∑
i=1

q̂iri

Adding such property-specific output networks to SchNet is subject to future
work.

4.4.2 Formation energies of bulk crystals

Beyond predicting molecular properties, we are able to use filters with peri-
odic boundary conditions to predict properties of materials. We predict for-
mation energies of equilibrium bulk crystals from the Material Project repos-
itory [Jai+13]. Further details about the dataset are listed in Appendix A. As
detailed in Section 4.3.2, we obtain a filter with PBCs by summing over non-
periodic filters for each periodic repetition and normalizing by the number
of neighboring atoms within the chosen cutoff. Here, the choice of the cut-
off is important since the number of neighbors rises fast with the cutoff. We
have chosen to use a cutoff of 5Å which is a compromise of keeping computa-
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Table 4.3: Mean absolute errors for formation energy predictions in eV/atom on
the Materials Project data set [Sch+18]. For SchNet, we give the average error over
three repetitions as well as standard errors of the mean. Best models in bold.

Model N = 3, 000 N = 60, 000

ext. Coulomb matrix [Fab+15] 0.64 –

Ewald sum matrix [Fab+15] 0.49 –

sine matrix [Fab+15] 0.37 –

SchNet (T = 6) 0.127 ± 0.001 0.035 ± 0.000

tion time reasonably low while capturing the short-range interactions between
atoms directly.

The Materials Project dataset is much more diverse than QM9 in terms of
atom types but includes less than half the amount of training data. Table 4.3
shows mean absolute errors for the prediction of formation energies per atom
by SchNet for 3,000 and 60,000 training examples. We use 1,000 and 4,500
additional examples for early stopping, respectively, corresponding to the Ma-
terials Project subsets. For the smaller training set, we list the performances of
several descriptors for materials proposed by Faber et al. [Fab+15] that were
used as features for kernel ridge regression. These descriptor are similar to the
Coulomb matrix in that they consist of pairwise interaction terms organized
in an adjacency matrix. They differ in how they specifically include the peri-
odicity of the material. E.g., the sine matrix, which yields the lowest error out
of the reference descriptors, is defined as

xij =

{
0.5Z2.4

i for i = j
ZiZjϕ̄(ri − rj) for i ̸= j

with the periodicity being included by

ϕ̄(rij) =

B ·
3

∑
k=1

êk sin2(πêkB−1 · rij)


−1

2

.

SchNet significantly improves over the best hand-crafted features, reduc-
ing the mean absolute error from 0.37 eV/atom of the sine matrix to 0.13
eV/atom1. With the large data set of 60,000 examples, the error can be re-
duced even further to 0.035 eV/atom. Fig. 4.7 shows the distribution of errors
of SchNet. While there are a considerable number of examples with high er-
rors, most materials are predicted well. Less than 10% of the materials are
predicted with absolute errors above 0.1eV.

11 kcal mol−1≈ 0.043 eV
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Figure 4.7: Distribution of absolute errors for the predictions of formation
energies per atom for the Materials Project dataset. The plot shows the percentage
of materials predicted with lower than given test errors. SchNet was trained with
T = 6 interaction blocks on 50k training examples.

4.5 Analysis

We continue to analyze the obtained representations. Given the similarities
between the two neural network architectures, we adopt some of the analysis
methods from DTNNs and observe how the representation has changed. Ad-
ditionally, we apply these methods to atomistic systems with periodic bound-
ary conditions.

4.5.1 Energy contributions

In Section 3.6.1, we have discussed the non-uniqueness of energy partitioning
in general and evaluated the energy contributions of chemical environments
learned by DTNN models in particular. We concluded that DTNNs obtain a
different energy partitioning in each training run, i.e., different representations
that yield equivalent results in terms of prediction error. Here, we will examine
whether this is also the case for SchNet.

Fig. 4.8 compares the energy partitioning of DTNN and SchNet models
with T ∈ {3, 6} interaction blocks. We show the distributions of atom-wise
energy contributions of each architecture for three training runs on different
training sets. The distributions of atomization energies agree across all rep-
etitions and models. However, the atom-wise energy contributions vary sig-
nificantly between model architectures. We observe that the distributions of
SchNet show a narrower range of energy contributions than those of DTNN,
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Figure 4.8: Distribution of energy contributions for atoms of types H, C, N, O and
atomization energies from QM9 molecules predicted by DTNN and SchNet
models. The models were trained on 100k examples. Each color corresponds to a
model trained on a different subset. The distributions of atomization energy
predictions agree across models (bottom).
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especially for hydrogen which has reduced to a peak with a width of approx-
imately 10 kcal mol−1. While the DTNN energy contributions occur most
often around -100 kcal mol−1which is close to the mean energy per atom of
-97.8 kcal mol−1, SchNet exhibits distinct peaks in the distributions for hy-
drogen and carbon at about -75 kcal mol−1and -130 kcal mol−1, respectively.
Complementary figures in Appendix B.1 show the convergence in greater de-
tail for the energy contributions of pairs of equivalent models from Fig 4.8,
plotted against each other in scatter plots.

Most importantly, the distributions seem to converge from DTNN over
SchNet with three interaction blocks to SchNet with six interaction blocks to-
wards a unique solution. This is especially noticeable for carbon and hydro-
gen, where the obtained energy partitionings for SchNet (T = 6) are quali-
tatively equivalent. While a convergence for the distributions of oxygen and
nitrogen can be observed, too, they are still more diverse across training runs
than those of hydrogen and carbon. A likely reason is the lower number of
these atom types in the training data.

We conclude that the models attempt to solve the learning problem while
minimizing the deviation of the interaction energy within atom types to obtain
a simple solution. This is most successful with the SchNet (T=6) model with
the sharpest peaks in the distribution, i.e., learning characteristic energies for
atom types. This conclusion also agrees with Table 4.1, where we have shown
that more interaction blocks lead to less required parameter updates in early
stopping to obtain the best model.

4.5.2 Local chemical potentials

In Section 3.6.2, we have defined local chemical potentials for the DTNN by
using a virtual probe atom as a test charge. To achieve this, we can pass
the probe into the network like any atom of the molecule and only have to
consider how to handle the continuous-filter convolutions. This can be de-
rived straight-forward from the definition of the continuous-filter convolu-
tional layer in Eq. 4.4, which is defined for arbitrary positions in space. Thus,
the continuous-filter convolution for a probe atom can be calculated as

xprobe = (ρl ∗ W)(rprobe) =
natoms

∑
j=1

xl
j ◦ W(rprobe − rj) (4.15)

All other layers are applied atom-wise and, thus, can be applied to the probe
atom unchanged.

Fig. 4.9 shows local chemical potentials for bulk crystals of SchNet mod-
els with six interaction blocks trained on the Materials Project dataset. We
show cuts through the potentials of graphite and diamond using a carbon test
charge. They reflect the symmetry and periodicity of each system. Fig. 4.10
shows a comparison of the local chemical potentials of SchNet with those of
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Figure 4.9: Cuts through local chemical potentials ΩC(r) of SchNet The analyzed
SchNet (T=6) model was trained on the Materials Project dataset. Local potentials
using a carbon test charge are shown for graphite (left) and diamond (right).

the DTNN. For both architectures, we use a carbon atom to probe the gener-
ated potential and plot it on an isosurface with constant ∑i ∥r − ri∥−2 = 3.7Å.
The general structure of the local chemical potentials of both models is similar.
In particular, both models reflect symmetries of the molecules in the potential.

The energy range of the local chemical potential ΩC(r) of SchNet is com-
pressed for all molecules which corresponds to what we have observed for the
energy contributions in the last section. Moreover, the low- and high-energy
regions are separated more clearly in the SchNet model, indicating a more
localized representation. Again, this agrees with the results on atom-wise en-
ergy contributions in Fig. 4.8, where the distributions converge for the SchNet
models to a simpler model with minimal deviation. One way for the model to
achieve this is to localize the interaction refinements, which we will examine
in the next section.

4.5.3 Interaction analysis

Both the energy contributions as well as the local chemical potentials suggest
that SchNet achieves more accurate prediction by learning more local models
than the DTNN. To test this hypothesis, we study the interaction corrections of
SchNet and DTNN. Recall that the atom-wise representations x are modified
multiple times by additive corrections in both architectures. This leads to a
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Figure 4.10: Local chemical potentials ΩC(r) of DTNN (top) and SchNet
(bottom) [Sch+18]. Potentials using a carbon probe on a ∑i ∥r − ri∥−2 = 3.7Å−2

isosurface are shown for benzene, toluene, methane, pyrazine and propane.
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Figure 4.11: Change of the representation during bond breaking. We increase the
distance between two atoms while observing the sensitivity of the representations for
carbon and hydrogen atoms. The analyzed DTNN and SchNet models use T
interactions as given in the legend. All models were trained on 100k training
examples of QM9.

final representation

x(T)i = x0 +
T

∑
t=1

v(t).

If our model is local, we expect this representation to converge while moving
two atoms apart from each other. In this case, the sensitivity of the represen-
tation to atom movement

∂x(T)i
∂rij

approaches zero. The faster this happens, the more local we consider our rep-
resentation. Note, that locality can be enforced by choosing a small distance
cutoff. However, in our molecule models, we set the cutoff such that all occur-
ring distances are covered. Note, that the representations of different models
vary on different scales due to differences in the architecture of the model and
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Figure 4.12: Pairwise distributions of carbon and hydrogen in QM9 up to 4.0Å.
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Figure 4.13: Change of the representation during bond breaking for rij < 4.0Å. We
increase the distance between two atoms while observing the sensitivity of the
representations for carbon and hydrogen atoms. The analyzed DTNN and SchNet
models use T interactions as given in the legend. All models were trained on 100k
training examples of QM9.

dimensionality of the representation. Therefore, we have to evaluate our lo-
cality measure separately for each model, i.e., how it develops with respect to
the pair-wise atom distance rij.

Fig. 4.11 shows how our locality measure behaves for moving carbon and
hydrogen atoms apart from each other in various combinations (C-C, H-H, C-
H)). The models were trained on the QM9 dataset which covers distance up to
about 12.0 Å. For both models, we see large changes for nearby atoms up to
distances of about 4.0 Å across all interaction types. This agrees with chemical
intuition since this corresponds to the distance regime relevant for chemical
bonds and short-range non-bonded interactions. Another distance regime the
representation is sensitive to is beyond 10.0 Å. This can be explained by the
lack of data in that region, since only a few larger molecules cover this regime.
Therefore, this region is either used to identify large molecules or is noisy due
to the lack of training data.

Fig. 4.12 shows the pairwise distribution of carbon and hydrogen atoms.
We can recognize the bonds as the first peaks in the carbon-carbon and hydrogen-
carbon pairs at approximately 1.5Å and 1.1Å, respectively. As there are no
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hydrogen-hydrogen bonds in the data set, the first peak in the H-H plot cor-
responds to hydrogens that are bonded with the same carbon atom. Similarly,
the H-C and C-C show peaks for these kinds of interactions at 2.0-3.0Å, which
indicates bonding with common neighbors.

We can use this as a reference to identify some learned interactions in
Fig. 4.13 which shows the sensitivity profiles for distances up to 4.0Å. Compar-
ing the sensitivity profiles of DTNN and SchNet, we observe that SchNet puts
more emphasis on the < 1.5Å regime than the DTNN models. It follows that
SchNet is more sensitive to the bonds while DTNN incorporates more non-
bonded interactions. Based on these observations, we have trained a SchNet
(T = 6) model using a distance cutoff of 4Å on 110,000 examples from QM9.
As expected from our analysis, the obtained accuracy is equivalent to that of
the model including all distance (MAE 0.32 kcal mol−1).

Within the SchNet models, the model with T = 6 interaction blocks de-
creases faster and smoother than those with less interaction blocks. In con-
trast, SchNet (T=1) has a large spike at 1.5-2.0 Å. Since this model is only able
to incorporate pair-wise interactions to construct the representation, it needs
to make use of non-bonded interactions when attempting to uniquely repre-
sent a molecule. On the other hand, more interaction blocks enable SchNet to
decompose the geometry into complex interactions of more localized chemical
environments. This also serves as a plausible explanation as to why SchNet is
able to generalize better and learn faster with more interaction blocks. Note
that this does not necessarily restrict SchNet to a fully local representation:
indirect interactions over multiple neighbors can still play a role for molecules
with more than two atoms.

4.5.4 Ranking of molecular carbon ring stability

In the previous sections, we have established that SchNet learns a local rep-
resentation yielding an energy partitioning that is largely consistent across
retrained models. This also allows us to assign atomization energy contribu-
tions to substructures of molecules, which can be interpreted as a measure of
local stability. A particular interesting substructure in this regard are aromatic
rings,

Ering = ∑
i∈ring(S)

Ei (4.16)

where the set ring(S) contains the atoms that belong to a particular ring of
molecule S.

Fig 4.14 shows the 10 molecules with most and least stable 6-membered
carbon rings yielded by SchNet (T = 6). We observe that nitrogen atoms
that are directly connected to the ring increase the ring energy such that the
10 least stable rings are all bonded with nitrogen. Beyond that, we observe
that nitrogen and fluorine atoms that are close to each other or other carbon
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(a) Top-10 most stable 6-membered carbon rings from most to least stable.

(b) Top-10 least stable 6-membered carbon rings from most to least stable.

Figure 4.14: Ranking of molecular carbon ring stability. We show molecules with
the highest and lowest energy contributions from 6-membered carbon rings. The ring
energies were calculated with SchNet (T = 6) trained on 110k molecules of QM9.
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Figure 4.15: Two leading principal components of the learned embeddings x0 of sp
atoms learned by SchNet from the Materials Project dataset [Sch+18]. We
recognize a structure in the embedding space according to the groups of the periodic
table (color-coded) as well as an ordering from lighter to heavier elements within the
groups, e.g., in groups IA and IIA from light atoms (left) to heavier atoms (right).

atoms connected to the ring reduce its relative stability. E.g. in Fig. 4.14a
the 4th molecule only differs from the 2nd and 3rd most stable molecules by
having a fluorine atom connecting to the ring next to the carbon chain, or
in Fig. 4.14b the least stable molecules differ only in the distances between
connected nitrogens. A full stability ranking of the 6-membered carbon rings
in QM9 is listed in Appendix B.2.

4.5.5 Atom type embeddings

Having extensively analyzed what SchNet has learned about atom interac-
tions, we go on to take a look at how atom types are represented. In Chap-
ter 2, we have introduced cross-element generalization as a desirable prop-
erty of representations of atomistic systems. While most descriptors consider
different atom types orthogonal, DTNN and allow for cross-element gener-
alization through the initial embeddings x(0)i . If the trained models learn to
efficiently make use of this possibility, we should be able to extract atom sim-
ilarities from the embeddings that resemble chemical intuition. Since QM9
only contains five atom types (H, C, N, O, F), we will perform this analysis on
the Materials Project dataset as it includes 89 atom types ranging across the
periodic table.

Fig. 4.15 shows the two leading principal components of the atom type
embeddings of sp-atoms, i.e. the main group elements of the periodic table.
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The projection explains only about 20% of the variance, therefore atom types
might appear closer than they are in the high-dimensional space. However,
we see that atoms belonging to the same group tend to form clusters. This
is especially apparent for main groups 1-5, while groups 6-8 appear to be
slightly more scattered. In group 1, hydrogen lies further apart from the other
members which coincides with its special status, being the element without
core electrons. Beyond that, there are partial orderings of elements according
to their period within some of the groups. There are orderings from light to
heavier elements, e.g. in group 1 (left to right: H - [Na,Li] - [K, Rb, Cs]), group
2 (left to right: Be - Mg - Ca - Sr - Ba) and group 5 (top to bottom: N-[As,
P]-[Sb,Bi]).

Note that these extracted chemical insights were not imposed by the SchNet
architecture onto the embeddings as they were initialized randomly before
training. It had to be inferred by the model based on the co-occurrence of
atoms in the bulk systems of the training data.

4.6 Summary and discussion

In this chapter, we have developed SchNet which is constructed using the same
principles as deep tensor neural networks. The crucial change is how SchNet
models quantum interactions. To that end, we have proposed continuous-filter
convolutional layers for non-uniformly sampled data. We use them in combi-
nation with filter-generating networks [Jia+16] to obtain smooth convolutional
filters that model the interactions between atoms. Most importantly, we have
incorporated periodic boundary conditions into the filter, making efficient pre-
dictions for materials possible.

SchNet is able to reduce the mean absolute error to 0.32 kcal mol−1for
the prediction of atomization energies at 0K of the QM9 benchmark dataset.
Beyond that, we have applied SchNet successfully to the accurate prediction
of other chemical properties from QM9 as well as formation energies of bulk
crystals. We have identified problems with the prediction of dipole moments
and polarizabilities due to their strong dependence on the global spatial struc-
ture of the molecule. An extension of SchNet with output networks for the
dipole moment [GBM17], polarizability tensor and further properties is sub-
ject to future research.

We have continued with the analysis of the obtained representations in
comparison with those yielded by DTNNs. The results have shown evidence
that SchNet learns representations that agree with chemical intuition. While
DTNN models obtain wildly different energy partitioning, the distribution of
energy contributions in SchNet stabilizes and characteristic energies of atom
types are found. These results indicate that SchNet is able to make better
use of the training data, in particular for hydrogen and carbon, such that a
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partitioning, which requires smaller perturbations of atomic energy contribu-
tions, can be found. This finding agrees with the visualization of the local
chemical potentials of exemplary molecules as well as the sensitivity analy-
sis of the atom-wise representations with respect to the distance between two
atoms during bond breaking. In particular, we have found that both DTNN
and SchNet learn that the distance regime below 4Å is most important for the
prediction of molecular energies. However, SchNet focuses even more on the
regime of bonds and the first sphere of non-bonded interactions up to 2Å. In
conclusion, SchNet learns a less complex, more localized representation which
helps to drastically improve prediction accuracy.



Chapter 5

Potential energy surfaces

We have spent a large part of this thesis evaluating and analyzing our de-
veloped neural network architectures using benchmark datasets such as QM9
[Ram+14] and the Materials Project [Jai+13]. Those datasets have been created
by performing density functional theory computations [HK64] of candidate
molecules and crystals, in order to relax them into equilibrium structures.
Subsequently, we have predicted properties, in particular atomization and for-
mation energies, of these structures. While this has been a good benchmark
to test our architectures, it is not a realistic setting, since we have no way to
obtain these structures without calculating the energies first.

In order to solve this, we either need machine learning algorithms that do
not require the exact atom positions, or extend the training domain of our
models to include non-equilibrium geometries. The first possibility is cho-
sen by a lot of virtual screening methods that operate on molecular graphs
[Ram+15; Duv+15; WDA16; Góm+16] or approaches that learn from approx-
imate equilibrium geometries obtained by less accurate methods, e.g. semi-
empirical force fields [Bro+83; GB87; Cor+95]. We choose the second possi-
bility of learning an interatomic potential that is applicable for chemical and
configurational degrees of freedom. Thus, we will perform several intermedi-
ate steps towards such a general model in this chapter.

Beyond the prediction of energies, we need to accurately predict atomic
forces. Therefore, we will first describe a common model for energies and
forces and how to incorporate forces into the training of the network. In Chap-
ter 3, we have already used DTNN to predict energies of molecular dynamics
trajectories. We will extend these experiments by predicting both energies and
forces using single-trajectory SchNet models. As an application, we will per-
form a molecular dynamics simulation with a SchNet model for the fullerene
C20. Finally, we will train a model with chemical and configurational degrees
of freedom for a set of C7O2H10 isomers.

69
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5.1 Training with energies and forces

The atomic forces can be obtained from the potential energy E of the atomistic
system as the gradient

F(r) = −∂E(r)
∂r

. (5.1)

Using this knowledge allows us to constrain the possible solutions for the force
model. Chmiela et al. [Chm+17] proposed such a procedure for kernel learning
called gradient-domain machine learning (GDML). This method differentiates a
kernel model for energies w.r.t the atom positions to obtain a force model

F̂(r) =
ntrain

∑
i=1

3natoms

∑
j=1

(αi)j
∂

∂(r)j
∇κ(r, ri) (5.2)

with a vector valued kernel ∇κ(x, xi) and the parameter vector αi correspond-
ing to training example i. Chmiela et al. [Chm+17] use a Matérn kernel over
Coulomb matrices for the energy kernel κ. In the case of neural networks, this
can be achieved by directly defining the force model as the derivative of the
energy model Ê analog to Eq. 5.1. This is can be obtained easily by performing
a full backward pass to the input layer.

Chmiela et al. [Chm+17] have shown that this procedure drastically im-
proves the predictions, even if only forces and no energies are used for train-
ing. This is because the force field F̂ is constrained to be conservative, i.e. it
is guaranteed to have the scalar potential Ê(r). In physical terms, this means
that the force field is energy conserving, i.e. the energy difference

∆E = −
∫

S
F̂(r) · dr (5.3)

is independent of the choice of path S from r1 to r2. This is bound to be the
case since F is integrable (see Eq. 5.1), such that

∆E = Ê(r2)− Ê(r1). (5.4)

Since SchNet uses filter-generating networks that produce radial filters, the
energy prediction is rotationally invariant, i.e.,

Ê(r) = Ê(Rr), (5.5)

where R ∈ R3×3 is a rotation matrix, the derived force model is rotationally
equivariant:

F̂(Rr) = −∂Ê(Rr)
∂Rr

RRT=I
= −RRT ∂Ê(Rr)

∂Rr

= −R
∂Rr
∂r

∂Ê(Rr)
∂Rr

Ê(r)=Ê(Rr)
= −R

∂Ê(r)
∂r

= RF̂(r). (5.6)
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That is, a rotation of the molecule results in an equivalent rotation of the pre-
dicted force by design.

Until now, we have only shown how to derive a force prediction from an
energy model. In order to also use known force targets during training, we
have to modify our loss function. We use a combined loss of energies and
forces inspired by Pukrittayakamee et al. [Puk+09]:

ℓ((Ê, F̂1, . . . , F̂natoms)), (E, F1, . . . , Fnatoms)) =

ρ ∥E − Ê∥2 +
1

natoms

natoms

∑
i=0

Fi −
(
− ∂Ê

∂Ri

)2

(5.7)

where ρ is a trade-off between energy and force loss.

It is crucial for the model to have at least 2nd order of continuity since we
require second derivatives for the gradient descent of the force loss. There-
fore, we made sure in the definition of the filter-generating networks and the
choice of activation function that our model has infinite order of continuity. In
SchNet, this is achieved by Gaussians in the basis expansion of distances and
shifted softplus activation functions.

5.2 Prediction of total energies and atomic forces

In the following, we will apply SchNet to the prediction of potential energy
surfaces and corresponding energy-conserving force-fields. We will first per-
form this on MD trajectories of single molecules and then go on to train a
combined model for multiple trajectories of various isomers. All models have
been trained using mini-batch stochastic gradient descent using the ADAM
optimizer [KB15] with a batch size of 32 training examples.

5.2.1 Single-trajectory predictions

In Chapter 3, we have already demonstrated that a DTNN is able to repre-
sent configurational degrees of freedom for small molecules and predict the
corresponding energies. Here, we will extend this to force predictions and
all molecules from the MD17 dataset [Chm+17]. Beyond training SchNet on
50k reference calculation, we will study predictions on trajectories with a small
subset of 1k training examples. This setting is especially relevant when we aim
to predict more accurate and therefore more computationally expensive quan-
tum calculations, e.g. using coupled-cluster theory [BM07], in future work.

Learning from few data points is a challenging task for SchNet since the
representation has to be learned, in contrast to GDML or other methods with a
fixed descriptor. Therefore, end-to-end learning usually requires more training
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benzene toluene malonaldehyde salicylic acid

aspirin ethanol naphtaleneuracil

Figure 5.1: Illustrations of the molecules in the MD17 collection of molecular
dynamics trajectories.

data. Beyond that, the SchNet architecture is build to learn general atomistic
systems, while GDML is designed for single-trajectory data. While the ability
to learn arbitrary chemical environments is an advantage for diverse data sets,
it makes learning from similar configuration from MD trajectories harder. The
main difference is that GDML uniquely identifies each atom while SchNet has
to recognize them by their neighboring atoms.

We use ethanol and benzene as two representative molecules for model se-
lection as they represent different aspects of the MD17 collection (see Fig. 5.1).
While ethanol is small and flexible with a rotating O-H group, benzene con-
sists of a 6-membered aromatic carbon ring which is quite stable up to the fast
movements of the hydrogens. We have trained SchNet model with T ∈ {1, 2, 3}
interaction blocks. In all models, we set the energy-force trade-off ρ = 0.01,
since we have empirically found this setting to be a good compromise between
energy and force accuracy. A more detailed discussion of the trade-off between
energy and force prediction will follow in Section 5.3. We give mean absolute
errors and root mean squared errors for the prediction of energies and atomic
forces. The force errors are given component-wise, i.e.,

ℓforce(Fi, F̂i) =
1

natoms

natoms

∑
i=1

Fi − F̂i
 ,

analog to the force term in the training loss.

Tables 5.1 and 5.2 show the performance of SchNet trained on subsets of
ethanol and benzene MD trajectories, respectively, from the MD17 data collec-
tion. When using 1k reference calculations for training, we observe that the
models with two and three interaction blocks perform similarly well in terms
of energy and force errors, but significantly better than SchNet with T = 1. For
the large training sets, SchNet with T = 3 performs slightly better in terms of
force errors then with less interaction blocks. The models with T = 6 interac-
tions blocks perform similar to T = 3 on the large dataset, however, tend to
overfit on the subset with 1,000 training examples.



5.2. PREDICTION OF TOTAL ENERGIES AND ATOMIC FORCES 73

Table 5.1: Test errors of SchNet trained on ethanol trajectory with T ∈ {1, 2, 3}.
interaction blocks. We evaluate the effect of shared and unshared filter-generating
networks on ethanol and benzene data sets trained on energies and forces using 50k
examples.

Ethanol Energy [kcal/mol] Force [kcal/mol/Å]

T MAE RMSE MAE RMSE

N = 1,000

1 0.43 0.57 1.72 2.52

2 0.08 0.13 0.40 0.70

3 0.08 0.14 0.39 0.72

6 0.09 0.14 0.42 0.69

shared
2 0.08 0.16 0.43 0.82

3 0.08 0.12 0.39 0.68

6 0.08 0.13 0.40 0.69

N = 50,000

1 0.34 0.45 1.34 1.94

2 0.05 0.06 0.07 0.11

3 0.05 0.06 0.05 0.08

6 0.05 0.06 0.05 0.08

shared
2 0.05 0.06 0.09 0.14

3 0.05 0.06 0.08 0.13

6 0.05 0.06 0.10 0.15

Next, we study the effect of sharing the same filter-generating network
across all interaction blocks. Similarly to the shared interaction functions in
the DTNN architecture, this reduces the number of model parameters which
might improve generalization, in particular on the small training set. In con-
trast to DTNN, this still allows for varying emphasis on different distance
regimes throughout the network, since we do not share the full interaction
blocks. While we observe minor improvement in energies and forces for the
ethanol trajectory using 1,000 training examples, there are no improvements
for benzene and the large training set. For the datasets with 50,000 training
examples, sharing the filters deteriorates the force predictions, in particular
for models with T = 6. The error is even higher than for the smaller training
set, which indicates that sharing convolutional filters leads to a too constraint
model which can get stuck in a local minimum.

Overall, the results are reasonably robust to the choice of number and
sharing of interaction blocks for T ≥ 2. The second interaction block is crucial
for SchNet to be able to incorporate important angle information in the atom-
wise representations. Based on this, we use SchNet with three interaction
blocks and separate filter-generating networks in the following. Additional
results with T = 6 are listed in Appendix B.3.
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Table 5.2: Test errors of SchNet trained on benzene trajectory with T ∈ {1, 2, 3}.
interaction blocks. We evaluate the effect of shared and unshared filter-generating
networks on ethanol and benzene data sets trained on energies and forces using 50k
examples.

Benzene Energy [kcal/mol] Force [kcal/mol/Å]

T MAE RMSE MAE RMSE

N = 1,000

1 0.08 0.11 0.35 0.66

2 0.08 0.10 0.30 0.46

3 0.08 0.10 0.31 0.47

6 0.20 0.22 0.37 0.53

shared
2 0.08 0.10 0.31 0.52

3 0.08 0.10 0.31 0.47

6 0.09 0.11 0.33 0.51

N = 50,000

1 0.08 0.10 0.31 0.48

2 0.07 0.09 0.20 0.30

3 0.07 0.09 0.17 0.27

6 0.08 0.10 0.18 0.28

shared
2 0.08 0.10 0.23 0.35

3 0.07 0.09 0.18 0.27

6 0.07 0.09 0.61 0.84

Table 5.3 shows the performance of SchNet in terms of energy prediction
on all eight MD trajectories of the MD17 collection. We have trained SchNet
only on energies as well as using the combined loss with energy-force trade-
off ρ = 0.01. In the experimental setting using 1,000 training examples, we
compare to GDML models trained on atomic forces [Chm+17]. Note that the
training examples for the GDML models were sampled uniformly according
to the energy distribution of the corresponding MD trajectory while SchNet
was trained on randomly sampled training data. We observe that the energy
predictions of SchNet greatly benefit from the added gradient information of
the atomic forces. The mean absolute errors can be reduced by more than one
order of magnitude consistently. The predictions of atomic forces in Table 5.4
show a similar picture. The improvement by using forces in training is even
more drastic here with improvements of 1-2 orders of magnitude.

SchNet improves over GDML in terms of energy and force predictions
for two out of eight molecules: malonaldehyde and ethanol. Fig. 5.1 shows
that these are the two molecules in MD17 that do not include aromatic rings.
These molecules have many symmetries such as the rotating hydroxyl and
methyl groups in ethanol and aldehyde groups in malonaldehyde (see Fig. 5.2).
SchNet, being implicitly invariant to atom indexing, can make use of these
and, thereby, represent the molecules in a smaller feature space. On the other
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Table 5.3: Mean absolute errors for total energies of MD17 trajectories in kcal/mol.
GDML [Chm+17] and SchNet (T=3) [Sch+17b] test errors for N=1,000 and N=50,000
reference calculations of molecular dynamics simulations of small, organic molecules
are shown. Best results are given in bold.

N = 1,000 N = 50,000

GDML SchNet SchNet

trained on forces energy energy+forces energy energy+forces

Benzene 0.07 1.19 0.08 0.08 0.07

Toluene 0.12 2.95 0.12 0.16 0.09

Malonaldehyde 0.16 2.03 0.13 0.13 0.08

Salicylic acid 0.12 3.27 0.20 0.25 0.10

Aspirin 0.27 4.20 0.37 0.25 0.12

Ethanol 0.15 0.93 0.08 0.07 0.05

Uracil 0.11 2.26 0.14 0.13 0.10

Naphtalene 0.12 3.58 0.16 0.20 0.11

Table 5.4: Mean absolute errors for atomic forces of MD17 trajectories in
kcal/mol/Å. GDML [Chm+17] and SchNet (T=3) [Sch+17b] test errors for N=1,000
and N=50,000 reference calculations of molecular dynamics simulations of small,
organic molecules are shown. Best results are given in bold.

N = 1,000 N = 50,000

GDML SchNet SchNet

trained on forces energy energy+forces energy energy+forces

Benzene 0.23 14.12 0.31 1.23 0.17

Toluene 0.24 22.31 0.57 1.79 0.09

Malonaldehyde 0.80 20.41 0.66 1.51 0.08

Salicylic acid 0.28 23.21 0.85 3.72 0.19

Aspirin 0.99 23.54 1.35 7.36 0.33

Ethanol 0.79 6.56 0.39 0.76 0.05

Uracil 0.24 20.08 0.56 3.28 0.11

Naphtalene 0.23 25.36 0.58 2.58 0.11
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(a) Ethanol with methyl group.
(b) Malonaldehyde with aldehyde
groups.

Figure 5.2: Two configurations from the MD trajectories of ethanol and
malonaldehyde each. The rotating functional groups of the molecules are marked
with dashed lines.

hand, these symmetries do not correspond well to the assignment of unique
identifiers for the atoms in the molecules, which is performed implicitly by
GDML due to the use of the second derivative of the Coulomb matrix as de-
scriptor. While similar symmetries can also be observed for molecules with
aromatic rings, SchNet appears to require more data in order to distinguish be-
tween locally similar atom environments at distinct positions in the molecules.
E.g., SchNet performs worse than GDML on toluene even though it possesses
a rotating methyl group.

GDML has limited ability to scale due to the kernel matrix scaling quadrati-
cally with the total number of atoms in the training set. Since SchNet can easily
scale to larger training sets, we also train on a set of 50,000 training examples.
Again, the force information helps significantly for energy and force predic-
tions, however, the improvements have become smaller. This is because of the
increased likelihood of redundant information about the local environment of
training examples in the energy gradients and the added training examples.
SchNet is now reaching or surpassing the performance of GDML on the small
dataset for all molecules (see Tables 5.3 and 5.4). We conclude that SchNet
has the expressive power and necessary scalability to represent the configura-
tions in the MD trajectories, however GDML is more data-efficient up to highly
symmetric molecules.

5.2.2 PES for C7O2H10 isomers

Figure 5.3: Selection of C7O2H10 isomers from ISO17 dataset.

Having predicted energies and forces for single MD trajectories of small
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organic molecules from MD17, the next challenge is to use SchNet to learn
a more general potential energy surface. While the ultimate goal is a model
for compositional and configurational degrees of freedom, we will take an
intermediate step here, training a common model for molecular dynamics of
various isomers. For this, we employ a dataset of short MD trajectories of 129
molecules that are randomly sampled from the largest set of isomers in QM9
with the composition C7O2H10. With each trajectory consisting of 5,000 steps,
the data set consists of 129× 5, 000 = 645, 000 labeled examples with calculated
energies and atomic forces. While these molecules have the same composition,
they represent diverse structures with different chemical bonding. This can be
seen in Fig. 5.3, where we have plotted five molecules from the ISO17 dataset.
Specifics about how the dataset was generated are listed in Appendix A.

We split the data according to the following scheme: First, we split the data
into 80% known and 20% unknown MD trajectories. Then, we split the known
trajectories into 80% known and 20% unknown configurations. This leaves us
with a set for training and validation consisting of 80% of configurations of
80% of the MD trajectories, a test set of the remaining 20% unseen configu-
rations within known MD trajectories (test-within) as well as a test set of the
unseen 20% of the MD trajectories (test-other). While the first test set serves
to estimate how well the model can represent multiple trajectories, the second
test set will be used to evaluate how well the model has learned to generalize
to other molecules.

Table 5.5: Mean absolute errors on C7O2H10 isomers of energy and force
predictions in kcal mol−1and kcal mol−1 Å−1, respectively [Sch+17b]. SchNet was
trained using three interaction layers using only energies as well as with energies
and forces (ρ = 0.01). We give the mean predictor for reference.

mean predictor SchNet

energy energy+forces

known molecules / energy 14.89 0.52 0.36

unknown conformation forces 19.56 4.13 1.00

unknown molecules / energy 15.54 3.11 2.40

unknown conformation forces 19.15 5.71 2.18

Table 5.5 shows the performance of SchNet using three interaction layers
on both test sets. When predicting the remaining conformations of the known
trajectories, SchNet reaches chemical accuracy. While this is not enough to per-
form an MD simulation, it shows that SchNet is able to represent geometries
of a more general potential energy surface. For the setting with unknown MD
trajectories, SchNet does still reach 2.40 kcal mol−1and 2.18 kcal mol−1 Å−1,
respectively.

In both settings, training including atomic forces improves both energy
and force predictions. This demonstrates that force information does not only
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help with the prediction of very similar configurations, but also helps with
generalization across chemical compound space.

5.3 Molecular dynamics study of C20 fullerene

Figure 5.4: Two perspectives of the fullerene C20. The geometry was optimized
using the predicted forces of SchNet. On the right, equal bond lengths are
color-coded and annotated in Ångstrom.

While we have demonstrated that SchNet can deliver accurate predictions
of energies and forces, we still need to show that this can practically be used
to drive a molecular dynamics simulation. We have selected the fullerene C20
for an exemplary study of whether this is feasible and how much speedup we
can gain for a small molecule of this size. Fig. 5.4 depicts the molecule in its
equilibrium configuration, which is a cage of carbon atoms.

The reference data was generated using a classical MD simulation at 500K
for 29,689 time steps at the PBE+vdWTS level of theory [PBE96; TS09]. Further
details on the data generation are listed in Chapter A.

We perform a two-step model selection where we evaluate SchNet models
with T ∈ {3, 6} interaction blocks and F ∈ {64, 128} feature dimensions of
the atom-wise representations. In a first step, we set the energy-force trade-off
to ρ = 0.01 which proved to be a good compromise in our experiments for
the MD17 and ISO17 datasets. Table 5.6 (upper half) shows the results of the
model selection in terms of mean absolute errors. The best results could be
obtained with the largest model with T = 6 interaction blocks and F = 128
feature dimensions.

While we have aimed for a compromise between energy and force predic-
tions in previous sections, it might make sense to train separate models for
energies and forces. This is because errors can be shifted between the energy
and force prediction accuracy depending on the trade-off. By choosing the
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Table 5.6: Model selection for C20 molecular dynamics study [Sch+18]. Mean
absolute errors for energy and force predictions of C20-fullerene
in kcal mol−1and kcal mol−1Å−1, respectively. We compare SchNet models with
varying number of interaction blocks T, feature dimensions F and energy-force
tradeoff ρ. For force-only training (ρ = 0), the integration constant is fitted
separately. Best models in bold.

interactions T features F energy loss scale ρ energy forces

3 64 0.010 0.228 0.401

6 64 0.010 0.202 0.217

3 128 0.010 0.188 0.197

6 128 0.010 0.1002 0.120

6 128 0.100 0.027 0.171

6 128 0.010 0.100 0.120

6 128 0.001 0.238 0.061

6 128 0.000 0.260 0.058

correct trade-off, we can obtain optimal force and energy models

F̂ρF = −∇ẼρF (5.8)

F̃ρE = −∇ÊρE , (5.9)

where ρE and ρF are the optimal trade-offs for energy and force prediction,
respectively. Each model has a corresponding suboptimal force field F̃ρE or
potential ẼρF . Given the ground truth force F and potential E, the errors fulfill

∥F̂ρF − F∥2
L2

≤ ∥F̃ρE − F∥2
L2

(5.10)

∥ÊρE − E∥2
L2

≤ ∥ẼρF − E∥2
L2

. (5.11)

Each force field is conservative w.r.t. its corresponding potential. However,
the MD simulation might still leak energy with respect to the optimal energy
model or the ground truth energy. For the following results, we only need
accurate forces and do not require energies.

We use the previously selected settings for interaction blocks and number
of features and train models with trade-offs ρ ∈ {10−1, 10−2, 10−3, 0.0}. The
last setting corresponds to a model that is exclusively trained using forces,
however, even here we use the differentiated energy model to guarantee en-
ergy conservation [Chm+17]. For the energy prediction, we have to addition-
ally fit the bias of the last layer as it corresponds to the integration constant.
Table 5.6 (bottom half) shows the influence of the trade-off. By training special-
ized models for energies and forces, we are able to improve energy prediction
from mean absolute errors of 0.1002 kcal mol−1to 0.027 kcal mol−1and force
prediction from 0.12 kcal mol−1 Å−1to 0.058 kcal mol−1 Å−1.
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Figure 5.5: Normal mode analysis of the fullerene C20 dynamics comparing
SchNet and DFT results [Sch+18].

As a first step to validate the force model, we apply to relaxation of the
fullerene C20 geometry. Fig. 5.4 shows the relaxed structure of C20 where the
relaxation has been converged up to a maximum force of 10−4 kcal mol−1 Å−1.
The molecule is not a perfect dodecahedron, but possesses three distinct bond
lengths [PA91]. These are color-coded on the right side of Fig. 5.4 and are for
our model 1.41Å, 1.45Å and 1.52Å, which agrees with the relaxed structure
using DFT at PBE+vdWTS level of theory. Fig. 5.5 shows a comparison of the
vibrational spectrum of DFT and our model. The frequencies in the vibrational
spectrum correspond to the eigenvalues of the mass-weighted Hessian

µij =
1

√mimj

∂2E
∂ri∂rj

(r1, . . . , r20)

at the equilibrium configuration. The largest error in the frequencies is ∼1%
of the corresponding DFT reference energy. This analysis as well as the re-
sults in Table 5.6 demonstrate that SchNet is able to accurately reconstruct the
potential energy surface and its symmetries.

We perform the MD simulation using SchNet at 300K with classical MD
as well as path-integral MD (PIMD) using 8 beads, which introduces nuclear
quantum effects. Fig 5.6 shows the distributions of nearest neighboring atom
distances and the diameter of C20 as well as the radial distribution function
for both MD trajectories. The addition of nuclear quantum effects widens the
distribution of nearest neighbor distances which agrees with recently reported
PIMD results on graphene [PDT18].
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Figure 5.6: Analysis of the fullerene C20 dynamics at 300K using SchNet [Sch+18].
Distribution functions for nearest neighbours, diameter of the fullerene and the
radial distribution function using classical MD (blue) and PIMD with 8 beads (green).

Each single-point DFT calculation of C20 requires a computation time of
11 seconds using 32 CPU cores. Using SchNet, this could be reduced to 10
ms for a single prediction on an NVIDIA GTX1080 GPU. Since PIMD requires
multiple calculations per time step, this runtime can be further reduced by
predicting the forces of the batch in parallel without much overhead. This
speedup has made it possible to perform 1.25 ns of PIMD by reducing the
runtime by 3-4 orders of magnitude: from about 7 years to less than 7 hours.

5.4 Summary and discussion

In this chapter, we have applied SchNet to the prediction of potential energy
surfaces and energy-conserving force fields. We have used a combined loss
with energy and force terms to obtain models that improve upon pure energy
models and reduce the required amount of reference calculations. SchNet
accurately predicts energies and forces of MD trajectories of small organic
molecules, even on a small training set of 1,000 molecules. We have explored
the prediction across chemical and configurational space and obtained encour-
aging results on a set of C7O2H10 isomers. In future research, such models may
be used in combination with active learning strategies to build data-efficient
predictors for reaction paths and catalysis.

Finally, we have applied SchNet to study of the dynamics of C20 fullerene
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at the PBE+vdWTS level of theory. We have validated our model by demon-
strating accurate predictions of energies and forces as well as good agreement
in the vibrational spectrum compared to ab initio DFT calculations. Then,
we have used SchNet to generate a 1.25 ns PIMD trajectory including nuclear
quantum effects. This would not have been computationally feasible with ab
initio DFT calculations which would have taken years instead of hours. In fu-
ture work, we will apply SchNet to MD simulation studies of other molecules
and validate our models against an expanded range of properties. Further
research is also necessary to evaluate the best strategy for cases where both
accurate energies and forces are required, in particular, the prediction of ther-
modynamical properties such as thermal energy or specific heat.



Chapter 6

Conclusions and outlook

The goal of this thesis has been to develop end-to-end machine learning tech-
niques capable of learning representations for atomistic systems directly from
atom types and positions. Based on the analysis of hand-crafted machine
learning descriptors for molecules and materials in Chapter 2, we have pro-
posed two neural network architectures that learn atom-wise representations
of chemical environments. They guarantee the fundamental invariances to-
wards translation, rotation and atom indexing. Both neural networks obtain
embeddings of atom types that allow for cross-element generalization and
apply repeated pair-wise interactions between atoms to incorporate environ-
ment information into the atom-wise features. The crucial difference between
the two architectures is how the interactions are modeled. In Chapter 3, we
have proposed the deep tensor neural network (DTNN) for molecules that use
factorized tensor layers to model the interaction function. In Chapter 4, we
have introduced continuous-filter convolutional layers, which we use within
the interaction blocks of our second architecture SchNet.

Both neural networks yield chemically accurate predictions of energies in
compositional and configurational space. SchNet improves over DTNN con-
sistently, in particular, reducing the error on the benchmark dataset QM9 by
more than 50%. DTNN and SchNet decompose the property of interest into
atom-wise contributions, such that we can obtain a partitioning of the atom-
ization energy. In our analysis, we have found that SchNet learns more stable
partitionings than DTNN that have narrower energy ranges. On top of that we
have defined local chemical potentials that visualize the spatial structure of the
interactions. Finally, we have conducted a sensitivity analysis of the atom-wise
features towards bond breaking. All three experiments have shown evidence
that the representations of SchNet models are more local than those of DTNN
models. This presents a plausible explanation of the improved performance.

We have encoded periodic boundary conditions into the filter-generating
networks of SchNet to directly obtain filters that reflect the periodicity of bulk
crystals. This allowed us to efficiently predict formation energies for a diverse

83



84 CHAPTER 6. CONCLUSIONS AND OUTLOOK

set of crystals from the Materials Project repository. Due to the wide variety
of atom types in this data, we were able to show that SchNet is indeed able
generalizes across elements: We have shown that the atom type embeddings
learned by SchNet agree with chemical intuition: they cluster based to their
main group and partially order from light to heavy elements.

Due to a careful choice of activation function and distance basis, SchNet
has been designed to be smooth such that second derivatives can be obtained.
On this basis, we use a combined loss for energies and forces to improve
the accuracy of the model without requiring more reference calculations. We
have used this to apply SchNet to the prediction of potential energy surfaces
in configurational and chemical space. Most notably, we have performed a
molecular dynamics study of fullerene C20. SchNet has been able to accurately
reproduce the vibrational spectrum and has been used to generate a 1.25ns
path-integral MD trajectory at the PBE+vdWTS level of theory, which would
not have been feasible with conventional ab initio methods.

Several avenues of future research remain for improving and extending
the SchNet and DTNN architectures. A major concern is the improvement
of data efficiency in order to go to larger system sizes and higher levels of
theory, where less training data is available. This may be achieved by semi-
supervised learning of the representation, transfer learning from less accurate
calculations to higher levels of theory or active learning. Another issue is the
reliability of the prediction accuracy, in particular during molecular dynamics
simulations, where configurations that are not well represented by the training
data might be encountered at some point in the trajectory. Here, uncertainty
measures are crucial so that such a situation can be detected. Finally, we will
need to study whether and how the architecture can be extended to delocal-
ized properties and long-range quantum interactions. In conclusion, SchNet
and DTNN present flexible deep learning frameworks for atomistic systems
that we expect to facilitate further developments towards interpretable deep
learning architectures to assist chemistry research.



Appendix A

Datasets

In the following, we briefly describe the employed datasets. All reference cal-
culations were performed using density functional theory [HK64] employing
various levels of theory as given per dataset.

A.1 Chemical compound space

Datasets in this section contain diverse sets of molecules at equilibrium across
chemical compound space.

QM7b [Mon+13] This dataset consists of all possible 7211 organic molecules
with up to seven heavy atoms from the set {C, N, O, S, Cl} and saturated
with hydrogen. It is a subset of the GDB-13 [BR09] enumeration of organic
molecules and includes geometries as well as 13 properties at different levels
of theory. In this thesis, we only use the atomization energy calculated with
FHI-AIMS [Blu+09] at PBE0 [PEB96] level of theory. The data is available at
www.quantum-machine.org.

QM9 [Ram+14] This dataset constitutes a subset of the GDB-17 database
[BR09; Rey15] consisting of all 133,885 molecules with up to nine heavy atoms
from the set {C, N, O, F}. It includes 15 quantum-chemical properties calcu-
lated at the B3LYP/6-31G(2df,p) [Bec88; LYP88; Bec93] level of theory with
Gaussian 09 [Fri+09]. The properties are described in Table A.1. For the prop-
erties U0, U, H, G and Cv, QM9 provides single-atoms references, which can
be used to obtain a better starting point for the neural networks when predict-
ing only the contributions due to the interactions. E.g., instead of predicting
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Table A.1: Properties of QM9 and the units as used in this thesis. For further
details, see Ramakrishnan et al. [Ram+14].

Symbol Unit Description

ϵHOMO kcal mol−1 The energy of the highest occupied molecular or-
bital is the highest energy level which is occupied
with electrons.

ϵLUMO kcal mol−1 The energy of the lowest unoccupied molecular
orbital is the energy level above ϵHOMO, which is
the unoccupied level.

∆ϵ kcal mol−1 The HOMO-LUMO gap is the energy difference
ϵLUMO − ϵHOMO which determines how much en-
ergy is required to reach an excited state.

ZPVE kcal mol−1 The zero-point vibrational energy corresponds to
the motion of the molecule at 0K caused by Heisen-
berg’s uncertainty principle.

µ Debye The magnitude of the dipole moment describes
the polarity of the molecule.

α Bohr3 The isotropic polarizability describes to what de-
gree an external field can induce a dipole moment
in the molecule.

⟨R2⟩ Bohr2 The electronic spatial extent is the second moment
of the charge distribution.

U0 kcal mol−1 The internal energy of the molecule at 0K.

U kcal mol−1 The internal energy of the molecule at 298.15K.

H kcal mol−1 The enthalpy of the molecule at 298.15K.

G kcal mol−1 The free energy of the molecule at 298.15K.

Cv cal / molK The heat capacity of the molecule at 298.15K.



A.2. MOLECULAR DYNAMICS TRAJECTORIES 87

Table A.2: Overview about datasets in MD17 collection.

Molecule Formula ndata

Benzene C6H6 627,000

Uracil C4H4N2O2 133,000

Naphthalene C10H8 326,000

Aspirin C9H8O4 211,000

Salicylic acid C7H6O3 320,000

Malonaldehyde C3H4O2 993,000

Ethanol C2H6O 555,000

Toluene C7H8 442,000

the internal energy U0, we predict the atomization energy

U0,at = U0 −
natoms

∑
i=1

U0,Zi ,

where U0,Zi is the internal energy of atoms with nuclear charge Zi. Since this
is only an offset, prediction of both atomization and internal energy can be
obtained with the same accuracy. The QM9 dataset is available at:
https://doi.org/10.6084/m9.figshare.978904

A.2 Molecular dynamics trajectories

MD17 [Chm+17] This is a collection of path-integral molecular dynamics tra-
jectories of small organic molecules at the PBE-TS [PBE96; TS09] level of the-
ory using the FHI-aims code [Blu+09]. The MD simulations were performed
at 500K with a time of 0.5 fs using the i-PI code [CMM14]. Energies and forces
were calculated at the PBE+vdWTS [PBE96; TS09] level of theory. Table A.2
gives an overview about the molecules in the collection as well as the size of
the datasets. The data is available at www.quantum-machine.org.

Fullerene C20 [Sch+18] This dataset consists of a short MD trajectory of ∼30k
configurations of the fullerene C20 generated by a classical MD at 500K with
a step size of 1fs using DFT at the PBE+vdWTS [PBE96; TS09] level of theory
using the FHI-aims code [Blu+09].

ISO17 [Sch+17a; Sch+17b] This dataset was generated from molecular dy-
namics simulations at the PBE+vdWTS [PBE96; TS09] level of theory. It consists
of 129 molecules each containing 5,000 conformational geometries, energies

https://doi.org/10.6084/m9.figshare.978904
www.quantum-machine.org
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Figure A.1: Histogram of atom types in the Materials Project dataset. The dataset
includes 89 atom types ranging across the periodic table.

and forces with a step size of 1 fs. The molecules were randomly drawn from
the largest set of isomers in the QM9 dataset (C7O2H10). The data is available
at www.quantum-machine.org.

A.3 Materials

Materials Project [Jai+13] The Materials Project is a repository of bulk crys-
tals and their electronic properties calculated with VASP [KF96] at the GGA+U
level of theory [Jai+11]. We use a snapshot of the repository downloaded on
August 14th, 2017 including 69,640 structures and reference calculations of
formation energies. The crystal unit cells contain up to 296 atoms from 89 dif-
ferent atom types. Fig. A.1 shows a histogram over atom types in the Materials
Project dataset. The data is available at www.materialsproject.org.

www.quantum-machine.org
www.materialsproject.org


Appendix B

Supplemental results

B.1 Scatter plots of energy contributions

We show scatter plots of energy contributions for DTNN and SchNet, which
are complementary to the distribution plots in Sections 3.6.1 and 4.5.1.
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(a) Energy contributions

(b) Atomization Energies

Figure B.1: Scatter plots of energy contributions for atoms of types H, C, N, O and
atomization energies from QM9 molecules predicted by two DTNN (T=3) models.
The models were trained on 100k examples. Model 1 and 2 were trained on different
subsets.
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(a) Energy contributions

(b) Atomization Energies

Figure B.2: Scatter plots of energy contributions for atoms of types H, C, N, O and
atomization energies from QM9 molecules predicted by two SchNet (T=3) models.
The models were trained on 100k examples. Model 1 and 2 were trained on different
subsets.
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(a) Energy contributions

(b) Atomization Energies

Figure B.3: Scatter plots of energy contributions for atoms of types H, C, N, O and
atomization energies from QM9 molecules predicted by two SchNet (T=6) models.
The models were trained on 100k examples. Model 1 and 2 were trained on different
subsets.
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B.2 Stability ranking of 6-membered carbon rings

Here,we show the full list of molecules for the stability ranking of 6-membered
carbon rings from Section 4.5.4:

-752.7 -752.4 -752.3 -751.5 -749.4 -748.9 -748.4 -748.0 -747.6 -746.9

-745.3 -744.7 -744.5 -744.3 -743.9 -742.6 -742.4 -741.9 -741.4 -740.3

-740.3 -739.5 -737.8 -737.6 -737.0 -736.8 -735.4 -735.1 -735.1 -735.0

-734.6 -734.6 -734.6 -734.3 -733.6 -733.6 -733.3 -732.5 -732.1 -732.1

-732.0 -731.5 -731.3 -730.9 -730.6 -730.4 -730.1 -729.9 -729.7 -729.7

-729.6 -728.6 -728.2 -728.1 -727.9 -727.8 -727.4 -726.9 -726.2 -725.9

-725.7 -725.6 -725.6 -725.1 -725.0 -725.0 -724.9 -724.7 -724.7 -724.7

-724.6 -724.6 -724.6 -724.4 -724.0 -723.4 -723.2 -722.9 -722.5 -722.5

-722.2 -722.0 -722.0 -721.4 -721.4 -721.3 -721.3 -721.2 -721.0 -720.8

-720.6 -720.6 -720.6 -720.2 -720.2 -719.6 -719.6 -719.6 -719.5 -719.2
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-718.8 -718.4 -718.3 -718.2 -718.1 -718.0 -717.7 -717.6 -717.3 -717.1

-717.1 -717.1 -717.0 -716.9 -716.6 -716.6 -716.5 -716.5 -716.4 -716.0

-715.9 -715.8 -715.7 -715.5 -715.5 -715.1 -715.0 -714.9 -714.7 -714.6

-714.6 -714.5 -714.3 -714.2 -714.2 -714.2 -713.8 -713.8 -713.7 -713.6

-713.5 -713.5 -713.4 -713.4 -713.3 -712.7 -712.6 -712.4 -712.3 -711.6

-711.5 -711.4 -711.4 -711.2 -711.0 -711.0 -711.0 -711.0 -710.9 -710.8

-710.7 -710.5 -710.5 -710.5 -710.3 -710.2 -710.0 -709.9 -709.8 -709.5

-709.4 -709.3 -709.1 -709.0 -709.0 -708.7 -708.6 -708.6 -708.4 -708.3

-708.3 -708.1 -708.0 -707.9 -707.8 -707.8 -707.7 -707.7 -707.4 -707.4

-707.3 -707.3 -707.2 -707.1 -707.1 -707.1 -707.0 -706.9 -706.7 -706.7

-706.4 -706.4 -706.3 -706.2 -706.1 -706.0 -705.9 -705.7 -705.6 -705.1
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-704.9 -704.5 -704.5 -704.4 -703.9 -703.8 -703.7 -703.7 -703.7 -703.7

-703.6 -703.5 -703.2 -703.2 -702.5 -702.2 -702.2 -702.2 -702.0 -701.8

-701.7 -701.6 -701.4 -701.1 -701.1 -701.0 -700.7 -700.4 -700.2 -700.1

-700.0 -699.6 -699.4 -699.2 -699.2 -699.1 -699.1 -699.1 -698.9 -698.3

-698.3 -697.6 -697.5 -697.4 -697.3 -697.1 -697.1 -696.7 -696.7 -696.7

-696.6 -696.4 -696.2 -695.4 -695.4 -695.3 -695.0 -694.5 -693.7 -693.5

-693.5 -693.3 -693.1 -693.1 -692.3 -692.1 -691.7 -691.6 -691.4 -690.5

-689.7 -688.9 -688.3 -688.1 -687.9 -686.6 -686.4 -683.5 -681.1 -680.2
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B.3 MD17 predictions with T=6 interaction blocks

The following tables contain supplementary results for Chapter 5 using larger
models with six instead of three interaction blocks. As expected from our
model selection (see Tables 5.1 and 5.2), SchNet (T = 3) achieves the lower
prediction errors in most cases.

Table B.1: Mean absolute errors for total energies of MD17 trajectories in kcal/mol.
SchNet (T=6) test errors (results for T = 3 in brackets) for N=1,000 and N=50,000
reference calculations of molecular dynamics simulations of small, organic molecules
are shown. Improved results in bold.

N = 1,000 N = 50,000

trained on energy energy+forces energy energy+forces

Benzene 1.24 (1.19) 0.20 (0.08) 0.07 (0.08) 0.08 (0.07)

Toluene 2.82 (2.95) 0.14 (0.12) 0.17 (0.16) 0.09 (0.09)

Malonaldehyde 2.15 (2.03) 0.17 (0.13) 0.13 (0.13) 0.09 (0.08)

Salicylic acid 3.42 (3.27) 0.24 (0.20) 0.25 (0.25) 0.10 (0.10)

Aspirin 4.25 (4.20) 0.43 (0.37) 0.25 (0.25) 0.11 (0.12)

Ethanol 1.11 (0.93) 0.09 (0.08) 0.05 (0.07) 0.05 (0.05)

Uracil 2.22 (2.26) 0.18 (0.14) 0.13 (0.13) 0.10 (0.10)

Naphtalene 3.44 (3.58) 0.20 (0.16) 0.21 (0.20) 0.10 (0.11)

Table B.2: Mean absolute errors for atomic forces of MD17 trajectories in
kcal/mol/Å. SchNet (T=6) test errors (results for T = 3 in brackets) for N=1,000 and
N=50,000 reference calculations of molecular dynamics simulations of small, organic
molecules are shown. Improved results in bold.

N = 1,000 N = 50,000

trained on energy energy+forces energy energy+forces

Benzene 11.62 (14.12) 0.37 (0.31) 1.41 (1.23) 0.18 (0.17)

Toluene 16.94 (22.31) 0.59 (0.57) 1.82 (1.79) 0.09 (0.09)

Malonaldehyde 19.65 (20.41) 0.70 (0.66) 1.38 (1.51) 0.07 (0.08)

Salicylic acid 19.56 (23.21) 0.91 (0.85) 3.59 (3.72) 0.16 (0.19)

Aspirin 21.42 (23.54) 1.60 (1.35) 7.84 (7.36) 0.25 (0.33)

Ethanol 8.16 (6.56) 0.42 (0.39) 0.62 (0.76) 0.05 (0.05)

Uracil 16.56 (20.08) 0.63 (0.56) 3.44 (3.28) 0.10 (0.11)

Naphtalene 20.47 (25.36) 0.64 (0.58) 2.70 (2.58) 0.10 (0.11)
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